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Abstract

Integer arithmetic is specified according to three viewsarynbinary, and decimal notation. In
each case we find a ground confluent and terminating datagfprerd) rewrite system. In each case the
resulting datatype is a canonical term algebra which estencbrresponding canonical term algebra
for natural numbers. For each view, we also consider amaltige rewrite system.

Keywords and phrase€quational specification, initial algebra, datatype definiewriting system,
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0=1 I=4 6=7
1'=2 4 =5 7=8
2=3 5=6 8=9

Figure 1: Enumeration and successor notation of digits s B/

1 Introduction

Using the specifications for natural numbers from [1] we dtgyspecifications for datatypes of integers.
We will entertain the strategy of [1] to developfidirent views characteristic for unary notation, binary
notation, and decimal notation respectively. Each of trecjgations is a so-called DDRS (datatype
defining rewrite system) and consists of a number of equstioat define a term rewriting system by
orienting the equations from left-to-right. A DDRS must i@gagly terminating and ground confluent.

This paper is a sequel to the report [1] which deals with DBRSBI the natural numbers and it
constitutes a further stage in the development of a familgridhmetical datatypes with corresponding
specifications. The resulting specifications (DDRS'’s) ipooate diferent “views” on the same abstract
datatype. Theunary viewprovides a term rewriting system where terms in unary nmtaserve as
normal forms. The unary view also provides a semantic spatifin of binary notation, of decimal
notation, and of hexadecimal notation. The three logaiithmatations were modified in [1] with respect
to conventional notations in such a way that syntactic csiofubetween these notations cannot arise. In
this paper, théexadecimal vievus left out as that seems to be an unusual viewpoint for imteggametic.

It seems to be the case that for the unary view the specificafithe integers (given in Table 2) is
entirely adequate, whereas all subsequent specificatiwrmsrfary view and decimal view may provide
no more than a formalization of a topic which must be somehgeustood before taking notice of that
same formalization. It remains to be seen to what extent teseDDRS for the unary case may serve
exactly that expository purpose.

The strategy of the work is somewhat complicated: on the @mel e look for specifications that
may genuinely be considered introductory, that is, desorip that can be used to construct the datatype
at hand for the first time in the mind of a person. On the othedrawvareness of the datatype in focus
may be needed to produce an assessment of the degree ofssacbi&ved in the direction of the first
objective.

1.1 Digitsand rewriterulesin equational form
Digitsare 01,2,3,4,5,6, 7, 8,9, and are ordered in the common way:

0<1<2<3<4<5<6<7<8<9.

For the digits 01, 2, 3,4, 5, 6, 7, 8 we denote with’ the successor digit ¢fin the given enumeration.
In Figure 1 the successor notation on digits is specified esnaformation of syntax, and we adopt this
notation throughout the paper.

We will list rewrite rules in the form of equatiorts= r to be interpreted from left-to-right, and we
will add tags of the form
[Nn] t=r



for reference, with “N” some name and “n” a natural numberdjidinary, decimal notation). Further-
more, fork, £ € {0,1,2,3,4,5,6,7,8,9} andk < ¢, the notation

INnilf, t=r
represents the set 6f k + 1 rewrite rules
{INn.K] t[k/i] = r[k/i], ... ,[Nn.e] t[¢/i] =r[¢/i] ),

thus withi instantiated fronk to ¢. In the paper [14] of Walters and Zantema, such notationaktde
are calledule schemataand occasionally, we will use these with two “digit cousteas in

[Nn.i.j]i",j=k t=r.

1.2 A signaturefor integers
The signatur&y has the following elements:

. Asortz,
. For digits the ten constants 2, 3,4,5,6,7, 8,9,

. Three one-place functiol® P, — : Z — Z, “successor”, “predecessor”, and “minus”, respectively,

. Addition and multiplication (infix}+, - : ZxZ — Z,

g A W N PP

. Two one-place functions (postfix),0, _:p1 : Z — Z, “binary append zero” and “binary append
one”, these functions will be used for binary notation,

6. Ten one-place functions (postfix)
_:d0,2:91,2:92, 293,294, 45,2146, _:q 7, _:48, .49 1 Z > Z,

“decimal append zero”, ...,"decimal append nine”, to beduse decimal notation.

The “appenddigit name-" functions defined in items 5 and 6 can be viewed as instamtisabf more
general two-place “append” functions, but that would regtine introduction of sorts for bits (binary
digits) and for decimal digits. However, we prefer to keepslgnature single-sorted and that is why we
instantiate such “digit append” functions per digit to unfunctions and why we use postfix notation
for applications of these functions. E.g.,

(9:¢7):¢5 and ((150):50):p1
represent the decimal number 975, and the binary number, i€§dectively.
For the unary view the normal forms are the classical suocéssms, that is

0, S(0), S(S(0)), ...,

and all minus instances(t) for each such non-zero normal fotire.g.—(S(S(0))). If no confusion can
arise, we abbreviate(t) to —t, as in—x. As an alternative (and introduction to subsequent DDR&és)
shall briefly consider a DDRS that is based on a "unary appera function.

For the binary view and for the decimal view, we provide oneRiEXor each. Normal forms are all
appropriate digits, all applications of the respectiveaqpfunctions to a non-zero normal form, and
all minus instancest for each such normal formthat difers from 0. Thus-(((1:,0):,0):,1) is an
example of a normal form in binary view, arq(9:47):45) is one in decimal view.



[S1] X+0=x [S5i]2, i’ = S(i)
[S2] X+ S(y) = S(X+Y) [S6i ]il:O Xipl = (X-S(Q)+1i

[S3] X-0=0 [S7il2, X:gi = (X- S(9)) +i

[S4] X-S(y) = (X-y) + X

Table 1: Nypg, natural numbers in unary view

2 OneADT, three datatypes

An abstract datatype (ADT) may be understood as the isonsnpblass of its instantiations which
are datatypes. The datatypes considered in [1] are sadazdieonical term algebras which means that
carriers are non-empty sets of closed terms which are claseéedr taking subterms.

2.1 Unaryview

Table 1 provides a DDRS for the natural numbers and definegatagypaN,,g. Minus and predecessor
are absent in this datatype. Successor terms, that is sxpmesnvolving zero and successor only, serve
as normal forms for the datatyp&,q. This DDRS contains the well-known rules [S1]S4] and the
rules [SSi.]?:0 —[S7i ]?:0 (21 rules) that serve the rewriting of binary and decimaation.

In Table 2 a DDRS is provided of the integer numb&yg; with successor, predecessor, addition, and
multiplication, which are defined by the rules [u1]Jul4]. We notice that we do not need equations for
rewriting

(=X -y
because multiplication is defined by recursion on its rigigument, and that is why equation [ul4] is
sufficient, and why addition is defined by recursion on both itsiargnts and also requires [u11]. Like
before, the 21 rules [uliaf‘:O —[ul7i ]?:0 serve the rewriting of binary and decimal notation.

In Table 3 one finds a listing of equations that are true in @aty¥peZ,nq that is specified by the
DDRS of Table 2. This ensures that these rewrite rules (Wexgsequations) are semantic consequences
of the equations for commutative rings.

So, binary and decimal notation are defined by expandingstérta successor terms. This expansion
involves a combinatorial explosion in size and renders pgeeification in Tables 1 and 2 irrelevant as
term rewrite systems from which affieient implementation can be generated. In the sequel we will
consider specifications where normal forms are in binargtiart and in decimal notation, respectively,
that also employ the successor and predecessor functibeseBpecifications are far more lengthy and
involved, but as DDRS’s their quality improves because radriorms are smaller and are reached in
fewer rewriting steps.

In order to give a smooth introduction to the subsequent DBR& binary view and decimal view),
we end with a brief exposition of a very simple alternativét® above DDRS'’s. Consider the extension
of the signatur&; defined in Section 1.2 with a one-place function (postfix)

w27,

the “unary append zero” function, or brieflgero appengwhich can be used as an alternative for unary
notation.



[ul] -0=0 [ul5i]8, i’ = S(i)
[u2] —(-x) = X [ulGi ]il:O Xipl = (X-S(Q)+1i
[u17i]?, X:gi = (X-S(9)) +1i

[u3] P(0) = -S(0)
[u4] P(S(¥)) = X

[ug] P(=Xx) = =S(x)
[ué] S(=(S(x))) = —x

[u7] X+0=X

[u8] 0+x=0

[u9] X+ S(y) = S(x+Y)
[u10] S(X)+y=S(x+Vy)
[ul1] (=x) + (=y) = =(x+VY)
[u12] x-0=0

[ul3] X-S(y) = (X-y) + X
[ul4] X (-y) = =(x-y)

Table 2: Zpq, integer numbers in unary view

X+(Y+2=(X+y)+2z (1)
X+y=Yy+X (2)

X+ 0= X €))
X+(-x)=0 (4)
(x-y) 2= X-(y-2) (5)
X-y=y-X (6)
1-x=x (7)
X-(y+2 =(x-y)+(x-2 (8)
S(X)=x+1 (9)
P(X) = X + (~1) (10)
Xipl = (X+X) +1 fori € {0, 1} (12)
X:igi =(10-x) +1i forie€{0,1,2,3,4,5,6,7,8,9}, (12)

0=0,"=i+1, 10=9+1

Table 3: Equations valid iZnq, Where (1)- (8) axiomatize commutative rings



[u'1] X+0=x

[u2] X+ (y:u0) = (x:y0) +y
[u’3] x-0=0
[u4] X-(y:u0) = (X-y) + X

Table 4: N, natural numbers in unary view with zero append

Normal forms in this alternative unary view are 0 for zeraj applications of the zero append func-
tion that define all successor values (each natural numizerepresented by applications of the zero
append and can be seen as representing a sequence of O'gthfien 1). Furthermore, all minus
instances-t for each such normal forirthat difers from 0 define the negative integers, so

—((0:40):40)

is an example of a normal form in this unary view (and it repres—2 in decimal notation).

Addition and multiplication are easy to define: Table 4 pded a DDRS for the natural numbéfg.
Termination follows with the use of a weight function, andaaground confluence follows easily.

The DDRS that defines the extension\gf to integer numberg,, is given in Table 5 below.

It is immediately clear how rules for rewriting to unary ntda with successor and predecessor, and
binary and decimal notation can be defined, but we refraimfdoing so and stick to the signatuze
defined in Section 1.2 because the main purpose of the spticifis in Table 4 and Table+® is to
introduce working with the “append functions”, as we will sioour definitions of the datatypes in the
subsequent sections.

[u'5] -0=0
[u'6] —(-x) =X
[u'7] 0+x=x
[u'8] (x:u0) + (=(y:u0)) = x+ (-y)
[u'9] (=(y:u0)) + (x:40) = x+ (-y)
[u10] (=X + (=y) = =(x+VY)
(u11] x-(=y) = —(x-y)
(u12] (=X)-y=—(x-y)

Table 5: Z, integer numbers in unary view with zero append, contiroumedif Table 4



[bLilL, Opi =i

[b2] S(0)=1

[b3] S(1)=1:,0

[b4] S(X:p0) = x:pl

[b5] S(X:pl) = S(X):p0

[b6] X+0=x

[b7] 0+x=x

[b8] X+1=S(X)

[b9] 1+ x=S(x)
[b10i.j1}, (Xipi) + (yip ) = (X +Y):pi) + ]
[b11] x-0=0

[b12] X-1=x

[b13i]%, X- (i) = (X Y):60) + (x- 1)
[b14i]8 i = S(i)

[b15i]2, X:gl = (x-S(9)+i

Table 6: Ny,q4, natural numbers in binary view

2.2 Binary view

In Table 6 a DDRS for a binary view of natural numbers is digpth which employs the successor
function as an auxiliary function. Leading zeros exceptlfierzero itself are removed by [ti)]lil.zo, and
successor terms are rewritten by [b2]b5]. This DDRS contains fifteen (parametric) rules (thatli®
rules for the specification of addition and multiplicati@and 18 that serve the rewriting from decimal
notation to binary notation via successor tehm#n the binary view natural numbers are identified with
normal forms in binary notation. The specification has a céradterm algebral,,,g which is isomorphic
to the canonical term algebkg,nq Of the specification in Table 1.

In Table 7 minus and predecessor are introduced and thetibarfsom a signature for natural num-
bers to a signature for integers is made; the rules in thig taktend those of Table 6 and define the
canonical term algebrd, 4 that is isomorphic to the canonical term algeBgy of the specification in
Table 2. The DDRS thus defined contains 33 (parametric) (tasis, 36-24 rules in total). We attempt
to provide some intuition for equations [b26] and [b27]:

(=X) :pi
should be equal to{x:,0) + i, SO (~X):,0 = —(X:,0), and £X) :p 1 is determined by

~(P(x:60)) P2 —(P(x):p1).

INote that there is no rule [b14.0] that is=1S(0), because 1 is a normal form in binary view.




Equations [b24] and [b25] can be explained in a similar way:

S(-(x:p0)) should be equalto — (P(x:p0)) = —=(P(X):p1),
S(-(x:p1)) should be equalto — (P(x:p1)) = —(X:p0).

The rewrite rules of the DDRS specified by Tables 6 and 7 (vikageequations) are semantic conse-
quences of the equations for commutative rings (equatibns (8) in Table 3).

[b16]
[b17]

[b18]
[b19]
[b20]
[b21]
[b22]

[b23]
[b24]
[b25]

[b26]
[b27]

[b28]
[b29]
[b30i.j1%,
[b3Li.j]%,
[b32]

[b33]

-0=0
—(-x)=x
P0O)=-1
P(1)=0
P(x:p0) = P(X):p1
P(x:p1) = x:p0
P(=x) = =S(x)
S(-1)=0
S(=(x:0)) = =(P(x):p1)
S(=(x:p1)) = =(x:p0)
(-X):p0 = —(x:p0)
(=x)p1=—(P(X):p1)
X+ (-1) = P(x)
(-1)+x=P(x)
(X:pl) + (=(y:p 1)) = (X+ (=¥)) :pi) + (=)
(=(y:p 1)) + (Xipi) = (X + (=¥)) ipi) + (=)
(=x) + (=y) = =(x+Y)
X (=y) = ~(x-y)

Table 7: Zypyg, integer numbers in binary view, continuation of Table 6



[dl-i]ig:o Oidi =i

[d2i]8, S(i) =i

[d3] S(9) = 1:40

[d4i]2, S(x:qi) = X:gi’

[d5] S(X:¢9) = S(X):q0

[d6] X+0=x

[d7] 0+x=x

[d8i 18, X+i' = S(X) +i
[d9i]8, i +Xx=S(X) +i
[d10i.j17,-0 (X:al) + (yia)) = (x+Yy)ial) + ]
[d11] x-0=0

[d12i]8 X' = (X 1) + X
[d13i]2, X+ (yial) = ((X-¥):a0) + (X- 1)
[d14i], X:pi = (X+X) +1

Table 8: Ngyup, natural numbers in decimal view

2.3 Decimal view

Table 8 defines a DDRS for a decimal view of natural numberssisting of fourteen (parametric) rules
(172 rulesin total). This DDRS defines the datatyfag, that is isomorphic to the canonical term algebra
Nypg Of the specification in Table 1. Leading zeros except for #re #selfare removed by [d]]?zo, and
successor terms are rewritten by ﬁd?;o — [d5]. Rewriting unary notation is part of this DDRS, and the
last rule scheme [d1i411:O serves the rewriting from binary notation.

Before we extend this DDRS to the integers, we define a vaoifasiiccessor notation for digits that
we call “10 minus” subtraction for decimal digits, and we t@ri

ix
|

for the “10 minus” decimal digit of. In Figure 2 we display all identities far, and we shall use these
in order to cope with terms of the form ) :qi fori = 1,...,9.

1*=9
2*=8
3F=7

4 =6 77=3
5*=5 g =2
6*=4 *=1

Figure 2: “10 minus” subtraction for decimal digits



[d15] —0=0

[d16] —(-x) = X

[d17] P()=-1

[d18i]8, P@i") =i

[d19] P(x:q0) = P(X):q9

[d20i]8, P(x:gi") = X:qi

[d21] P(-X) = =S(x)

[d22i]8, S(-i") = i

[d23] S(=(x:40)) = =(P(x):49)
[d24i18, S(—(x:g¢i")) = —(x:qi)

[d25] (-X):¢0=—(x:40)

[d26i1°, (=) :di = =(P(X):qi*)
[d27i18, X+ (=i") = P(X) + (i)

[d28i]2, (=) + x = P(X) + (—i)
[d29i.]17,., (x:qi) + (=(y:a))) = (x+ (=Y)):al) + (=)
[d30i.j17, (=(y:a))) + (X:al) = (X + (=Y)) :al) + (=)
[d31] (=x) + (=y) = =(x+Y)

[d32] X-(=y) = -(x-y)

Table 9: Zqup, integers in decimal view, continuation of Table 8 (and gsinfrom Figure 2)

In Table 9 minus and predecessor are added and the trartsittogsignature for integers is made; the
rules in this table extend those of Table 8. The DDRS thus ééfin named.q,, and is isomorphic to
the canonical term algebPayq of the specification in Table 2; it contains 32 (parametnidgs (that is,
172+ 273 rules in total).

The (twenty one) equations captured by [d2f~1:t126.i]i9:0 can be explained in a similar fashion as
was done in the previous section for [b24]b27]: for example,

(—5) a3

should be equal te(5:40) + 3 = —(4:47), and this follows immediately from the appropriate egprat
in [d26i]7..

The rewrite rules of the DDRS specified by Tables 8 and 9 (vikageequations) are semantic conse-
quences of the equations for commutative rings (equatibns (8) in Table 3).

10



3 Alternative DDRS' sfor integerswith digit tree constructors

Having defined DDRS'’s that employ (postfix) digit append tiors in Section 2, we now consider the
more generatligit tree constructofunctions. For the binary view, this approach is followedBnuma
and Walters in [7]; for a view based on any radix, this apphdadurther continued in Walters [13] and
Walters and Zantema [14], where the constructor is cdllethpositionbecause it goes with the absence
of a function symbol in order to be close to ordinary decinmal hinary notation.

We extend the signatudg; defined in Section 1.2 with the following three functiondfigin
U>b>d ZXZ—>1Z,

called “unary digit tree constructor function”, “binarygiitree constructor function”, and “decimal digit
tree constructor function”, and to be used for unary, bimartation and decimal notation, respectively.
The latter two constructors serve to represent logarithmotation and satisfy the semantic equations
[Xbyl =2 [X] + [yl and[[x gyl = 10- [X] + [y].

For integer numbers in decimal view or binary view, normairie are the relevant digits, all applica-
tions of the respective constructor with left argument a-nero normal form and right argument a digit,
and all minus instancest for each such non-zero normal fotnthese satisf§f—(t)] = —([t]). E.g.,

(9d7)d5 and ((1p0)p0)p1

represent the decimal number 975, and the binary number, i@§dectively, and(((1 5 0) 5 0) p 1) is
the normal form that represents the additional inverse efdtter. A minor complication with decimal
and binary digit tree constructors is that we now have to idensewritings such as

24(1d5)=(2+1)d5=345 (=35)
which perhaps are somewhat non-intuitive. For integersiary view, thus with unary digit tree con-

structor, this complication is absent (see Section 3.1).

We keep the presentation of the resulting DDRS’s (those idefithe binary and decimal view are
based on [13, 14]) minimal in the sense that rules for commerfsom the one view to the other are left
out. Of course, it is easy to define such rules. Rewrite ridesdnversion to and from the datatypes
defined in Section 2 are also omitted, although such rulealagenot dfficult to define.

3.1 Unary view with digit tree constructor

For naturals in this particular unary view, normal forms @iand expressiorts; 0 witht a normal form
(thus, with association of; 1o the left). Of course, the phenomenon of “removing leadiegs” does
not exist in this particular unary view (as in the datatyfedefined in Table 4). The resulting datatype
Nyt is defined in Table 10.

In the unary view, ;" is an associative operator, as is clear from rule [utl] (intst to digit tree
constructors for the binary and decimal case). Moreovercttimmutative variants;, r andr  t rewrite
to the same normal form. The latter property also followsTtbe following semantics for closed terms:
01 =0,
[xuyl=[x1+0yl+1,
[+ yl = [x1 + [yl
[x-yl = [T - [yl

11



[ut1] Xa(Yud=(Xxuy)uz

[ut2] X+0=x
[ut3] X+(yu0)=(x+y)u0
[ut4] x-0=0
[ut5] X-(yu0)=(xy)+x

Table 10: Ny, natural numbers in unary view with unary digit tree constiou

Observe that
X+(Yu=(x+y)az and x-(yuz=(X-(y+2)+Xx
are valid equations iiV;.

The extension to integer numbers can be done in a similaidiagts in the previous section, thus
obtaining normal forms of the form(t) with t a non-zero normal form iiN,;. However, also terms
of the formx (, (-y) and variations thereof have to be considered. We definexténsion in Table 11
below and call the resulting datatygg:.

Adding the interpretation rulp—x] = —[x] and exploiting the commutativity of, in [x ; y], it can
be easily checked that [ut6][ut18] (as equations) are sound. Moreover, the equation

(=¥ uy=yu(=X

also holds irZy.

[ut6] -0=0 [utl7] X-(=y) =—=(x-y)
[ut7] —(=x) =x [ut18] (=X -y=—(x-y)
[ut8] 04 (=(xu0))=-x

[ut9] (xa0) i (=(yu0)=xu(-y)

(ut10] (=(x0u0)y0=-x

(ut11] (- u0))u(xa0)=xu(-y)

[ut12] (—(x00) i (=(yu0)=—-((x+y) u 0)

[utl3] O0+x=x

[ut14] (x0u0)+(=(yu0)) = x+(-y)

(ut15] (=(yu0))+(xu0)=x+(-y)

[ut16] (=X +(=y) = =(x+Y)

Table 11: Zy, integer numbers in unary view with unary digit tree constioy, continuation of Table 10

12



[bt1] OpXx=X [bt8] x-0=0

[bt2] Xp(YbD) =(X+Y)pZ [bt9] X-1=X

[bt3] 0+ X=X [bt10] X-(Yb2 =(X-Y)b(x-2
[bt4] 1+0=1

[bt5] 1+1=140

[bt6] 1+(xpy)=xp(1+Y)
[bt7] (XbY)+Z=Xp(y+2)

Table 12: Ny, natural numbers in binary view with binary digit tree constor

3.2 Binary view with digit tree constructor

For naturals in binary view with the binary digit tree constor, the associated datatyg is defined
in Table 12. The rewrite system defined by [bt]pt7] (thus excluding multiplication) is taken from [7],
in which it was proven confluent and terminating.

In [14] a rewrite system for integer arithmetic is provide@thwnext to juxtaposition and (unary)
minus also addition and subtraction and multiplicationd @noven ground confluent and terminating
with respect to any radix using rule schemata (that is, patacrules). In Table 13 we present a variant
of this rewrite system without subtraction for the binargitiiree constructor, and define the datatype
Zyi. Because binary view requires so few digits and because Wéollow another approach for the
decimal view, we have no use for rule schemata and just defimelevant instances ([bi5], [bi10],
[bi15] — [bi17], and [bi20]- [bi21]).

[bil] 05 x=x [bi13] 0=0
[bi2]  Xpb(yb2=(X+Y)bZ [bi14] —(=x) =x
[bi3] 0+ X=X [bi15] 15(-1)=1
[bi4] X+0=x [bil6] Xp0)p(-1)=(xp(-1))p1
[bi5] 1+1=150 bil7] (XpL5(-1)=(xp0) 51l
[bi6]  x+(Yb2=Yb(X+2) [bi18] Xp(-(yb2) =-((y+(-x) b2
[bi7]  (XbY)+z=xb(y+2) [bi19] (=¥ by=-(Xxb(-Y))
[big] x-0=0 [bi20] 1+(-1)=0
[bi9] 0-x=0 [bi21] (-1)+1=0
[bi10] 1-1=1 [bi22] X+ (=(yb2) =-(yb(z+ (X))
[bill]  x-(yb2=(Xx-Y)b(x-2 [bi23] (-(xpy) +z=-(xb (y+(-2)
[bi12] (Xby)-z=(X-2b(y-2 [bi24] X (=y) = —(X-)

[bi25] (=X -y=-(x-y)

Table 13: Zy;, integer numbers in binary view with binary digit tree constor
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[dt1] O0gx=x

[dt2] Xd(Yd2=(x+y)dz
[di3i]2,, sy =i’

[dt4] S(9) =140
[di5i]8,, S(xgi) = x3i
[dt6] S(x§9) = S(¥) §0
[dt7] X+0=x

[di8i ]2, X+i" =S +i
[dt9i]2, X+(yg)=(ygx +i
[dt10] x-0=0
[dt11i]8, X1/ =X+ (x-0)
[dt12i]? X-(ydi)=((x-y)d0)+(x-i)

Table 14: Ng;, natural numbers with decimal digit tree constructor iniaed view (usingi’ from
Figure 1)

3.3 Decimal view with digit tree constructor

For naturals in decimal view with the decimal digit tree dounstor, we make use of successor terms, in
order to avoid (non-parametric) rules such as

1+1=2,..., 9+8=137, 9+9=148,
1-1=1,.., 8-9=7§42, 9-9=841

The associated datatyp®; is defined in Table 14. Note that rules of the form
iI"+x=i+S(X

instead of (or next to) [dtB]iS=0 would destroy termination: 21— 1+ S(1) » S(1)+1 - 2+ 1.
Moreover, the interplay between digit tree constructoccessor and normal form notation makes it by
rules [dt9'1]i9:O possible not to incorporate the rewrite rule-& = x in this particular, relatively simple
rewrite system.

The extension to integers is given by the rules in Table 15¢chkvbefine the datatypBy. In con-
trast to the approaches in [13, 14] with juxtaposition, wevmmake use of both successor terms and
predecessor terms, and the rewrite system presented fmmmmsed from rewrite rules for successor
and predecessor, rewrite rules defined in [13, 14], and aoatibins thereof. Note that we can still do
without the rewrite rule @& x = x:

0+(-0)=0 by [dt13] and [dt7],
0+ (-i)=P0O)+ (=) =...= -V by [dt27i]8, (and some more rules),
O0+(—(t1gt) = —(t1 gt2) by rules [dt28], [dt13], and [dt7].
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[dt1] 0g4x=x [dt13] —0=0

[dt2] Xd(yd2d=(x+y)dz [dt14] —(=%) =X

[dt3.]2, S(@) =i’ [dt15] PO)=-1

[dt4] S(9)=140 [dt16i]2, P@i") =i

[dt5i]8, S(xgi)=xgi [dt17] P(xg0)=P(x) 49

[dt6] S(xg9)=S(x) g0 [dt18i]8, P(xgi')=xgi

[dt7] w402 x [dt19] P(=x) = —=S(x)

[dt8.i ]2, X+1"=8(X)+i [dt20i]2 S(-i") = —i

[di9i]l, x+(yai)=(yax +i [dt21] S(=(xd 0)) = =(P(x) d 9)

[dt10] x-0=0 [dt22i]%,  S(-(xai)) = ~(xqi)

[dt11.i]i8:0 X-1" =X+ (X-1) [dt23] (=xX)gy=—-(xg(-y)

(@200, X (3D = (NI 0CD  gog s e = PO
[di25i]2,  (xay)a (i) =P(xay)ai*
[dt26] Xd(=(yd2)=-(y+(-¥)d2
[dt27i]8, X+ (=i") = P(X) + (i)
[dt28] X+ (=(yd2)=-(yd(z+(=x))
[dt29i]8,, (=) + x=P(X) + (-i)
[dt30] (-(xay) +z=—-(xd(y+(-2))
[dt31] X-(=y) = -(x-y)
[dt32] (=x)-y=-(x-y)

Table 15:Zq;, integer numbers with decimal digit tree constructor inihad view (using’ from Figure 1
andi* from Figure 2)

4 Concluding remarks

This paper is about the design (by means of trial and errodptditype defining rewrite systems rather
than about the precise analysis of the various rewrite syseer se. Termination proofs, Knuth-Bendix
completion, full confluence proofs, or merely ground conflee proofs, are postponed until a stable
design direction has been developed for a sequence of datatWhat matters in addition to readability
and conciseness of each DDRS is at this stage a reasonalilecae that each of these rewrite systems
is strongly terminating and ground confluent and that thendéd normal forms are reached by means
of rewriting.

When specifying a datatype of integers as an extension afidhérals, the unary view leads to sat-
isfactory results, but with high ifigciency. For the binary view and the decimal view correspogdi
extensions are possible (and provided), but the resuléagite systems are at first sight significantly
less concise and comprehensible. Some further remarks:
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1. Thethree DDRS's (datatype defining rewrite systems)fimgers given in Section 2 each produce
an extension datatype for a datatype for the natural numBermitial algebra specification of the
datatype of integers is obtained from any of the DDRS'’s gingi] by

taking the reduct to the signature involving unary, binang decimal notation only,
removing rewrite rules involving operators for hexadedin@ation,

expanding the signature with a unary additive inverse antbayupredecessor function,

adding rewrite rules (in equational form) that allow for tineique normalization of closed
terms involving the minus sign,

while making sure that these rewrite rules (viewed as equsliare semantic consequences of the
equations for commutative rings.

2. Syntax for hexadecimal notation has been omitted bed¢hasasually plays no role when dealing
with integers. It is an elementary exercise to incorporateadecimal notation.

3. The DDRS'’s for the binary view and the decimal view are haiatelligible unless one knows
that the objective is to construct a commutative ring. A dedinormal form is defined as either a
digit, or an application of a decimal append functiogi to a non-zero normal form (for all digits
i). This implies the absence of (superfluous) leading zemd tlae (ground) normal forms thus
obtained correspond bijectively to the non-negative iatedthat isN). Incorporating all minus
instances-(t) for each non-zero normal fortryields the class of normal forms. The “semantics”
of these normal forms in the language of commutative ringgig simple:

01 =0,

[i'T=[i]+1 foralldigitsi (andi’ defined as in Fig. 1),
[x:qill = (10- [x]) + [i] for all digitsi and 10= [9] + 1,
[=(I1 = —(IxT).

A binary normal form has similar semantidsx:pi] = (2- [X]) + [i] for digits 0,1, and 2= 1 + 1.

4. Understanding the concept of a commutative ring can beatgd only from a person who has
already acquired an understanding of the structure of @megnd who accepts the concept of
generalization of a structure to a class of structures shaome but not all of its properties.

In other words, the understanding that a DDRS for the integgprovided in the binary view and
in the decimal view can only be communicated to an audiendenthe assumption that a reliable
mental picture of the integers already exists in the minda@fbers of the audience. This mental
picture, however, can in principle be communicated by takintice of the DDRS for the unary
view first.

This conceptual (near) circularity may be neverthelessibpsidered a significant weakness of the
approach of defining (and even introducing) the integersaesxgension of naturals by means of
rewriting.

In Section 3 we discussed some alternatives for these DDRS'sd on papers of Bouma and Wal-
ters [7], Walters [13], and Walters and Zantema [14] in whdafit tree constructors are employed. In
this case, a digit is a normal form, and so is an applicatiothefdigit tree constructor that adheres to
association to the left and with the removal of (superfludes)ling zeros. Thus gi is a normal form
if nis a non-zero normal form anda digit. Incorporating all minus instancegt) for each non-zero
normal formt yields the class of normal forms for integers.
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Of course, a decimal notation as 689 is so common that ondlysloes not question whether it
represents (§8):49 or (64 8) 49 or some other formally defined notation. Nevertheless, ahave
seen, dierent algorithmic approaches to for example addition m@paplthough one would preferably
not hamper an (initial) arithmetical method with notatiartls asx g (y g 2 and rewrite rules such as
X g (Y42 = (x+Y) g zand those for, and for this reason we have a preference for the DDRS'’s dkfine
in Section 2 (and in the first version of this report).

In [13] a ground-complete term rewriting system (TRS) base{lxtaposition for integer arithmetic
with addition and subtraction is presented; this systermaggn ground confluent and terminating with
respect to any radix. In [14], the authors extend this systéth multiplication and prove ground-
completeness, usingemantic labellingor their termination proof, and judge this rewrite system t
have good fiiciency and readability (in comparison with some alterrestidiscussed in that paper).
Furthermore, the authors also discuss a TRS that is basattoessor and predecessor notation, and in
which minus is not used: negative numbers are representedioyal formsP(0), P(P(0)), and so on.
This rewrite system is comparable to the DDRS in Table 2 thfihdsZ,,q and is proven confluent and
terminating, and judged to have poor readability and (tagh lsomplexity. Finally, in [14], the authors
also provide a complete TRS for natural numbers with addiiod multiplication that is based on digit
append.

We briefly mention two other, comparable approaches to értagthmetic that are also based on some
form of digit append constructors for representing intagenbers. In [11], Kennaway defines integer
arithmetic for any base > 1 (integers are represented as lists with appends to the lsfhg extra
digitsb to 2(b — 1) and also some auxiliary functions. This results in a catepl RS, of which a proper
subclass of the normal forms represents the integer numimengover, this TRS allows for any total
recursive function an immediate extension in which alsofilmaction is represented while completeness
is preserved. Secondly, in [9], Contejean, Marché and Radaina introduce integer arithmetic based
onbalanced ternary numberthat is, numbers that can be represented by a digit appectida ; with
digits -1,0,1 and semanti@s] = i and[x:¢i]l = 3- [X] +i (see, e.g., Knuth [12]) and provide a TRS that
is confluent and terminating modulo associativity and conatinity of addition and multiplication.

Based on either a DDRS for the natural numbers or a DDRS fantegers one may develop a DDRS
for rational numbers in various ways. It is plausible to édasthe meadow of rational numbers of [6]
or the non-involutive meadow of rational numbers (see [2fhe common meadow of rational numbers
(see [3]) as abstract algebraic structures for rationalghith unary, binary, and decimal notation are
to be incorporated in ways possibly based on the specifitapoesented above. Furthermore, one does
well to consider the work discussed in [9] on a term rewritgygtem for rational numbers, in which
arithmetic for rational numbers is specified (this is themrasult in [9], for which the above-mentioned
work on integer arithmetic is a preliminary): the authorsdfy rational numbers by means of a TRS that
is complete modulo associativity and commutativity of diddi and multiplication, taking advantage of
Stein’s algorithm for computing gcd’s of non-negative gees without any divisioh(see, e.g., [12]).

A survey of equational algebraic specifications for abstatatypes is provided in [15]. In [5] one
finds the general result that computable abstract datatygrede specified by means of specifications
which are confluent and strongly terminating term rewritiygtems. Some general results on algebraic
specifications can be found in [8, 4, 10]. More recent appboa of equational specifications can be
foundin [6].

2Apart from halving even numbers, which is easy in binary tiota but can otherwise be specified with a shift operation.
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