
Univer sity of Amsterdam

Theor y of Computer Science

Note on Paraconsistency and the Logic of
Fractions

J.A. Bergstra
I. Bethke

Report TCS1413 October 2014

J.A. Bergstra

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam
the Netherlands

tel. +31 20 525.7591
e-mail: J.A.Bergstra@uva.nl

I. Bethke

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam
the Netherlands

tel. +31 20 525.7583
e-mail: I.Bethke@uva.nl

Theory of Computer Science Electronic Report Series

Note on paraconsistency and the logic of fractions

Jan A. Bergstra & Inge Bethke

Informatics Institute, University of Amsterdam∗

Abstract

We apply a paraconsistent logic to reason about fractions.

1 Introduction

Suppose we want to define an arithmetic framework in which it is possible to reason about
fractions in a consistent and reliable way and in which the usual laws of arithmetic hold:
e.g. for natural numbers n, l and k 6= 0 6= m the equations

n

m
+

l

k
=

nk + lm

mk
and

n

m
+

l

m
=

n + l

m

should be valid. At the same time, we want to consider fractions as mathematical expressions
with typical syntactic operations like the numerator num() satisfying

num(
n

m
) = n.

Then equational logic dictates

n + l = num(
n + l

m
) = num(

n

m
+

l

m
) = num(

nm + lm

mm
) = nm + lm.

for arbitrary l, n and m 6= 0, and our framework is inconsistent. Nevertheless, fractions are
of great practical and abstract importance and we should be able to reason about them
without lapsing into absurdity.

In mathematics education, one can get around this predicament in various ways: avoiding
the concepts of numerator and denominator (see e.g. [6]), viewing fractions as heterogeneous
subject (see e.g. [5]), or accepting cognitive conflicts (see e.g. [7]). In this note, we propose
to apply paraconsistent logic.

A paraconsistent logic is a way to reason about inconsistent information without ex-

ploding in the sense that if a contradiction is obtained, then everything can be obtained.

∗Science Park 904, 1098 XH Amsterdam

1

Paraconsistent logics come in a broad spectrum, ranging from logics with the thought that
if a contradiction were true, then everything would be true, to logics that claim that some
contradictions really are true. For a brief discussion see e.g. [4]. In this note, we choose a
particular paraconsistent logic to tackle the dilemma sketched above. We do not claim that
this is the only possible way how to proceed in our scenario; other paraconistent logics may
be suitable as well.

2 The binary C & P structure

The approach taken is known as the preservationist school. There the fundamental idea
is that, given an inconsistent collection of premises, one should not try to reason about
the collection of premises as a whole, but rather focus on internally consistent subsets of
premises. In 2004, Brown and Priest [3] introduced the Chunk and Permeate (C & P)
strategy for dealing with reasoning situations involving incompatible assumptions. In this
preservationist logic, a theory is broken up into chunks and only restricted information is
allowed to pass from one chunk to another.

Here we only give the rendering of the simple binary structure which is sufficient in our
case. We let Σ be the two-sorted signature containing 0, 1, the numerator and denominator
num and denom, the fraction , symbols for addition and multiplication of natural numbers
and fractions, respectively, and an additional error element a produced by division by zero.
The binary C & P structure for our problem is 〈Ts, Tt, ρ〉 where

• Ts is the source chunk,

• Tt is the target chunk, and

• ρ is the information that is allowed to flow from source to target.

Ts is the equational theory given in Table 1. Here k, l, m, n range over natural numbers or
can take the error value, and α, β, γ denote fractions. Observe that in the source, fractions
with identical denominators can be added (†):

n

m
+

k

m
=

n

1
·

1

m
+

k

1
·

1

m
(9)

= (
n

1
+

k

1
) ·

1

m
(6), (7)

=
n + k

1
·

1

m
(10)

=
n + k

m
(9)

That Ts is consistent can be seen as follows. We let M be the Σ-algebra with the sortsNa = N ∪ {a} and F = N× N where the operations are interpreted as follows. If ◦ ∈ {+, ·},
then ◦ : Na × Na → Na is defined by

x ◦ y =

{

x ◦ y if x, y ∈ N
a otherwise,

2

n + 0 = n (1)

(n + m) + l = n + (m + l) (2)

n + m = m + n (3)

n · 1 = n (4)

(n · m) · l = n · (m · l) (5)

n · m = m · n (6)

n · (m + l) = n · m + n · l (7)

n

m
·

l

k
=

n · l

m · k
(8)

n

m
=

n

1
·

1

m
(9)

n

1
+

m

1
=

n + m

1
(10)

(α + β) + γ = α + (β + γ) (11)

α + β = β + α (12)

(α · β) · γ = α · (β · γ) (13)

α · β = β · α (14)

α · (β + γ) = α · β + α · γ (15)

m 6= 0 ∧ m 6= a → num(
n

m
) = n (16)

m 6= 0 ∧ n 6= a → denom(
n

m
) = m (17)

Table 1: The equational theory of the source Ts

3

and : Na × Na → F is defined by

x

y
=

{

(x, y) if x ∈ N, y ∈ N
(0, 0) otherwise,

num, denom : F→ Na are defined by

num((n, m)) =

{

n if m 6= 0

a otherwise,

and

denom((n, m)) =

{

m if m 6= 0

a otherwise,

and +, · : F× F→ F are defined by

(n, m) + (l, k) =

{

(n + l, m) if m = k 6= 0

(0, 0) otherwise,

and

(n, m) · (l, k) =

{

(nl, mk) if m 6= 0 6= k

(0, 0) otherwise.

It is easy to see that M is a model for Ts. The target theory Tt consists of the single
conditional equation

k 6= 0 →
nk

mk
=

n

m
. (18)

Clearly, Tt is consistent. However, Ts∪Tt is inconsistent since otherwise we have for arbitrary
k 6= 0 6= m

mk = denom(
nk

mk
) = denom(

n

m
) = m.

Moreover, we let ρ be the set of equations (1) – (15). Tt ∪ ρ is consistent: Q0 and Qa

—the zero-totalized and the a-totalized meadow of the rational numbers (see e.g. [1, 2]),
respectively—are both models of Tt ∪ ρ. We have thus arrived at a consistent theory were
we have full addition of fractions:

n

m
+

k

l
=

nl

ml
+

km

lm
(18)

=
nl

ml
+

km

ml
(6)

=
nl + km

ml
(†).

4

References

[1] Bergstra, J.A., Bethke, I., and Ponse, A. (2013). Cancellation meadows: a
generic basis theorem and some applications. The Computer Journal, 56(1):3–14,
doi:10.1093/comjnl/bsx147. (Also available at arXiv:0803.3969 [math.RA, cs.LO].)

[2] Bergstra, J.A. and Ponse, A. (2014). Division by zero in common meadows. University
of Amsterdam, Section Theory of Computer Science, Report TCS1410, June 2014. (Also
available at arXiv:1406.3280v2 [cs.LO].)

[3] Brown, B. and Priest, G. (2004). Chunk and Permeate, a paraconsistent inference
strategy. Part I: the infinitesimal calculus. Journal of Philosophical Logic, 33:379 –388.

[4] Middelburg, C.A. (2011). A Survey of Paraconsistent Logics. arXiv:1103.4324[cs.LO].

[5] Padberg, F. (2012). Didaktik der Bruchrechnung (4th edition). Series: Mathematik,
Primar- und Sekundarstufe, Springer-Spektrum.

[6] Rollnik, S. (2009). Das pragmatische Konzept für den Bruchrechenunterricht. PhD
thesis, University of Flensburg, Germany.

[7] Tall, D. and Vinner, S. (1981). Concept image and concept definition in mathematics,
with special reference to limits and continuity. Educational Studies in Mathematics, 12
151–169.

5

Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

[TCS1412] J.A. Bergstra, I. Bethke, and A. Ponse, Rekenen-Informatica,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1411] J.A. Bergstra, Bitcoin: not a Currency-like Informational Commodity, section Theory of Computer
Science - University of Amsterdam, 2014.

[TCS1409v2] J.A. Bergstra and A. Ponse, Three Datatype Defining Rewrite Systems for Datatypes of Integers each
extending a Datatype of Naturals (version 2),section Theory of Computer Science - University of
Amsterdam, 2014.

[TCS1410] J.A. Bergstra and A. Ponse, Division by Zero in Common Meadows,section Theory of Computer
Science - University of Amsterdam, 2014.

[TCS1407v3] J.A. Bergstra, Four Complete Datatype Defining Rewrite Systems for an Abstract Datatype of Natural
Numbers (version 3),section Theory of Computer Science - University of Amsterdam, 2014.

[TCS1409] J.A. Bergstra and A. Ponse, Three Datatype Defining Rewrite Systems for Datatypes of Integers each
extending a Datatype of Naturals, section Theory of Computer Science - University of Amsterdam,
2014.

[TCS1406v3] J.A. Bergstra, Bitcoin and Islamic Finance (version 3),section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1407v2] J.A. Bergstra, Four Complete Datatype Defining Rewrite Systems for an Abstract Datatype of Natural
Numbers (version 2),section Theory of Computer Science - University of Amsterdam, 2014.

[TCS1408] J.A. Bergstra, Bitcoin: Informational Money en het Einde van Gewoon Geld,section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1407] J.A. Bergstra, Four Complete Datatype Defining Rewrite Systems for an Abstract Datatype of Natural
Numbers,section Theory of Computer Science - University of Amsterdam, 2014.

[TCS1406v2] J.A. Bergstra, Bitcoin and Islamic Finance (version 2),section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1406] J.A. Bergstra, Bitcoin and Islamic Finance, section Theory of Computer Science - University of
Amsterdam, 2014.

[TCS1405] J.A. Bergstra, Rekenen in een Conservatieve Schrapwet Weide,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1404] J.A. Bergstra, Division by Zero and Abstract Data Types,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1403] J.A. Bergstra, I. Bethke, and A. Ponse, Equations for Formally Real Meadows,section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1402] J.A. Bergstra and W.P. Weijland, Bitcoin, a Money-like Informational Commodity, section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1401] J.A. Bergstra, Bitcoin, een "money-like informational commodity",section Theory of Computer
Science - University of Amsterdam, 2014.

[TCS1301] B. Diertens, The Refined Function-Behaviour-Structure Framework, section Theory of Computer
Science - University of Amsterdam, 2013.

[TCS1202] B. Diertens, Fr om Functions to Object-Orientation by Abstraction, section Theory of Computer
Science - University of Amsterdam, 2012.

[TCS1201] B. Diertens, Concurrent Models for Object Execution,section Theory of Computer Science -
University of Amsterdam, 2012.

[TCS1102] B. Diertens, Communicating Concurrent Functions,section Theory of Computer Science - University
of Amsterdam, 2011.

[TCS1101] B. Diertens, Concurrent Models for Function Execution,section Theory of Computer Science -
University of Amsterdam, 2011.

[TCS1001] B. Diertens, On Object-Orientation,section Theory of Computer Science - University of Amsterdam,
2010.

Within former series (PRG) the following reports appeared.

[PRG0914] J.A. Bergstra and C.A. Middelburg, Autosolvability of Halting Problem Instances for Instruction
Sequences,Programming Research Group - University of Amsterdam, 2009.

[PRG0913] J.A. Bergstra and C.A. Middelburg, Functional Units for Natural Numbers, Programming Research
Group - University of Amsterdam, 2009.

[PRG0912] J.A. Bergstra and C.A. Middelburg, Instruction Sequence Processing Operators, Programming
Research Group - University of Amsterdam, 2009.

[PRG0911] J.A. Bergstra and C.A. Middelburg, Partial Komori Fields and Imperative Komori Fields,
Programming Research Group - University of Amsterdam, 2009.

[PRG0910] J.A. Bergstra and C.A. Middelburg, Indirect Jumps Improve Instruction Sequence Performance,
Programming Research Group - University of Amsterdam, 2009.

[PRG0909] J.A. Bergstra and C.A. Middelburg, Arithmetical Meadows,Programming Research Group -
University of Amsterdam, 2009.

[PRG0908] B. Diertens, Software Engineering with Process Algebra: Modelling Client / Server Architecures,
Programming Research Group - University of Amsterdam, 2009.

[PRG0907] J.A. Bergstra and C.A. Middelburg, Inversive Meadows and Divisive Meadows,Programming
Research Group - University of Amsterdam, 2009.

[PRG0906] J.A. Bergstra and C.A. Middelburg, Instruction Sequence Notations with Probabilistic Instructions,
Programming Research Group - University of Amsterdam, 2009.

[PRG0905] J.A. Bergstra and C.A. Middelburg, A Protocol for Instruction Stream Processing,Programming
Research Group - University of Amsterdam, 2009.

[PRG0904] J.A. Bergstra and C.A. Middelburg, A Process Calculus with Finitary Comprehended Terms,
Programming Research Group - University of Amsterdam, 2009.

[PRG0903] J.A. Bergstra and C.A. Middelburg, Tr ansmission Protocols for Instruction Streams,Programming
Research Group - University of Amsterdam, 2009.

[PRG0902] J.A. Bergstra and C.A. Middelburg, Meadow Enriched ACP Process Algebras, Programming
Research Group - University of Amsterdam, 2009.

[PRG0901] J.A. Bergstra and C.A. Middelburg, Timed Tuplix Calculus and the Wesseling and van den Berg
Equation,Programming Research Group - University of Amsterdam, 2009.

[PRG0814] J.A. Bergstra and C.A. Middelburg, Instruction Sequences for the Production of Processes,
Programming Research Group - University of Amsterdam, 2008.

[PRG0813] J.A. Bergstra and C.A. Middelburg, On the Expressiveness of Single-Pass Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0812] J.A. Bergstra and C.A. Middelburg, Instruction Sequences and Non-uniform Complexity Theory,
Programming Research Group - University of Amsterdam, 2008.

[PRG0811] D. Staudt, A Case Study in Software Engineering with PSF: A Domotics Application,Programming
Research Group - University of Amsterdam, 2008.

[PRG0810] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Poly-Threading,Programming Research
Group - University of Amsterdam, 2008.

[PRG0809] J.A. Bergstra and C.A. Middelburg, Data Linkage Dynamics with Shedding, Programming Research
Group - University of Amsterdam, 2008.

[PRG0808] B. Diertens, A Process Algebra Software Engineering Environment,Programming Research Group -
University of Amsterdam, 2008.

[PRG0807] J.A. Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, Tuplix Calculus Specifications of Financial
Tr ansfer Networks,Programming Research Group - University of Amsterdam, 2008.

[PRG0806] J.A. Bergstra and C.A. Middelburg, Data Linkage Algebra, Data Linkage Dynamics, and Priority
Rewriting,Programming Research Group - University of Amsterdam, 2008.

[PRG0805] J.A. Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, UvA Budget Allocatie Model,Programming
Research Group - University of Amsterdam, 2008.

[PRG0804] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Sequential Poly-Threading,Programming
Research Group - University of Amsterdam, 2008.

[PRG0803] J.A. Bergstra and C.A. Middelburg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0802] A. Barros and T. Hou, A Constructive Version of AIP Revisited, Programming Research Group -
University of Amsterdam, 2008.

[PRG0801] J.A. Bergstra and C.A. Middelburg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - University of Amsterdam, 2008.

The above reports and more are available through the website: ivi.fnwi.uva.nl/tcs/

Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XG Amsterdam
the Netherlands

ivi.fnwi.uva.nl/tcs/

