
Univer sity of Amsterdam

Theor y of Computer Science

Note on Paraconsistency and the Logic of
Fractions

J.A. Bergstra
I. Bethke

Report TCS1413 October 2014



J.A. Bergstra

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam
the Netherlands

tel. +31 20 525.7591
e-mail: J.A.Bergstra@uva.nl

I. Bethke

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam
the Netherlands

tel. +31 20 525.7583
e-mail: I.Bethke@uva.nl

Theory of Computer Science Electronic Report Series



Note on paraconsistency and the logic of fractions

Jan A. Bergstra & Inge Bethke

Informatics Institute, University of Amsterdam∗

Abstract

We apply a paraconsistent logic to reason about fractions.

1 Introduction

Suppose we want to define an arithmetic framework in which it is possible to reason about
fractions in a consistent and reliable way and in which the usual laws of arithmetic hold:
e.g. for natural numbers n, l and k 6= 0 6= m the equations

n

m
+

l

k
=

nk + lm

mk
and

n

m
+

l

m
=

n + l

m

should be valid. At the same time, we want to consider fractions as mathematical expressions
with typical syntactic operations like the numerator num( ) satisfying

num(
n

m
) = n.

Then equational logic dictates

n + l = num(
n + l

m
) = num(

n

m
+

l

m
) = num(

nm + lm

mm
) = nm + lm.

for arbitrary l, n and m 6= 0, and our framework is inconsistent. Nevertheless, fractions are
of great practical and abstract importance and we should be able to reason about them
without lapsing into absurdity.

In mathematics education, one can get around this predicament in various ways: avoiding
the concepts of numerator and denominator (see e.g. [6]), viewing fractions as heterogeneous
subject (see e.g. [5]), or accepting cognitive conflicts (see e.g. [7]). In this note, we propose
to apply paraconsistent logic.

A paraconsistent logic is a way to reason about inconsistent information without ex-

ploding in the sense that if a contradiction is obtained, then everything can be obtained.
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Paraconsistent logics come in a broad spectrum, ranging from logics with the thought that
if a contradiction were true, then everything would be true, to logics that claim that some
contradictions really are true. For a brief discussion see e.g. [4]. In this note, we choose a
particular paraconsistent logic to tackle the dilemma sketched above. We do not claim that
this is the only possible way how to proceed in our scenario; other paraconistent logics may
be suitable as well.

2 The binary C & P structure

The approach taken is known as the preservationist school. There the fundamental idea
is that, given an inconsistent collection of premises, one should not try to reason about
the collection of premises as a whole, but rather focus on internally consistent subsets of
premises. In 2004, Brown and Priest [3] introduced the Chunk and Permeate (C & P)
strategy for dealing with reasoning situations involving incompatible assumptions. In this
preservationist logic, a theory is broken up into chunks and only restricted information is
allowed to pass from one chunk to another.

Here we only give the rendering of the simple binary structure which is sufficient in our
case. We let Σ be the two-sorted signature containing 0, 1, the numerator and denominator
num and denom, the fraction , symbols for addition and multiplication of natural numbers
and fractions, respectively, and an additional error element a produced by division by zero.
The binary C & P structure for our problem is 〈Ts, Tt, ρ〉 where

• Ts is the source chunk,

• Tt is the target chunk, and

• ρ is the information that is allowed to flow from source to target.

Ts is the equational theory given in Table 1. Here k, l, m, n range over natural numbers or
can take the error value, and α, β, γ denote fractions. Observe that in the source, fractions
with identical denominators can be added (†):

n

m
+

k

m
=

n

1
·

1

m
+

k

1
·

1

m
(9)

= (
n

1
+

k

1
) ·

1

m
(6), (7)

=
n + k

1
·

1

m
(10)

=
n + k

m
(9)

That Ts is consistent can be seen as follows. We let M be the Σ-algebra with the sortsNa = N ∪ {a} and F = N× N where the operations are interpreted as follows. If ◦ ∈ {+, ·},
then ◦ : Na × Na → Na is defined by

x ◦ y =

{

x ◦ y if x, y ∈ N
a otherwise,
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n + 0 = n (1)

(n + m) + l = n + (m + l) (2)

n + m = m + n (3)

n · 1 = n (4)

(n · m) · l = n · (m · l) (5)

n · m = m · n (6)

n · (m + l) = n · m + n · l (7)

n

m
·

l

k
=

n · l

m · k
(8)

n

m
=

n

1
·

1

m
(9)

n

1
+

m

1
=

n + m

1
(10)

(α + β) + γ = α + (β + γ) (11)

α + β = β + α (12)

(α · β) · γ = α · (β · γ) (13)

α · β = β · α (14)

α · (β + γ) = α · β + α · γ (15)

m 6= 0 ∧ m 6= a → num(
n

m
) = n (16)

m 6= 0 ∧ n 6= a → denom(
n

m
) = m (17)

Table 1: The equational theory of the source Ts
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and : Na × Na → F is defined by

x

y
=

{

(x, y) if x ∈ N, y ∈ N
(0, 0) otherwise,

num, denom : F→ Na are defined by

num((n, m)) =

{

n if m 6= 0

a otherwise,

and

denom((n, m)) =

{

m if m 6= 0

a otherwise,

and +, · : F× F→ F are defined by

(n, m) + (l, k) =

{

(n + l, m) if m = k 6= 0

(0, 0) otherwise,

and

(n, m) · (l, k) =

{

(nl, mk) if m 6= 0 6= k

(0, 0) otherwise.

It is easy to see that M is a model for Ts. The target theory Tt consists of the single
conditional equation

k 6= 0 →
nk

mk
=

n

m
. (18)

Clearly, Tt is consistent. However, Ts∪Tt is inconsistent since otherwise we have for arbitrary
k 6= 0 6= m

mk = denom(
nk

mk
) = denom(

n

m
) = m.

Moreover, we let ρ be the set of equations (1) – (15). Tt ∪ ρ is consistent: Q0 and Qa

—the zero-totalized and the a-totalized meadow of the rational numbers (see e.g. [1, 2]),
respectively—are both models of Tt ∪ ρ. We have thus arrived at a consistent theory were
we have full addition of fractions:

n

m
+

k

l
=

nl

ml
+

km

lm
(18)

=
nl

ml
+

km

ml
(6)

=
nl + km

ml
(†).
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