
University of Amsterdam

Theory of Computer Science

Three Datatype Defining Rewrite Systems
for Datatypes of Integers each extending a

Datatype of Naturals (version 3)

J.A. Bergstra
A. Ponse

Report TCS1409v2 February 2016



J.A. Bergstra

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam
the Netherlands

tel. +31 20 525.7591
e-mail: J.A.Bergstra@uva.nl

A. Ponse

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam
the Netherlands

tel. +31 20 525.7592
e-mail: A.Ponse@uva.nl

Theory of Computer Science Electronic Report Series



Three Datatype Defining Rewrite Systems for Datatypes of

Integers each extending a Datatype of Naturals∗

Jan A. Bergstra and Alban Ponse

Informatics Institute, section Theory of Computer Science, University of Amsterdam

https://staff.fnwi.uva.nl/j.a.bergstra/ https://staff.fnwi.uva.nl/a.ponse/

Abstract

Integer arithmetic is specified according to three views: unary, binary, and decimal no-
tation. In each case we find a ground-confluent and terminating datatype defining rewrite
system. In each case the resulting datatype is a canonical term algebra which extends a
corresponding canonical term algebra for natural numbers. For each view, we also consider
an alternative rewriting system.

Keywords and phrases: Equational specification, initial algebra, datatype defining rewrite
system, abstract datatype.

Contents

1 Introduction 2

1.1 Digits and rewrite rules in equational form . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A signature for integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 One ADT, three datatypes 4

2.1 Unary view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Binary view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Decimal view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Alternative DDRSes for integers with digit tree constructors 11

3.1 Unary view with digit tree constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Binary view with digit tree constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Decimal view with digit tree constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Concluding remarks 16

Appendix A 21

∗Version 3: Some new non-confluence and termination results recorded in [12] are mentioned and some errors
recorded in [12] are corrected; ground-completeness of Zbud (Tables 7 and 8, pages 7, 8) is proven; a DDRS for the
ring of Integers is added (Table 18, pages 18, 19) and its ground-completeness is proven.



0′ = 1 3′ = 4 6′ = 7

1′ = 2 4′ = 5 7′ = 8

2′ = 3 5′ = 6 8′ = 9

Table 1: Enumeration and successor notation of digits of type Z

1 Introduction

Using the specifications for natural numbers from [1] we develop specifications for datatypes of
integers. We will entertain the strategy of [1] to develop different views characteristic for unary
notation, binary notation, and decimal notation respectively. Each of the specifications is a so-
called DDRS (datatype defining rewrite system) and consists of a number of equations that define
a term rewriting system by orienting the equations from left-to-right. A DDRS, or more precisely,
the associated term rewriting system, must be strongly terminating and ground-confluent.

This paper is a sequel to the report [1] which deals with DDRSes for the natural numbers
and it constitutes a further stage in the development of a family of arithmetical datatypes with
corresponding specifications. The resulting specifications (DDRSes) incorporate different “views”
on the same abstract datatype. The unary view provides a term rewriting system where terms
in unary notation serve as normal forms. The unary view also provides a semantic specification
of binary notation, of decimal notation, and of hexadecimal notation. The three logarithmic
notations were modified in [1] with respect to conventional notations in such a way that syntactic
confusion between these notations cannot arise. In this paper, the hexadecimal view is left out
as that seems to be an unusual viewpoint for integer arithmetic.

It seems to be the case that for the unary view the specification of the integers (given in
Table 3) is entirely adequate, whereas all subsequent specifications for binary view and decimal
view may provide no more than a formalization of a topic which must be somehow understood
before taking notice of that same formalization. It remains to be seen to what extent the first
DDRS for the unary case may serve exactly that expository purpose.

The strategy of the work is somewhat complicated: on the one hand we look for specifications
that may genuinely be considered introductory, that is, descriptions that can be used to construct
the datatype at hand for the first time in the mind of a person. On the other hand awareness of
the datatype in focus may be needed to produce an assessment of the degree of success achieved
in the direction of the first objective.

1.1 Digits and rewrite rules in equational form

Digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and are ordered in the common way:

0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

For the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 we denote with i′ the successor digit of i in the given enu-
meration. In Table 1 the successor notation on digits is specified as a transformation of syntax,
and we adopt this notation throughout the paper.

We will list rewrite rules in the form of equations t = r to be interpreted from left-to-right,

2



and we will add tags of the form
[Nn] t = r

for reference, with “N” some name and “n” a natural number (in ordinary, decimal notation).
Furthermore, for k, ℓ ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and k < ℓ, the notation

[Nn.i ]ℓi=k t = r

represents the following ℓ − k + 1 equations:

[Nn.k] t[k/i] = r[k/i], ... , [Nn.ℓ] t[ℓ/i] = r[ℓ/i],

thus with i instantiated from k to ℓ. Occasionally, we will use this notation with two “digit
counters”, as in

[Nn.i.j ]ℓi,j=k t = r,

for a concise representation of the following (ℓ − k + 1)2 equations:

[Nn.k.k] t[k/i][k/j] = r[k/i][k/j], ... , [Nn.ℓ.ℓ] t[ℓ/i][ℓ/j] = r[ℓ/i][ℓ/j].

1.2 A signature for integers

The signature ΣZ has the following elements:

1. A sort Z,

2. For digits the ten constants 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

3. Three one-place functions S, P,− : Z → Z, “successor”, “predecessor”, and “minus”, re-
spectively,

4. Addition and multiplication (infix) +, · : Z × Z → Z,

5. Two one-place functions (postfix) :b 0, :b 1 : Z → Z, “binary append zero” and “binary
append one”, these functions will be used for binary notation,

6. Ten one-place functions (postfix)

:d 0, :d 1, :d 2, :d 3, :d 4, :d 5, :d 6, :d 7, :d 8, :d 9 : Z → Z,

“decimal append zero”, ...,“decimal append nine”, to be used for decimal notation.

The “append <digit name>” functions defined in items 5 and 6 can be viewed as instantiations
of more general two-place “append” functions, but that would require the introduction of sorts for
bits (binary digits) and for decimal digits. However, we prefer to keep the signature single-sorted
and that is why we instantiate such “digit append” functions per digit to unary functions and
why we use postfix notation for applications of these functions. E.g.,

(9 :d 7):d 5 and ((1 :b 0):b 0):b 1

represent the decimal number 975, and the binary number 1001, respectively.

For the unary view the normal forms are the classical successor terms, that is

0, S(0), S(S(0)), ...,

3



x + 0 = x[S1]

x + S(y) = S(x + y)[S2]

x · 0 = 0[S3]

x · S(y) = (x · y) + x[S4]

i′ = S(i)[S5.i ]8i=0

x :b i = (x · S(1)) + i[S6.i ]1i=0

x :d i = (x · S(9)) + i[S7.i ]9i=0

Table 2: A DDRS for Nubd, natural numbers in unary view

and all minus instances −(t) for each such nonzero normal form t, e.g. −(S(S(0))). If no confusion
can arise, we abbreviate −(t) to −t, as in −x. As an alternative (and introduction to subsequent
DDRSes) we shall briefly consider a DDRS that is based on a ”unary append zero” function.

For the binary view and for the decimal view, we provide one DDRS for each. Normal forms are
all appropriate digits, all applications of the respective append functions to a nonzero normal form,
and all minus instances −t for each such normal form t that differs from 0. Thus −(((1 :b 0):b 0):b 1)
is an example of a normal form in binary view, and −((9 :d 7):d 5) is one in decimal view.

2 One ADT, three datatypes

An abstract datatype (ADT) may be understood as the isomorphism class of its instantiations
which are datatypes. The datatypes considered in [1] are so-called canonical term algebras which
means that carriers are non-empty sets of closed terms which are closed under taking subterms.

2.1 Unary view

Table 2 provides a DDRS for the natural numbers and defines the datatype Nubd. Minus and
predecessor are absent in this datatype. Successor terms, that is expressions involving zero and
successor only, serve as normal forms for the datatype Nubd. This DDRS contains the well-known
equations [S1] − [S4] and the twenty-one equations [S5.i ]8i=0 − [S7.i ]9i=0, and defines the rewrite
rules that serve the rewriting of binary and decimal notation.

In Table 3 a DDRS is provided of the integer numbers Zubd with successor, predecessor, addi-
tion, and multiplication, which are defined by equations [u1] − [u14]. We notice that we do not
need equations for rewriting

(−x) · y

because multiplication is defined by recursion on its right-argument, and that is why equation [u14]
is sufficient, and why addition is defined by recursion on both its arguments and also requires [u11].
Like before, the twenty-one equations [u15.i ]8i=0 − [u17.i ]9i=0 serve the rewriting of binary and
decimal notation.

In Table 4 one finds a listing of equations that are true in the datatype Zubd that is specified
by the DDRS of Table 3. This ensures that these equations are semantic consequences of the
equations for commutative rings.

So, binary and decimal notation are defined by expanding terms into successor terms. This
expansion involves a combinatorial explosion in size and renders the specification in Tables 2 and 3
irrelevant as term rewriting systems from which an efficient implementation can be generated.

4



−0 = 0[u1]

−(−x) = x[u2]

P (0) = −S(0)[u3]

P (S(x)) = x[u4]

P (−x) = −S(x)[u5]

S(−(S(x))) = −x[u6]

x + 0 = x[u7]

0 + x = 0[u8]

x + S(y) = S(x + y)[u9]

S(x) + y = S(x + y)[u10]

(−x) + (−y) = −(x + y)[u11]

x · 0 = 0[u12]

x · S(y) = (x · y) + x[u13]

x · (−y) = −(x · y)[u14]

i′ = S(i)[u15.i ]8i=0

x :b i = (x · S(1)) + i[u16.i ]1i=0

x :d i = (x · S(9)) + i[u17.i ]9i=0

Table 3: A DDRS for Zubd, integer numbers in unary view

x + (y + z) = (x + y) + z (1)

x + y = y + x (2)

x + 0 = x (3)

x + (−x) = 0 (4)

(x · y) · z = x · (y · z) (5)

x · y = y · x (6)

1 · x = x (7)

x · (y + z) = (x · y) + (x · z) (8)

S(x) = x + 1 (9)

P (x) = x + (−1) (10)

x :b i = (x + x) + i for i ∈ {0, 1} (11)

x :d i = (10 · x) + i for i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, (12)

0 = 0, i′ = i + 1, 10 = 9 + 1

Table 4: Equations valid in Zubd, where (1) − (8) axiomatize commutative rings

5



x + 0 = x[u′1]

x + (y :u 0) = (x :u 0) + y[u′2]

x · 0 = 0[u′3]

x · (y :u 0) = (x · y) + x[u′4]

Table 5: A DDRS for Nu′ , natural numbers in unary view with zero append

In the sequel we will consider specifications where normal forms are in binary notation and in
decimal notation, respectively, that also employ the successor and predecessor functions. These
specifications are far more lengthy and involved, but as DDRSes their quality improves because
normal forms are smaller and are reached in fewer rewriting steps.

In order to give a smooth introduction to the subsequent DDRSes (for binary view and decimal
view), we end with a brief exposition of a very simple alternative to the above DDRSes. Consider
the extension of the signature ΣZ defined in Section 1.2 with a one-place function (postfix)

:u : Z → Z,

the “unary append zero” function, or briefly: zero append, which can be used as an alternative
for unary notation.

Normal forms in this alternative unary view are 0 for zero, and applications of the zero append
function that define all successor values (each natural number n is represented by n applications
of the zero append and can be seen as representing a sequence of 0’s of length n+1). Furthermore,
all minus instances −t for each such normal form t that differs from 0 define the negative integers,
so

−((0 :u 0):u 0)

is an example of a normal form in this unary view (and it represents −2 in decimal notation).

Addition and multiplication are easy to define: Table 5 provides a DDRS for the natural
numbers Nu′ . Termination follows with the use of a weight function, and also ground-confluence
follows easily.

The DDRS that defines the extension of Nu′ to integer numbers Zu′ is given in Table 6 below.
It is immediately clear how rules for rewriting to unary notation with successor and predecessor,
and binary and decimal notation can be defined, but we refrain from doing so and stick to the
signature ΣZ defined in Section 1.2 because the main purpose of the specifications in Table 5 and
Table 5+6 is to introduce working with the “append functions”, as we will do in our definitions
of the datatypes in the subsequent sections.

−0 = 0[u′5]

−(−x) = x[u′6]

0 + x = x[u′7]

(x :u 0) + (−(y :u 0)) = x + (−y)[u′8]

(−(y :u 0)) + (x :u 0) = x + (−y)[u′9]

(−x) + (−y) = −(x + y)[u′10]

x · (−y) = −(x · y)[u′11]

(−x) · y = −(x · y)[u′12]

Table 6: Combined with Table 5, a DDRS for Zu′ that specifies integer numbers in unary view
with zero append

6



0:b i = i[b1.i ]1i=0

S(0) = 1[b2]

S(1) = 1:b 0[b3]

S(x :b 0) = x :b 1[b4]

S(x :b 1) = S(x) :b 0[b5]

x + 0 = x[b6]

0 + x = x[b7]

x + 1 = S(x)[b8]

1 + x = S(x)[b9]

(x :b i) + (y :b j) = Sj((x + y) :b i)[b10.i.j ]1i,j=0

x · 0 = 0[b11]

x · 1 = x[b12]

x · (y :b i) = ((x · y) :b 0) + (x · i)[b13.i ]1i=0

i′ = S(i)[b14.i ]8i=1

x :d i = (x · S(9)) + i[b15.i ]9i=0

Table 7: A DDRS for Nbud, natural numbers in binary view

2.2 Binary view

In Table 7 a DDRS for a binary view of natural numbers is displayed, which employs the suc-
cessor function as an auxiliary function. Leading zeros except for the zero itself are removed
by [b1.i ]1i=0, and successor terms are rewritten according to [b2] − [b5]. This DDRS contains
fifteen (parametric) equations (that is, eighteen equations for the specification of addition and
multiplication, and eighteen that serve the rewriting from decimal notation to binary notation
via successor terms1). Furhermore, in equation [b10.i.j ]1i,j=0 we use the abbreviation Sj for j

applications of the successor function S, thus S0(t) = t and Sj+1(t) = S(Sj(t)). In the binary
view natural numbers are identified with normal forms in binary notation. The specification has
a canonical term algebra Nbud which is isomorphic to the canonical term algebra Nubd of the
specification in Table 2. In [12] it is shown that the rewriting system defined by this DDRS is
complete.

In Table 8 minus and predecessor are introduced and the transition from a signature for natural
numbers to a signature for integers is made; the rules in this table extend those of Table 7 and
define the canonical term algebra Zbud that is isomorphic to the canonical term algebra Zubd of
the specification in Table 3. The DDRS thus defined contains thirty-three (parametric) equations
(so, 36+24 eq’s in total). We attempt to provide some intuition for equations [b26] and [b27]:

(−x) :b i

should be equal to (−x :b 0) + i, so (−x) :b 0 = −(x :b 0), and (−x) :b 1 is determined by

−(P (x :b 0))
[b20]
= −(P (x) :b 1).

Equations [b24] and [b25] can be explained in a similar way:

S(−(x :b 0)) should be equal to − (P (x :b 0)) = −(P (x) :b 1),

S(−(x :b 1)) should be equal to − (P (x :b 1)) = −(x :b 0).

1Note that there is no equation [b14.0] that is, 1 = S(0), because 1 is a normal form in binary view.

7



The abbreviation P j in equations [b30.i.j ]1i,j=0 and [b31.i.j ]1i,j=0 stands for j applications of the
predecessor function P . Normal forms for Zbud are 0, 1, all applications of :b 1 and :b 1 to a
nonzero normal form, and all minus instances −t for each such normal form t that differs from 0.

We note that the equations in Tables 7 and 8 are semantic consequences of the axioms for
commutative rings (equations (1) − (8) in Table 4). The rewriting system defined by this DDRS
is proven strongly terminating in [12]. However, its non-confluence is also proven in [12], using
the following rewrite steps:

P (−(−x))

�
�

��+

P (x)

Q
Q

QQs

−S(−x)

[b17] [b22]

(13)

In Appendix A we prove that this rewriting system for Zbud is ground-confluent, and thus
ground-complete.

−0 = 0[b16]

−(−x) = x[b17]

P (0) = −1[b18]

P (1) = 0[b19]

P (x :b 0) = P (x) :b 1[b20]

P (x :b 1) = x :b 0[b21]

P (−x) = −S(x)[b22]

S(−1) = 0[b23]

S(−(x :b 0)) = −(P (x) :b 1)[b24]

S(−(x :b 1)) = −(x :b 0)[b25]

(−x) :b 0 = −(x :b 0)[b26]

(−x) :b 1 = −(P (x) :b 1)[b27]

x + (−1) = P (x)[b28]

(−1) + x = P (x)[b29]

(x :b i) + (−(y :b j)) = P j((x + (−y)) :b i)[b30.i.j ]1i,j=0

(−(y :b j)) + (x :b i) = P j((x + (−y)) :b i)[b31.i.j ]1i,j=0

(−x) + (−y) = −(x + y)[b32]

x · (−y) = −(x · y)[b33]

Table 8: Combined with Table 7, a DDRS for Zbud that specifies integer numbers in binary view

8



0:d i = i[d1.i ]9i=0

S(i) = i′[d2.i ]8i=0

S(9) = 1:d 0[d3]

S(x :d i) = x :d i′[d4.i ]8i=0

S(x :d 9) = S(x) :d 0[d5]

x + 0 = x[d6]

0 + x = x[d7]

x + i = Si(x)[d8.i ]9i=1

i + x = Si(x)[d9.i ]9i=1

(x :d i) + (y :d j) = Sj((x + y) :d i)[d10.i.j ]9i,j=0

x · 0 = 0[d11]

x · i′ = (x · i) + x[d12.i ]8i=0

x · (y :d i) = ((x · y) :d 0) + (x · i)[d13.i ]9i=0

x :b i = (x + x) + i[d14.i ]1i=0

Table 9: A DDRS for Ndub, natural numbers in decimal view

2.3 Decimal view

Table 9 defines a DDRS for a decimal view of natural numbers, consisting of fourteen (parametric)
equations (172 eq’s in total). This DDRS defines the datatype Ndub that is isomorphic to the
canonical term algebra Nubd of the specification in Table 2. Leading zeros except for the zero
itself are removed by [d1.i ]9i=0, and successor terms are rewritten according to [d2.i ]8i=0 − [d5].
Rewriting from binary notation is part of this DDRS, and the last equation scheme [d14.i ]1i=0

serves that purpose. The rewriting system defined by the DDRS in Table 9 is proven complete
in [12].

Before we extend this DDRS to the integers, we define a variant of successor notation for digits
that we call “10 minus” subtraction for decimal digits, and we write

i⋆

for the “10 minus” decimal digit of i. In Table 10 we display all identities for i⋆, and we shall use
these in order to cope with terms of the form (−x) :d i for i = 1, ..., 9.

1⋆ = 9 4⋆ = 6 7⋆ = 3

2⋆ = 8 5⋆ = 5 8⋆ = 2

3⋆ = 7 6⋆ = 4 9⋆ = 1

Table 10: “10 minus” subtraction for decimal digits

9



−0 = 0[d15]

−(−x) = x[d16]

P (0) = −1[d17]

P (i′) = i[d18.i ]8i=0

P (x :d 0) = P (x) :d 9[d19]

P (x :d i′) = x :d i[d20.i ]8i=0

P (−x) = −S(x)[d21]

x + (−i) = P i(x)[d27.i ]9i=1

(−i) + x = P i(x)[d28.i ]9i=1

(x :d i) + (−(y :d j)) = P j((x + (−y)) :d i)[d29.i.j ]9i,j=0

(−(y :d j)) + (x :d i) = P j((x + (−y)) :d i)[d30.i.j ]9i,j=0

(−x) + (−y) = −(x + y)[d31]

x · (−y) = −(x · y)[d32]

S(−i′) = −i[d22.i ]8i=0

S(−(x :d 0)) = −(P (x) :d 9)[d23]

S(−(x :d i′)) = −(x :d i)[d24.i ]8i=0

(−x) :d 0 = −(x :d 0)[d25]

(−x) :d i = −(P (x) :d i⋆)[d26.i ]9i=0

Table 11: Combined with Table 9 (and using i⋆ from Table 10), a DDRS for Zdub that specifies
integers in decimal view

In Table 11 minus and predecessor are added and the transition to a signature for integers is
made; the equations in this table extend those of Table 9. The DDRS thus defined is named Zdub

and is isomorphic to the canonical term algebra Zubd of the specification in Table 3; it contains
thirty-two (parametric) equations (so, 172 + 273 eq’s in total).

The (twenty-one) equations captured by [d23]−[d26.i ]9i=0 can be explained in a similar fashion
as was done in the previous section for [b24] − [b27]: for example,

(−5):d 3

should be equal to −(5 :d 0) + 3 = −(4 :d 7), and this follows immediately from the appropriate
equation in [d26.i ]9i=0.

The equations of the DDRS specified by Tables 9 and 11 are semantic consequences of the
equations for commutative rings (equations (1) − (8) in Table 4). In [12], the rewriting system
defined by this DDRS is proven strongly terminating, and non-confluent by essentially the same
counter-example as (13):

P (−(−x))

�
�

��+

P (x)

Q
Q

QQs

−S(−x)

[d16] [d21]

We leave it as an open question whether this particular rewriting system is ground-confluent,
and thus ground-complete.

10



3 Alternative DDRSes for integers with digit tree con-

structors

Having defined DDRSes that employ (postfix) digit append functions in Section 2, we now consider
the more general digit tree constructor functions. For the binary view, this approach is followed
by Bouma and Walters in [7]; for a view based on any radix (number base), this approach is
further continued in Walters [14] and Walters and Zantema [15], where the constructor is
called juxtaposition because it goes with the absence of a function symbol in order to be close to
ordinary decimal and binary notation.

We extend the signature ΣZ defined in Section 1.2 with the following three functions (infix):

û , b̂ , d̂ : Z × Z → Z,

called “unary digit tree constructor function”, “binary digit tree constructor function”, and “dec-
imal digit tree constructor function”, and to be used for unary, binary notation and decimal
notation, respectively. The latter two constructors serve to represent logarithmic notation and
satisfy the semantic equations Jx b̂ yK = 2 · JxK + JyK and Jx d̂ yK = 10 · JxK + JyK.

For integer numbers in decimal view or binary view, normal forms are the relevant digits, all
applications of the respective constructor with left argument a nonzero normal form and right
argument a digit, and all minus instances −t for each such nonzero normal form t, these satisfy
J−(t)K = −(JtK). E.g.,

(9 d̂ 7) d̂ 5 and ((1 b̂ 0) b̂ 0) b̂ 1

represent the decimal number 975 and the binary number 1001, respectively, and the normal form
that represents the additional inverse of the latter is −(((1 b̂ 0) b̂ 0) b̂ 1). A minor complication
with decimal and binary digit tree constructors is that we now have to consider rewritings such
as

2 d̂ (1 d̂ 5) = (2 + 1) d̂ 5 = 3 d̂ 5 (= 35),

which perhaps are somewhat non-intuitive. For integers in unary view, thus with unary digit tree
constructor, this complication is absent (see Section 3.1).

We keep the presentation of the resulting DDRSes (those defining the binary and decimal view
are based on [14, 15]) minimal in the sense that equations for conversion from the one view to the
other are left out. Of course, it is easy to define such equations. Also, equations for conversion to
and from the datatypes defined in Section 2 are omitted, although such equations are not difficult
to define.

3.1 Unary view with digit tree constructor

For naturals in this particular unary view, normal forms are 0 and expressions t û 0 with t a
normal form (thus, with association of û to the left). Of course, the phenomenon of “removing
leading zeros” does not exist in this particular unary view (as in the datatype Nu′ defined in
Table 5). The resulting datatype Nut is defined in Table 12.

In the unary view, û is an associative operator, as is clear from rule [ut1] (in contrast to digit
tree constructors for the binary and decimal case). Moreover, the commutative variants t û r
and r û t rewrite to the same normal form. The latter property also follows from the following

11



x û (y û z) = (x û y) û z[ut1]

x + 0 = x[ut2]

x + (y û 0) = (x + y) û 0[ut3]

x · 0 = 0[ut4]

x · (y û 0) = (x · y) + x[ut5]

Table 12: A DDRS for Nut, natural numbers in unary view with unary digit tree constructor

semantics for closed terms:

J0K = 0,

Jx û yK = JxK + JyK + 1,

Jx + yK = JxK + JyK,

Jx · yK = JxK · JyK.

Observe that
x + (y û z) = (x + y) û z and x · (y û z) = (x · (y + z)) + x

are valid equations in Nut.

The extension to integer numbers can be done in a similar fashion as in the previous section,
thus obtaining normal forms of the form −(t) with t a nonzero normal form in Nut. However, also
terms of the form x û (−y) and variations thereof have to be considered. We define this extension
in Table 13 below and call the resulting datatype Zut.

Adding the interpretation rule J−xK = −JxK and exploiting the commutativity of û in Jx û yK,
it can be easily checked that [ut6] − [ut18] (as equations) are sound. Moreover, the equation

(−x) û y = y û (−x)

also holds in Zut.

−0 = 0[ut6]

−(−x) = x[ut7]

0 û (−(x û 0)) = −x[ut8]

(x û 0) û (−(y û 0)) = x û (−y)[ut9]

(−(x û 0)) û 0 = −x[ut10]

(−(y û 0)) û (x û 0) = x û (−y)[ut11]

(−(x û 0)) û (−(y û 0)) = −((x + y) û 0)[ut12]

0 + x = x[ut13]

(x û 0) + (−(y û 0)) = x + (−y)[ut14]

(−(y û 0)) + (x û 0) = x + (−y)[ut15]

(−x) + (−y) = −(x + y)[ut16]

x · (−y) = −(x · y)[ut17]

(−x) · y = −(x · y)[ut18]

Table 13: Combined with Table 12, a DDRS for Zut that specifies integer numbers in unary view
with unary digit tree constructor

12



0 b̂ x = x[bt1]

x b̂ (y b̂ z) = (x + y) b̂ z[bt2]

0 + x = x[bt3]

1 + 0 = 1[bt4]

1 + 1 = 1 b̂ 0[bt5]

1 + (x b̂ y) = x b̂ (1 + y)[bt6]

(x b̂ y) + z = x b̂ (y + z)[bt7]

x · 0 = 0[bt8]

x · 1 = x[bt9]

x · (y b̂ z) = (x · y) b̂ (x · z)[bt10]

Table 14: A DDRS for Nbt, natural numbers in binary view with binary digit tree constructor

3.2 Binary view with digit tree constructor

For naturals in binary view with the binary digit tree constructor, the associated datatype Nbt is
defined in Table 14. According to [15] (with a reference to [7]), the rewriting system defined by
[bt1] − [bt7] is strongly terminating and ground-confluent, and thus ground-complete.

In [15] a rewriting system for integer arithmetic is provided with next to juxtaposition and
(unary) minus also addition, subtraction and multiplication, and proven ground-confluent and
terminating with respect to any radix (number base). In Table 15 we present a variant of this
rewriting system without subtraction for the binary digit tree constructor, and define the datatype
Zbi.

0 b̂ x = x[bi1]

x b̂ (y b̂ z) = (x + y) b̂ z[bi2]

0 + x = x[bi3]

x + 0 = x[bi4]

1 + 1 = 1 b̂ 0[bi5]

x + (y b̂ z) = y b̂ (x + z)[bi6]

(x b̂ y) + z = x b̂ (y + z)[bi7]

x · 0 = 0[bi8]

0 · x = 0[bi9]

1 · 1 = 1[bi10]

x · (y b̂ z) = (x · y) b̂ (x · z)[bi11]

(x b̂ y) · z = (x · z) b̂ (y · z)[bi12]

−0 = 0[bi13]

−(−x) = x[bi14]

1 b̂ (−1) = 1[bi15]

(x b̂ 0) b̂ (−1) = (x b̂ (−1)) b̂ 1[bi16]

(x b̂ 1) b̂ (−1) = (x b̂ 0) b̂ 1[bi17]

x b̂ (−(y b̂ z)) = −((y + (−x)) b̂ z)[bi18]

(−x) b̂ y = −(x b̂ (−y))[bi19]

1 + (−1) = 0[bi20]

(−1) + 1 = 0[bi21]

x + (−(y b̂ z)) = −(y b̂ (z + (−x)))[bi22]

(−(x b̂ y)) + z = −(x b̂ (y + (−z)))[bi23]

x · (−y) = −(x · y)[bi24]

(−x) · y = −(x · y)[bi25]

Table 15: A DDRS for Zbi, integer numbers in binary view with binary digit tree constructor

13



0 d̂ x = x[dt1]

x d̂ (y d̂ z) = (x + y) d̂ z[dt2]

S(i) = i′[dt3.i ]8i=0

S(9) = 1 d̂ 0[dt4]

S(x d̂ i) = x d̂ i′[dt5.i ]8i=0

S(x d̂ 9) = S(x) d̂ 0[dt6]

x + 0 = x[dt7]

x + i′ = S(x) + i[dt8.i ]8i=0

x + (y d̂ i) = (y d̂ x) + i[dt9.i ]9i=0

x · 0 = 0[dt10]

x · i′ = x + (x · i)[dt11.i ]8i=0

x · (y d̂ i) = ((x · y) d̂ 0) + (x · i)[dt12.i ]9i=0

Table 16: A DDRS for Ndt, natural numbers with decimal digit tree constructor in decimal view
(using i′ from Table 1)

In [12] it is proven that the associated term rewriting system is strongly terminating. Conflu-
ence is disproven in [12] by the following counter-example:

x b̂ (y b̂ (z b̂ w))

�
�

��+

(x + y) b̂ (z b̂ w)

Q
Q

QQs

x b̂ ((y + z) b̂ w)

[bi2] [bi2]

((x + y) + z) b̂ w (x + (y + z)) b̂ w
? ?

[bi2] [bi2]

(14)

3.3 Decimal view with digit tree constructor

For naturals in decimal view with the decimal digit tree constructor, we make use of successor
terms, in order to avoid (non-parametric) equations such as

1 + 1 = 2, ..., 9 + 8 = 1 d̂ 7, 9 + 9 = 1 d̂ 8,

1 · 1 = 1, ..., 8 · 9 = 7 d̂ 2, 9 · 9 = 8 d̂ 1.

The associated datatype Ndt is defined in Table 16. Note that equations of the form

i′ + x = i + S(x)

instead of (or next to) [dt8.i ]8i=0 would destroy termination: 2+1 7→ 1+S(1) 7→ S(1)+1 7→ 2+1.
Moreover, the interplay between digit tree constructor, successor and normal form notation makes
it by equations [dt9.i ]9i=0 possible not to incorporate the equation 0 + x = x in this particular,
relatively simple DDRS. According to [12], the associated rewriting system is strongly terminating,
but not confluent (cf. counter-example (14)).

The extension to integers is given by the equations in Table 17 that define the datatype Zdt.
In contrast to the approaches in [14, 15] with juxtaposition, we now make use of both successor

14



0 d̂ x = x[dt1]

x d̂ (y d̂ z) = (x + y) d̂ z[dt2]

S(i) = i′[dt3.i ]8i=0

S(9) = 1 d̂ 0[dt4]

S(x d̂ i) = x d̂ i′[dt5.i ]8i=0

S(x d̂ 9) = S(x) d̂ 0[dt6]

x + 0 = x[dt7]

x + i′ = S(x) + i[dt8.i ]8i=0

x + (y d̂ i) = (y d̂ x) + i[dt9.i ]9i=0

x · 0 = 0[dt10]

x · i′ = x + (x · i)[dt11.i ]8i=0

x · (y d̂ i) = ((x · y) d̂ 0) + (x · i)[dt12.i ]9i=0

−0 = 0[dt13]

−(−x) = x[dt14]

P (0) = −1[dt15]

P (i′) = i[dt16.i ]8i=0

P (x d̂ 0) = P (x) d̂ 9[dt17]

P (x d̂ i′) = x d̂ i[dt18.i ]8i=0

P (−x) = −S(x)[dt19]

S(−i′) = −i[dt20.i ]8i=0

S(−(x d̂ 0)) = −(P (x) d̂ 9)[dt21]

S(−(x d̂ i′)) = −(x d̂ i)[dt22.i ]8i=0

(−x) d̂ y = −(x d̂ (−y))[dt23]

i d̂ (−j) = P (i) d̂ j⋆[dt24i.j ]9i,j=1

(x d̂ y) d̂ (−i) = P (x d̂ y) d̂ i⋆[dt25.i ]9i=1

x d̂ (−(y d̂ z)) = −((y + (−x)) d̂ z)[dt26]

x + (−i) = P i(x)[dt27.i ]9i=1

x + (−(y d̂ z)) = −(y d̂ (z + (−x)))[dt28]

(−i) + x = P i(x)[dt29.i ]9i=1

(−(x d̂ y)) + z = −(x d̂ (y + (−z)))[dt30]

x · (−y) = −(x · y)[dt31]

(−x) · y = −(x · y)[dt32]

Table 17: A DDRS for Zdt, integer numbers with decimal digit tree constructor in decimal view
(using i′ from Table 1 and i⋆ from Table 10)

terms and predecessor terms, and the DDRS presented here is composed from rewrite rules for
successor and predecessor, rewrite rules defined in [14, 15], and combinations thereof. Note that
we can still do without the equation 0 + x = x:

0 + (−0) = 0 by [dt13] and [dt7],

0 + (−i) = P i(0) = ... = −i by [dt27.i ]9i=1 (and some more equations),

0 + (−(t1 d̂ t2)) = −(t1 d̂ t2) by equations [dt28], [dt13], and [dt7].

As stated in [12], it is an open question whether this term rewriting system for Zdt is strongly
terminating and/or ground-confluent.

15



4 Concluding remarks

This paper is about the design (by means of trial and error) of datatype defining rewrite systems
(DDRSes) rather than about the precise analysis of the various rewriting systems per se. What
matters in addition to readability and conciseness of each DDRS is at this stage a reasonable
confidence that each of these rewriting systems is strongly terminating and ground-confluent (and
thus ground-complete), and that the intended normal forms are reached by means of rewriting.

When specifying a datatype of integers as an extension of the naturals, the unary view leads
to satisfactory results, but with high inefficiency. For the binary view and the decimal view
based on the unary append functions and discussed in Section 2, corresponding extensions are
provided, but the resulting rewriting systems are at first sight significantly less concise and com-
prehensible. Recently, strong termination has been automatically proven by Kluiving and van

Woerkom [12] with the use of the AProVE tool [11]. Some further remarks:

1. The three DDRSes (datatype defining rewrite systems) for integers given in Section 2 each
produce an extension datatype for a datatype for the natural numbers. An initial algebra
specification of the datatype of integers is obtained from any of the DDRSes given in [1] by

• taking the reduct to the signature involving unary, binary, and decimal notation only,

• removing rewrite rules involving operators for hexadecimal notation,

• expanding the signature with a unary additive inverse and a unary predecessor func-
tion,

• adding rewrite rules (in equational form) that allow for the unique normalization of
closed terms involving the minus sign,

while making sure that these rewrite rules (viewed as equations) are semantic consequences
of the equations for commutative rings.

2. Syntax for hexadecimal notation has been omitted because that usually plays no role when
dealing with integers. It is an elementary exercise to incorporate hexadecimal notation.

3. The DDRSes for the binary view and the decimal view are hardly intelligible unless one
knows that the objective is to construct a commutative ring. A decimal normal form is
defined as either a digit, or an application of a decimal append function :d i to a nonzero
normal form (for all digits i). This implies the absence of (superfluous) leading zeros,
and the (ground) normal forms thus obtained correspond bijectively to the non-negative
integers (that is, N). Incorporating all minus instances −(t) for each nonzero normal form
t yields the class of normal forms. The “semantics” of these normal forms in the language
of commutative rings is very simple:

J0K = 0,

Ji′K = JiK + 1 for all digits i (and i′ defined as in Table 1),

Jx :d iK = (10 · JxK) + JiK for all digits i and 10 = J9K + 1,

J−(x)K = −(JxK).

A binary normal form has similar semantics: Jx :b iK = (2 · JxK) + JiK for digits 0, 1, and
2 = 1 + 1.

16



4. Understanding the concept of a commutative ring can be expected only from a person who
has already acquired an understanding of the structure of integers and who accepts the
concept of generalization of a structure to a class of structures sharing some but not all of
its properties.

In other words, the understanding that a DDRS for the integers is provided in the binary
view and in the decimal view can only be communicated to an audience under the assump-
tion that a reliable mental picture of the integers already exists in the minds of members
of the audience. This mental picture, however, can in principle be communicated by taking
notice of the DDRS for the unary view first.

This conceptual (near) circularity may be nevertheless be considered a significant weakness
of the approach of defining (and even introducing) the integers as an extension of naturals
by means of rewriting.

Although full confluence of the DDRSes in Section 2 has been disproven by Kluiving and van

Woerkom [12] (with the use of CSI [17]), we prove that the DDRS that defines the binary view of
the integers (Tables 7 and 8) is ground-complete by proving its ground-confluence in Appendix A.

In Section 3 we discussed some alternatives for the above-mentioned DDRSes based on papers
of Bouma and Walters [7], Walters [14], and Walters and Zantema [15] in which digit
tree constructors are employed. In this case, a digit is a normal form, and so is an application
of the digit tree constructor that adheres to association to the left and with the removal of
(superfluous) leading zeros. Thus, n d̂ i is a normal form if n is a nonzero normal form and i a
digit. Incorporating all minus instances −(t) for each nonzero normal form t yields the class of
normal forms for integers. With the tool AProVE [11], Kluiving and van Woerkom [12] proved
strong termination of the DDRSes that employ the binary tree constructor for N (Table 14) and
for Z (Table 15), and for the DDRS that uses the decimal tree constructor for N (Table 16), but
had to leave this question open for the case of the decimal tree constructor for Z (Table 17). For
all these DDRSes, full confluence was automatically disproven in [12] (using the CSI tool [17]).

Of course, a decimal notation as 689 is so common that one usually does not question whether
it represents (6 :d 8):d 9 or (6 d̂ 8) d̂ 9 or some other formally defined notation. Nevertheless, as
we have seen, different algorithmic approaches to for example addition may apply, although one
would preferably not hamper an (initial) arithmetical method with notation such as x d̂ (y d̂ z)
and rewrite rules such as x d̂ (y d̂ z) = (x + y) d̂ z and those for +, and for this reason we have a
preference for the DDRSes defined in Section 2.

In [14], Walters presents a TRS (term rewriting system) based on juxtaposition for integer
arithmetic with addition and subtraction that is ground-complete; this system is proven ground-
confluent and terminating with respect to any radix. In [15], Walters and Zantema extend
this system with multiplication and prove ground-completeness, using semantic labelling for their
termination proof, and judge this TRS to have good efficiency and readability (in comparison
with some alternatives discussed in that paper). Furthermore, the authors also discuss a TRS
that is based on successor and predecessor notation, and in which minus is not used: negative
numbers are represented by normal forms P (0), P (P (0)), and so on. This TRS is comparable to
the DDRS in Table 3 that defines Zubd and is proven confluent and terminating, and judged to
have poor readability and (too) high complexity. Finally, a complete TRS for natural numbers
with addition and multiplication based on digit append is also provided in [15].

We briefly mention another, comparable approach to integer arithmetic that is also based on
some form of digit append constructors for representing integer numbers. In [9], Contejean,

Marché and Rabehasaina introduce integer arithmetic based on balanced ternary numbers, that

17



−0 = 0[r1]

−(−x) = x[r2]

x + (y + z) = (x + y) + z[r3]

x + 0 = x[r4]

1 + (−1) = 0[r5]

(x + 1) + (−1) = x[r6]

x + (−(y + 1)) = (x + (−y)) + (−1)[r7]

0 + x = x[r8]

(−1) + 1 = 0[r9]

(−(x + 1)) + 1 = −x[r10]

(−x) + (−y) = −(x + y)[r11]

x · 0 = 0[r12]

x · 1 = x[r13]

x · (−y) = (−x) · y[r14]

x · (y + z) = (x · y) + (x · z)[r15]

Table 18: A DDRS for the ring of integers

is, numbers that can be represented by a digit append function :t with digits -1,0,1 and semantics
JiK = i and Jx :t iK = 3 · JxK + i (see, e.g., Knuth [13]) and provide a TRS that is confluent and
terminating modulo associativity and commutativity of addition and multiplication.

Based on either a DDRS for the natural numbers or a DDRS for the integers one may develop
a DDRS for rational numbers in various ways. It is plausible to consider the meadow of rational
numbers of [6] or the non-involutive meadow of rational numbers (see [2]) or the common meadow
of rational numbers (see [3]) as abstract algebraic structures for rationals in which unary, binary,
and decimal notation are to be incorporated in ways possibly based on the specifications presented
above. Furthermore, one does well to consider the work discussed in [9] on a term rewriting
system for rational numbers, in which arithmetic for rational numbers is specified (this is the
main result in [9], for which the above-mentioned work on integer arithmetic is a preliminary):
the authors specify rational numbers by means of a TRS that is complete modulo associativity
and commutativity of addition and multiplication, taking advantage of Stein’s algorithm for
computing gcd’s of non-negative integers without any division2 (see, e.g., [13]).

A survey of equational algebraic specifications for abstract datatypes is provided in [16]. In [5]
one finds the general result that computable abstract datatypes can be specified by means of
specifications which are confluent and strongly terminating term rewriting systems. Some general
results on algebraic specifications can be found in [8, 4, 10]. More recent applications of equational
specifications can be found in [6].

We conclude the paper with the introduction of a very simple DDRS that specifies the integers
in the signature Σr = {0, 1,−( ), +, ·} of rings. This DDRS is defined in Table 18. Observe that
the negative variant of equation [r7], that is,

(−x) + (y + 1) = ((−x) + y) + 1

is an instance of equation [r3]. Also, observe that the equations in Table 18 are semantic conse-
quences of the axioms for commutative rings (equations (1) − (8) in Table 4). In [12], Kluiving

and van Woerkom report that the term rewriting system defined by this DDRS is strongly
terminating,3 and below we prove that it is also ground-confluent, and thus ground-complete.

2Apart from halving even numbers, which is easy in binary notation, but can otherwise be specified with a shift
operation.

3Alternatively, the following weight function |t| on closed terms can be used to prove strong termination:
|0| = |1| = 2, |x + y| = |x| + 2|y|, | − x| = 1 + 3/2|x|, and |x · y| = |x| · |y|2.

18



Define the set NF of closed terms over Σr as follows:

NF = {0} ∪NF+ ∪ NF−,

NF+ = {1} ∪ {t + 1 | t ∈ NF+},

NF− = {−t | t ∈ NF+}.

It immediately follows that if t ∈ NF , then t is a normal form (no rewrite step applies). Further-
more, two distinct elements in NF have distinct values in Z. In order to prove ground-confluence
of the associated TRS we have to show that for each closed term over Σr, either t ∈ NF or t has
a rewrite step, so that each normal form is in NF .

We prove this by structural induction on t. The base cases t ∈ {0, 1} are trivial. For the
induction step we have to consider the following cases:

• Case t = −r. Assume that r ∈ NF and apply case distinction on r:

– if r = 0, then t → 0 by equation [r1],

– if r ∈ NF+, then t ∈ NF ,

– if r ∈ NF−, then t has a rewrite step by equation [r2].

• Case t = u + r. Assume that u, r ∈ NF and apply case distinction on r:

– if r = 0, then t → u by equation [r4],

– if r = 1, then apply case distinction on u:

∗ if u = 0, then t → 1 by equation [r8],

∗ if u ∈ NF+, then t ∈ NF ,

∗ if u = −1, then t → 0 by equation [r9],

∗ if u = −(u′ + 1), then t has a rewrite step by equation [r10],

– if r = r′ + 1, then t → (u + r′) + 1 by equation [r3],

– if r = −1 then t = u + (−1) and apply case distinction on u:

∗ if u = 0, then t has a rewrite step by equation [r8],

∗ if u = 1, then t has a rewrite step by equation [r5],

∗ if u = u′ + 1, then t has a rewrite step by equation [r6],

∗ if u ∈ NF−, then t has a rewrite step by equation [r11],

– if r = −(r′ + 1), then t → (u + (−r′)) + (−1) by equation [r7].

• Case t = u · r. Assume that u, r ∈ NF , then t has a rewrite step according to one of the
equations [r12]− [r15].

This concludes our proof.

Acknowledgement. We thank Boas Kluiving and Wijnand van Woerkom for pointing out a
number of errors in the previous version (v2) of this report.

19



References

[1] Bergstra, J.A. (2014). Four datatype defining rewrite systems for an abstract datatype
of natural numbers. Electronic report TCS1407v2, University of Amsterdam, Informat-
ics Institute, section Theory of Computer Science, http://www.science.uva.nl/pub/

programming-research/tcsreports/TCS1407v2.pdf (August 2014).

[2] Bergstra, J.A. and Middelburg, C.A. (2015). Division by zero in non-involutive meadows.
Journal of Applied Logic, 13(1):1–12. DOI: 10.1016/j.jal.2014.10.001. Preprint available:
arXiv/1406.2092v2 [math.RA] (2014, 9 June).

[3] Bergstra, J.A. and Ponse, A. (2015). Division by zero in common meadows. In R. de Nicola
and R. Hennicker (Eds.): Software, Services, and Systems, Lecture Notes in Computer Sci-
ence, Vol. 8950, Springer, pp. 46–61. Preprint available: arXiv/1406.6878v1 [math.RA]
(2014, 22 December).

[4] Bergstra, J.A. and Tucker, J.V. (1987). Algebraic specifications of computable and semicom-
putable data types. Theoretical Computer Science, 50(2):137–181.

[5] Bergstra, J.A. and Tucker, J.V. (1995). Equational specifications, complete term rewriting
systems, and computable and semicomputable algebras. Journal of the ACM, 42(6):1194–
1230.

[6] Bergstra, J.A. and Tucker, J.V. (2007). The rational numbers as an abstract data type.
Journal of the ACM, 54(2), Article 7.

[7] Bouma, L.G. and Walters, H.R. (1989). Implementing algebraic specifications. In J.A. Berg-
stra, J. Heering, and P. Klint (Eds.): Algebraic Specification (Chapter 5), Addison-Wesley,
pp. 199–282.

[8] Broy, M., Wirsing, M., and Pair, C. (1984). A systematic study of models of abstract data
types. Theoretical Computer Science, 33(2):139–174.

[9] Contejean, E., Marché, C., and Rabehasaina, L. (1997). Rewrite systems for natural, inte-
gral, and rational arithmetic. In H. Comon (Ed.): Rewriting Techniques and Applications
(Proceedings 8th International Conference, RTA’97), Lecture Notes in Computer Science,
Vol. 1232, Springer, pp. 98–112.

[10] Gaudel, M.-C. and James, P.R. (1998). Testing algebraic data types and processes: a unifying
theory. Formal Aspects of Computing, 10(5-6):436–451.

[11] Giesl, J., Schneider-Kamp, P., and Thiemann, R. (2006). AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In U. Furbach and N. Shankar (Eds.): IJCAR
2006, Lecture Notes in Computer Science, Vol. 4130, Springer, pp. 281–286.

[12] Kluiving, B. and Woerkom, W. van (2016). Number representations and term rewriting. Hon-
ours project BSc Computer Science and BSc Artificial Intelligence, University of Amsterdam
(January 31, 2016).

[13] Knuth, D.E. (1997). The Art of Computer Programming, Volume 2 (3rd Edition): Seminu-
merical Algorithms. Addison-Wesley.

[14] Walters, H.R. (1994). A complete term rewriting system for decimal integer arithmetic.
Report CS-R9435, CWI, Amsterdam. http://oai.cwi.nl/oai/asset/5140/5140D.pdf

20



[15] Walters, H.R. and Zantema, H. (1995). Rewrite systems for integer arithmetic. In J. Hsiang
(Ed.): Rewriting Techniques and Applications (Proceedings 6th International Conference,
RTA’95), Lecture Notes in Computer Science, Vol. 914, Springer, pp. 324–338. Preprint
available: http://oai.cwi.nl/oai/asset/4930/4930D.pdf.

[16] Wirsing, M. (1991). Algebraic Specification. In: Handbook of Theoretical Computer Science,
Vol. B, MIT Press, pp. 675–788.

[17] Zankl, H., Felgenhauer, B., and Middeldorp, A. (2011). CSI - A confluence tool. In N. Bjørner
and V. Sofronie-Stokkermans (Eds.): CADE 2011, Lecture Notes in Computer Science,
Vol. 6803, Springer, pp. 499–505.

Appendix A

We prove that the term rewriting system defined by the DDRS for Zbud in Tables 7 and 8 is ground-
complete. This rewriting system is proven strongly terminating in [12], so it remains to be proven that
it is ground-confluent and we adopt the approach used in the proof on page 19.

Define the set N of closed terms over ΣZ as follows:

N = {0} ∪ N
+ ∪ N

−

,

N
+ = {1} ∪ {w :b 0, w :b 1 | w ∈ N

+},

N
− = {−t | t ∈ N

+}.

It immediately follows that if t ∈ N , then t is a normal form (no rewrite rule applies), and that two
distinct elements in N have distinct values in Z. Also, as stated in Section 2.2, the equations in Tables 7
and 8 are semantic consequences of the axioms for commutative rings (equations (1)− (8) in Table 4). In
order to prove ground-confluence of this rewriting system we have to show that for each closed term t in
Zbud, either t ∈ N or t has a rewrite step, so that each normal form is in N . We prove this by structural
induction on t.

The base cases are simple: if t ∈ {0, 1}, then t ∈ N , and if t ∈ {3, 4, 5, 6, 7, 8, 9}, then t has a rewrite
step according to one of [b14.i ]8i=1 . For the induction step we have to consider eight cases:

1. Case t = −r. Assume that r ∈ N and apply case distinction on r:

• if r = 0, then t → 0 by equation [b16],

• if r = 1, then t ∈ N ,

• if r = −1, then t → 1 by equation [b17],

• if r = v :b i, then t ∈ N ,

• if r = −(v :b i), then t → v :b i by equation [b17].

2. Case t = S(r). Assume that r ∈ N and apply case distinction on r:

• if r = 0, then t → 1 by equation [b2],

• if r = 1, then t → 1:b 0 by equation [b3],

• if r = −1, then t → 0 by equation [b23],

• if r = v :b 0, then t → v :b 1 by equation [b4],

• if r = v :b 1, then t → S(v) :b 0 by equation [b5],

• if r = −(v :b 0), then t → −(P (v) :b 1) by equation [b24],

21



• if r = −(v :b 1), then t → −(v :b 0) by equation [b25].

3. Case t = P (r). Assume that r ∈ N and apply case distinction on r:

• if r = 0, then t → −1 by equation [b18],

• if r = 1, then t → 0 by equation [b19],

• if r = −1, then t → −S(1) by equation [b22],

• if r = v :b 0, then t → P (v) :b 1 by equation [b20],

• if r = v :b 1, then t → v :b 0 by equation [b21],

• if r = −(v :b i), then t → −S(v :b i) by equation [b22].

4. Case t = r :b 0. Assume that r ∈ N and apply case distinction on r:

• if r = 0, then t → 0 by the first equation of [b1.i ]1i=0,

• if r = 1 or r = v :b i, then t ∈ N ,

• if r = −1 or r = −(v :b i), then t has a rewrite step by equation [b26].

5. Case t = r :b 1. Assume that r ∈ N and apply case distinction on r:

• if r = 0, then t → j by the second equation of [b1.i ]1i=0 ,

• if r = 1 or r = v :b i, then t ∈ N ,

• if r = −1 or r = −(v :b i), then t has a rewrite step by equation [b27].

6. Case t = r d̂ i with i a digit (thus, i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}). Now t has a rewrite step according
to one of the equations of [b15.i ]9i=0 .

7. Case t = u + r. Assume that u, r ∈ N and apply case distinction on r:

• if r = 0, then t → u by equation [b6],

• if r = 1, then t → S(u) by equation [b8],

• if r = −1, then t → P (u) by equation [b28].

• if r = v :b i, apply a case distinction on u:

– if u = 0, then t → r by equation [b7],

– if u = 1, then t → S(r) by equation [b9],

– if u = −1, then t → P (r) by equation [b29],

– if u = w :b j, then t has a rewrite step according to one of [b10.i.j ]1i,j=0,

– if u = −(w :b j), then t has a rewrite step according to one of [b30.i.j ]1i,j=0,

• if r = −(v :b i), apply a case distinction on u:

– if u = 0, then t → r by equation [b7],

– if u = 1, then t → S(r) by equation [b9],

– if u = −1, then t → P (r) by equation [b29],

– if u = w :b j, then t has a rewrite step according to one of [b31.i.j ]1i,j=0,

– if u = −(w :b j), then t has a rewrite step by equation [b32].

8. Case t = u · r. Assume that u, r ∈ N and apply case distinction on r:

• if r = 0, then t → 0 by equation [b11],

• if r = 1, then t → u by equation [b12],

• if r = −1 or r = −(v :b i), then t has a rewrite step by equation [b33].

• if r = v :b i, then t has a rewrite step according to one of [b13.i ]1i=0.

This concludes our proof.

22



Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

[]

[]

[TCS1502] J.A.Bergstra,Architectural Adequacy and Evolutionary Adequacy as Characterics of a Candidate
Informational Money, section Theory of Computer Science - University of Amsterdam, 2015.

[TCS1501] B. Diertens, Composition in the Function-Behaviour-Structure Framework, section Theory of
Computer Science - University of Amsterdam, 2015.

[TCS1301v2] B.Diertens,Refinement in the Function-Behaviour-Structure Framework (version 2),section Theory
of Computer Science - University of Amsterdam, 2015.

[TCS1410v2] J.A.Bergstra and A. Ponse,Division by Zero in Common Meadows (version 2),section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1414] J.A.Bergstra,Fr om Softwae Crisis to Informational Money, section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1413] J.A.Bergstra and I. Bethke, Note on Paraconsistency on the Logic of Fractions,section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1412] J.A.Bergstra, I. Bethke, and A. Ponse,Rekenen-Informatica,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1411] J.A.Bergstra,Bitcoin: not a Currency-like Informational Commodity, section Theory of Computer
Science - University of Amsterdam, 2014.

[TCS1409v2] J.A.Bergstra and A. Ponse,Three Datatype Defining Rewrite Systems for Datatypes of Integers each
extending a Datatype of Naturals (version 2),section Theory of Computer Science - University of
Amsterdam, 2014.

[TCS1410] J.A.Bergstra and A. Ponse,Division by Zero in Common Meadows,section Theory of Computer
Science - University of Amsterdam, 2014.

[TCS1407v3] J.A.Bergstra,Four Complete Datatype Defining Rewrite Systems for an Abstract Datatype of Natural
Numbers (version 3),section Theory of Computer Science - University of Amsterdam, 2014.

[TCS1409] J.A.Bergstra and A. Ponse,Three Datatype Defining Rewrite Systems for Datatypes of Integers each
extending a Datatype of Naturals, section Theory of Computer Science - University of Amsterdam,
2014.

[TCS1406v3] J.A.Bergstra,Bitcoin and Islamic Finance (version 3),section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1407v2] J.A.Bergstra,Four Complete Datatype Defining Rewrite Systems for an Abstract Datatype of Natural
Numbers (version 2),section Theory of Computer Science - University of Amsterdam, 2014.

[TCS1408] J.A.Bergstra,Bitcoin: Informational Money en het Einde van Gewoon Geld,section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1407] J.A.Bergstra,Four Complete Datatype Defining Rewrite Systems for an Abstract Datatype of Natural
Numbers,section Theory of Computer Science - University of Amsterdam, 2014.

[TCS1406v2] J.A.Bergstra,Bitcoin and Islamic Finance (version 2),section Theory of Computer Science -
University of Amsterdam, 2014.



[TCS1406] J.A.Bergstra,Bitcoin and Islamic Finance, section Theory of Computer Science - University of
Amsterdam, 2014.

[TCS1405] J.A.Bergstra,Rekenen in een Conservatieve Schrapwet Weide,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1404] J.A.Bergstra,Division by Zero and Abstract Data Types,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1403] J.A.Bergstra, I. Bethke, and A. Ponse,Equations for Formally Real Meadows,section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1402] J.A.Bergstra and W.P. Weijland,Bitcoin, a Money-like Informational Commodity, section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1401] J.A.Bergstra,Bitcoin, een "money-like informational commodity",section Theory of Computer
Science - University of Amsterdam, 2014.

[TCS1301] B. Diertens,The Refined Function-Behaviour-Structure Framework,section Theory of Computer
Science - University of Amsterdam, 2013.

[TCS1202] B. Diertens,Fr om Functions to Object-Orientation by Abstraction, section Theory of Computer
Science - University of Amsterdam, 2012.

[TCS1201] B. Diertens, Concurrent Models for Object Execution,section Theory of Computer Science -
University of Amsterdam, 2012.

[TCS1102] B.Diertens,Communicating Concurrent Functions,section Theory of Computer Science - University
of Amsterdam, 2011.

[TCS1101] B. Diertens,Concurrent Models for Function Execution,section Theory of Computer Science -
University of Amsterdam, 2011.

[TCS1001] B.Diertens,On Object-Orientation,section Theory of Computer Science - University of Amsterdam,
2010.

Within former series (PRG) the following reports appeared.

[PRG0914] J.A.Bergstra and C.A. Middelburg, Autosolvability of Halting Problem Instances for Instruction
Sequences,Programming Research Group - University of Amsterdam, 2009.

[PRG0913] J.A.Bergstra and C.A. Middelburg, Functional Units for Natural Numbers, Programming Research
Group - University of Amsterdam, 2009.

[PRG0912] J.A.Bergstra and C.A. Middelburg, Instruction Sequence Processing Operators, Programming
Research Group - University of Amsterdam, 2009.

[PRG0911] J.A. Bergstra and C.A. Middelburg, Partial Komori Fields and Imperative Komori Fields,
Programming Research Group - University of Amsterdam, 2009.

[PRG0910] J.A.Bergstra and C.A. Middelburg, Indirect Jumps Improve Instruction Sequence Performance,
Programming Research Group - University of Amsterdam, 2009.

[PRG0909] J.A. Bergstra and C.A. Middelburg, Arithmetical Meadows,Programming Research Group -
University of Amsterdam, 2009.

[PRG0908] B.Diertens,Software Engineering with Process Algebra: Modelling Client / Server Architecures,
Programming Research Group - University of Amsterdam, 2009.

[PRG0907] J.A.Bergstra and C.A. Middelburg, Inversive Meadows and Divisive Meadows,Programming
Research Group - University of Amsterdam, 2009.

[PRG0906] J.A.Bergstra and C.A. Middelburg, Instruction Sequence Notations with Probabilistic Instructions,
Programming Research Group - University of Amsterdam, 2009.

[PRG0905] J.A.Bergstra and C.A. Middelburg, A Protocol for Instruction Stream Processing,Programming
Research Group - University of Amsterdam, 2009.



[PRG0904] J.A. Bergstra and C.A. Middelburg, A Process Calculus with Finitary Comprehended Terms,
Programming Research Group - University of Amsterdam, 2009.

[PRG0903] J.A.Bergstra and C.A. Middelburg, Tr ansmission Protocols for Instruction Streams,Programming
Research Group - University of Amsterdam, 2009.

[PRG0902] J.A. Bergstra and C.A. Middelburg, Meadow Enriched ACP Process Algebras, Programming
Research Group - University of Amsterdam, 2009.

[PRG0901] J.A.Bergstra and C.A. Middelburg, Timed Tuplix Calculus and the Wesseling and van den Berg
Equation,Programming Research Group - University of Amsterdam, 2009.

[PRG0814] J.A. Bergstra and C.A. Middelburg, Instruction Sequences for the Production of Processes,
Programming Research Group - University of Amsterdam, 2008.

[PRG0813] J.A.Bergstra and C.A. Middelburg, On the Expressiveness of Single-Pass Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0812] J.A.Bergstra and C.A. Middelburg, Instruction Sequences and Non-uniform Complexity Theory,
Programming Research Group - University of Amsterdam, 2008.

[PRG0811] D.Staudt,A Case Study in Software Engineering with PSF: A Domotics Application,Programming
Research Group - University of Amsterdam, 2008.

[PRG0810] J.A.Bergstra and C.A. Middelburg, Thread Algebra for Poly-Threading,Programming Research
Group - University of Amsterdam, 2008.

[PRG0809] J.A.Bergstra and C.A. Middelburg, Data Linkage Dynamics with Shedding, Programming Research
Group - University of Amsterdam, 2008.

[PRG0808] B.Diertens,A Process Algebra Software Engineering Environment,Programming Research Group -
University of Amsterdam, 2008.

[PRG0807] J.A.Bergstra, S. Nolst Trenite, and M.B. van der Zwaag,Tuplix Calculus Specifications of Financial
Tr ansfer Networks,Programming Research Group - University of Amsterdam, 2008.

[PRG0806] J.A.Bergstra and C.A. Middelburg, Data Linkage Algebra, Data Linkage Dynamics, and Priority
Rewriting,Programming Research Group - University of Amsterdam, 2008.

[PRG0805] J.A.Bergstra, S. Nolst Trenite, and M.B. van der Zwaag,UvA Budget Allocatie Model,Programming
Research Group - University of Amsterdam, 2008.

[PRG0804] J.A.Bergstra and C.A. Middelburg, Thread Algebra for Sequential Poly-Threading,Programming
Research Group - University of Amsterdam, 2008.

[PRG0803] J.A. Bergstra and C.A. Middelburg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0802] A.Barros and T. Hou, A Constructive Version of AIP Revisited, Programming Research Group -
University of Amsterdam, 2008.

[PRG0801] J.A.Bergstra and C.A. Middelburg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - University of Amsterdam, 2008.

The above reports and more are available through the website: www.science.uva.nl/research/prog/



Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XG Amsterdam
the Netherlands

www.science.uva.nl/research/prog/


