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Abstract

Integer arithmetic is specified according to three views: unary, binary, and decimal notation. In
each case we find a ground confluent and terminating datatype defining rewrite system. In each case the
resulting datatype is a canonical term algebra which extends a corresponding canonical term algebra
for natural numbers. For each view, we also consider an alternative rewrite system.
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0′ ≡ 1 3′ ≡ 4 6′ ≡ 7

1′ ≡ 2 4′ ≡ 5 7′ ≡ 8

2′ ≡ 3 5′ ≡ 6 8′ ≡ 9

Figure 1: Enumeration and successor notation of digits of typeZ

1 Introduction

Using the specifications for natural numbers from [1] we develop specifications for datatypes of integers.
We will entertain the strategy of [1] to develop different views characteristic for unary notation, binary
notation, and decimal notation respectively. Each of the specifications is a so-called DDRS (datatype
defining rewrite system) and consists of a number of equations that define a term rewriting system by
orienting the equations from left-to-right. A DDRS must be strongly terminating and ground confluent.

This paper is a sequel to the report [1] which deals with DDRS’s for the natural numbers and it
constitutes a further stage in the development of a family ofarithmetical datatypes with corresponding
specifications. The resulting specifications (DDRS’s) incorporate different “views” on the same abstract
datatype. Theunary viewprovides a term rewriting system where terms in unary notation serve as
normal forms. The unary view also provides a semantic specification of binary notation, of decimal
notation, and of hexadecimal notation. The three logarithmic notations were modified in [1] with respect
to conventional notations in such a way that syntactic confusion between these notations cannot arise. In
this paper, thehexadecimal viewis left out as that seems to be an unusual viewpoint for integer arithmetic.

It seems to be the case that for the unary view the specification of the integers (given in Table 2) is
entirely adequate, whereas all subsequent specifications for binary view and decimal view may provide
no more than a formalization of a topic which must be somehow understood before taking notice of that
same formalization. It remains to be seen to what extent the first DDRS for the unary case may serve
exactly that expository purpose.

The strategy of the work is somewhat complicated: on the one hand we look for specifications that
may genuinely be considered introductory, that is, descriptions that can be used to construct the datatype
at hand for the first time in the mind of a person. On the other hand awareness of the datatype in focus
may be needed to produce an assessment of the degree of success achieved in the direction of the first
objective.

1.1 Digits and rewrite rules in equational form

Digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and are ordered in the common way:

0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

For the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 we denote withi′ the successor digit ofi in the given enumeration.
In Figure 1 the successor notation on digits is specified as a transformation of syntax, and we adopt this
notation throughout the paper.

We will list rewrite rules in the form of equationst = r to be interpreted from left-to-right, and we
will add tags of the form

[Nn] t = r
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for reference, with “N” some name and “n” a natural number (inordinary, decimal notation). Further-
more, fork, ℓ ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8,9} andk < ℓ, the notation

[Nn.i ]ℓi=k t = r

represents the set ofℓ − k+ 1 rewrite rules
{

[Nn.k] t[k/i] = r[k/i], ... , [Nn.ℓ] t[ℓ/i] = r[ℓ/i]
}

,

thus with i instantiated fromk to ℓ. In the paper [14] of Walters and Zantema, such notational devices
are calledrule schemata, and occasionally, we will use these with two “digit counters”, as in

[Nn.i. j ]ℓi, j=k t = r .

1.2 A signature for integers

The signatureΣZ has the following elements:

1. A sortZ,

2. For digits the ten constants 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

3. Three one-place functionsS,P,− : Z→ Z, “successor”, “predecessor”, and “minus”, respectively,

4. Addition and multiplication (infix)+, · : Z × Z→ Z,

5. Two one-place functions (postfix):b0, :b1 : Z → Z, “binary append zero” and “binary append
one”, these functions will be used for binary notation,

6. Ten one-place functions (postfix)

:d 0, :d 1, :d 2, :d 3, :d 4, :d 5, :d 6, :d 7, :d 8, :d 9 : Z→ Z,

“decimal append zero”, ...,“decimal append nine”, to be used for decimal notation.

The “append<digit name>” functions defined in items 5 and 6 can be viewed as instantiations of more
general two-place “append” functions, but that would require the introduction of sorts for bits (binary
digits) and for decimal digits. However, we prefer to keep the signature single-sorted and that is why we
instantiate such “digit append” functions per digit to unary functions and why we use postfix notation
for applications of these functions. E.g.,

(9 :d 7) :d 5 and ((1 :b0) :b0) :b1

represent the decimal number 975, and the binary number 1001, respectively.

For the unary view the normal forms are the classical successor terms, that is

0,S(0),S(S(0)), ...,

and all minus instances−(t) for each such non-zero normal formt, e.g.−(S(S(0))). If no confusion can
arise, we abbreviate−(t) to −t, as in−x. As an alternative (and introduction to subsequent DDRS’s)we
shall briefly consider a DDRS that is based on a ”unary append zero” function.

For the binary view and for the decimal view, we provide one DDRS for each. Normal forms are all
appropriate digits, all applications of the respective append functions to a non-zero normal form, and
all minus instances−t for each such normal formt that differs from 0. Thus−(((1 :b0) :b0) :b1) is an
example of a normal form in binary view, and−((9 :d 7) :d 5) is one in decimal view.
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x+ 0 = x[S1]

x+ S(y) = S(x+ y)[S2]

x · 0 = 0[S3]

x · S(y) = (x · y) + x[S4]

i′ = S(i)[S5.i ]8
i=0

x:b i = (x · S(1))+ i[S6.i ]1
i=0

x:d i = (x · S(9))+ i[S7.i ]9
i=0

Table 1: Nubd, natural numbers in unary view

2 One ADT, three datatypes

An abstract datatype (ADT) may be understood as the isomorphism class of its instantiations which
are datatypes. The datatypes considered in [1] are so-called canonical term algebras which means that
carriers are non-empty sets of closed terms which are closedunder taking subterms.

2.1 Unary view

Table 1 provides a DDRS for the natural numbers and defines thedatatypeNubd. Minus and predecessor
are absent in this datatype. Successor terms, that is expressions involving zero and successor only, serve
as normal forms for the datatypeNubd. This DDRS contains the well-known rules [S1]− [S4] and the
rules [S5.i ]8

i=0 − [S7.i ]9
i=0 (21 rules) that serve the rewriting of binary and decimal notation.

In Table 2 a DDRS is provided of the integer numbersZubd with successor, predecessor, addition, and
multiplication, which are defined by the rules [u1]− [u14]. We notice that we do not need equations for
rewriting

(−x) · y

because multiplication is defined by recursion on its right-argument, and that is why equation [u14] is
sufficient, and why addition is defined by recursion on both its arguments and also requires [u11]. Like
before, the 21 rules [u15.i ]8

i=0 − [u17.i ]9
i=0 serve the rewriting of binary and decimal notation.

In Table 3 one finds a listing of equations that are true in the datatypeZubd that is specified by the
DDRS of Table 2. This ensures that these rewrite rules (viewed as equations) are semantic consequences
of the equations for commutative rings.

So, binary and decimal notation are defined by expanding terms into successor terms. This expansion
involves a combinatorial explosion in size and renders the specification in Tables 1 and 2 irrelevant as
term rewrite systems from which an efficient implementation can be generated. In the sequel we will
consider specifications where normal forms are in binary notation and in decimal notation, respectively,
that also employ the successor and predecessor functions. These specifications are far more lengthy and
involved, but as DDRS’s their quality improves because normal forms are smaller and are reached in
fewer rewriting steps.

In order to give a smooth introduction to the subsequent DDRS’s (for binary view and decimal view),
we end with a brief exposition of a very simple alternative tothe above DDRS’s. Consider the extension
of the signatureΣZ defined in Section 1.2 with a one-place function (postfix)

:u : Z→ Z,

the “unary append zero” function, or briefly:zero append, which can be used as an alternative for unary
notation.
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−0 = 0[u1]

−(−x) = x[u2]

P(0) = −S(0)[u3]

P(S(x)) = x[u4]

P(−x) = −S(x)[u5]

S(−(S(x))) = −x[u6]

x+ 0 = x[u7]

0+ x = 0[u8]

x+ S(y) = S(x+ y)[u9]

S(x) + y = S(x+ y)[u10]

(−x) + (−y) = −(x+ y)[u11]

x · 0 = 0[u12]

x · S(y) = (x · y) + x[u13]

x · (−y) = −(x · y)[u14]

i′ = S(i)[u15.i ]8
i=0

x:b i = (x · S(1))+ i[u16.i ]1
i=0

x:d i = (x · S(9))+ i[u17.i ]9
i=0

Table 2: Zubd, integer numbers in unary view

x+ (y+ z) = (x+ y) + z (1)

x+ y = y+ x (2)

x+ 0 = x (3)

x+ (−x) = 0 (4)

(x · y) · z= x · (y · z) (5)

x · y = y · x (6)

1 · x = x (7)

x · (y+ z) = (x · y) + (x · z) (8)

S(x) = x+ 1 (9)

P(x) = x+ (−1) (10)

x:b i = (x+ x) + i for i ∈ {0, 1} (11)

x:d i = (10 · x) + i for i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, (12)

0 = 0, i′ = i + 1, 10= 9+ 1

Table 3: Equations valid inZubd, where (1)− (8) axiomatize commutative rings
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x+ 0 = x[u′1]

x+ (y:u 0) = (x:u0)+ y[u′2]

x · 0 = 0[u′3]

x · (y:u 0) = (x · y) + x[u′4]

Table 4: Nu′ , natural numbers in unary view with zero append

Normal forms in this alternative unary view are 0 for zero, and applications of the zero append func-
tion that define all successor values (each natural numbern is represented byn applications of the zero
append and can be seen as representing a sequence of 0’s of length n + 1). Furthermore, all minus
instances−t for each such normal formt that differs from 0 define the negative integers, so

−((0 :u0) :u0)

is an example of a normal form in this unary view (and it represents−2 in decimal notation).

Addition and multiplication are easy to define: Table 4 provides a DDRS for the natural numbersNu′ .
Termination follows with the use of a weight function, and also ground confluence follows easily.

The DDRS that defines the extension ofNu′ to integer numbersZu′ is given in Table 5 below.

It is immediately clear how rules for rewriting to unary notation with successor and predecessor, and
binary and decimal notation can be defined, but we refrain from doing so and stick to the signatureΣZ
defined in Section 1.2 because the main purpose of the specifications in Table 4 and Table 4+5 is to
introduce working with the “append functions”, as we will doin our definitions of the datatypes in the
subsequent sections.

−0 = 0[u′5]

−(−x) = x[u′6]

0+ x = x[u′7]

(x:u0)+ (−(y:u0)) = x+ (−y)[u′8]

(−(y:u0))+ (x:u0) = x+ (−y)[u′9]

(−x) + (−y) = −(x+ y)[u′10]

x · (−y) = −(x · y)[u′11]

(−x) · y = −(x · y)[u′12]

Table 5: Zu′ , integer numbers in unary view with zero append, continuation of Table 4
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0:b i = i[b1.i ]1
i=0

S(0) = 1[b2]

S(1) = 1:b0[b3]

S(x:b0) = x:b1[b4]

S(x:b1) = S(x) :b0[b5]

x+ 0 = x[b6]

0+ x = x[b7]

x+ 1 = S(x)[b8]

1+ x = S(x)[b9]

(x:b i) + (y:b j) = ((x+ y) :b i) + j[b10.i. j ]1
i, j=0

x · 0 = 0[b11]

x · 1 = x[b12]

x · (y:b i) = ((x · y) :b 0)+ (x · i)[b13.i ]1
i=0

i′ = S(i)[b14.i ]8
i=1

x:d i = (x · S(9))+ i[b15.i ]9
i=0

Table 6: Nbud, natural numbers in binary view

2.2 Binary view

In Table 6 a DDRS for a binary view of natural numbers is displayed, which employs the successor
function as an auxiliary function. Leading zeros except forthe zero itself are removed by [b1.i ]1

i=0, and
successor terms are rewritten by [b2]− [b5]. This DDRS contains fifteen (parametric) rules (that is, 18
rules for the specification of addition and multiplication,and 18 that serve the rewriting from decimal
notation to binary notation via successor terms1). In the binary view natural numbers are identified with
normal forms in binary notation. The specification has a canonical term algebraNbud which is isomorphic
to the canonical term algebraNubd of the specification in Table 1.

In Table 7 minus and predecessor are introduced and the transition from a signature for natural num-
bers to a signature for integers is made; the rules in this table extend those of Table 6 and define the
canonical term algebraZbud that is isomorphic to the canonical term algebraZubd of the specification in
Table 2. The DDRS thus defined contains 33 (parametric) rules(that is, 36+24 rules in total). We attempt
to provide some intuition for equations [b26] and [b27]:

(−x) :b i

should be equal to (−x:b0)+ i, so (−x) :b0 = −(x:b0), and (−x) :b 1 is determined by

−(P(x:b0))
[b20]
= −(P(x) :b1).

1Note that there is no rule [b14.0] that is, 1= S(0), because 1 is a normal form in binary view.

7



Equations [b24] and [b25] can be explained in a similar way:

S(−(x:b0)) should be equal to − (P(x:b0)) = −(P(x) :b1),

S(−(x:b1)) should be equal to − (P(x:b1)) = −(x:b0).

The rewrite rules of the DDRS specified by Tables 6 and 7 (viewed as equations) are semantic conse-
quences of the equations for commutative rings (equations (1)− (8) in Table 3).

−0 = 0[b16]

−(−x) = x[b17]

P(0) = −1[b18]

P(1) = 0[b19]

P(x:b0) = P(x) :b1[b20]

P(x:b1) = x:b0[b21]

P(−x) = −S(x)[b22]

S(−1) = 0[b23]

S(−(x:b0)) = −(P(x) :b1)[b24]

S(−(x:b1)) = −(x:b0)[b25]

(−x) :b0 = −(x:b0)[b26]

(−x) :b1 = −(P(x) :b1)[b27]

x+ (−1) = P(x)[b28]

(−1)+ x = P(x)[b29]

(x:b i) + (−(y:b j)) = ((x+ (−y)) :b i) + (− j)[b30.i. j ]1
i, j=0

(−(y:b j)) + (x:b i) = ((x+ (−y)) :b i) + (− j)[b31.i. j ]1
i, j=0

(−x) + (−y) = −(x+ y)[b32]

x · (−y) = −(x · y)[b33]

Table 7: Zbud, integer numbers in binary view, continuation of Table 6
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0:d i = i[d1.i ]9
i=0

S(i) = i′[d2.i ]8
i=0

S(9) = 1:d 0[d3]

S(x:d i) = x:d i′[d4.i ]8
i=0

S(x:d 9) = S(x) :d 0[d5]

x+ 0 = x[d6]

0+ x = x[d7]

x+ i′ = S(x) + i[d8.i ]8
i=0

i′ + x = S(x) + i[d9.i ]8
i=0

(x:d i) + (y:d j) = ((x+ y) :d i) + j[d10.i. j ]9
i, j=0

x · 0 = 0[d11]

x · i′ = (x · i) + x[d12.i ]8
i=0

x · (y:d i) = ((x · y) :d 0)+ (x · i)[d13.i ]9
i=0

x:b i = (x+ x) + i[d14.i ]1
i=0

Table 8: Ndub, natural numbers in decimal view

2.3 Decimal view

Table 8 defines a DDRS for a decimal view of natural numbers, consisting of fourteen (parametric) rules
(172 rules in total). This DDRS defines the datatypeNdub that is isomorphic to the canonical term algebra
Nubd of the specification in Table 1. Leading zeros except for the zero itselfare removed by [d1.i ]9

i=0, and
successor terms are rewritten by [d2.i ]8

i=0 − [d5]. Rewriting unary notation is part of this DDRS, and the
last rule scheme [d14.i ]1

i=0 serves the rewriting from binary notation.

Before we extend this DDRS to the integers, we define a variantof successor notation for digits that
we call “10 minus” subtraction for decimal digits, and we write

i⋆

for the “10 minus” decimal digit ofi. In Figure 2 we display all identities fori⋆, and we shall use these
in order to cope with terms of the form (−x) :d i for i = 1, ..., 9.

1⋆ ≡ 9 4⋆ ≡ 6 7⋆ ≡ 3

2⋆ ≡ 8 5⋆ ≡ 5 8⋆ ≡ 2

3⋆ ≡ 7 6⋆ ≡ 4 9⋆ ≡ 1

Figure 2: “10 minus” subtraction for decimal digits
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−0 = 0[d15]

−(−x) = x[d16]

P(0) = −1[d17]

P(i′) = i[d18.i ]8
i=0

P(x:d 0) = P(x) :d 9[d19]

P(x:d i′) = x:d i[d20.i ]8
i=0

P(−x) = −S(x)[d21]

S(−i′) = −i[d22.i ]8
i=0

S(−(x:d0)) = −(P(x) :d 9)[d23]

S(−(x:d i′)) = −(x:d i)[d24.i ]8
i=0

(−x) :d 0 = −(x:d 0)[d25]

(−x) :d i = −(P(x) :d i⋆)[d26.i ]9
i=0

x+ (−i′) = P(x) + (−i)[d27.i ]8
i=0

(−i′) + x = P(x) + (−i)[d28.i ]8
i=0

(x:d i) + (−(y:d j)) = ((x+ (−y)) :d i) + (− j)[d29.i. j ]9
i, j=0

(−(y:d j)) + (x:d i) = ((x+ (−y)) :d i) + (− j)[d30.i. j ]9
i, j=0

(−x) + (−y) = −(x+ y)[d31]

x · (−y) = −(x · y)[d32]

Table 9: Zdub, integers in decimal view, continuation of Table 8 (and using i⋆ from Figure 2)

In Table 9 minus and predecessor are added and the transitionto a signature for integers is made; the
rules in this table extend those of Table 8. The DDRS thus defined is namedZdub and is isomorphic to
the canonical term algebraZubd of the specification in Table 2; it contains 32 (parametric) rules (that is,
172+ 273 rules in total).

The (twenty one) equations captured by [d23]− [d26.i ]9
i=0 can be explained in a similar fashion as

was done in the previous section for [b24]− [b27]: for example,

(−5) :d 3

should be equal to−(5 :d 0)+ 3 = −(4 :d 7), and this follows immediately from the appropriate equation
in [d26.i ]9

i=0.

The rewrite rules of the DDRS specified by Tables 8 and 9 (viewed as equations) are semantic conse-
quences of the equations for commutative rings (equations (1)− (8) in Table 3).

10



3 Alternative DDRS’s for integers with digit tree constructors

Having defined DDRS’s that employ (postfix) digit append functions in Section 2, we now consider the
more generaldigit tree constructorfunctions. For the binary view, this approach is followed byBouma
and Walters in [7]; for a view based on any radix, this approach is further continued in Walters [13] and
Walters and Zantema [14], where the constructor is calledjuxtapositionbecause it goes with the absence
of a function symbol in order to be close to ordinary decimal and binary notation.

We extend the signatureΣZ defined in Section 1.2 with the following three functions (infix):

û , b̂ , d̂ : Z × Z→ Z,

called “unary digit tree constructor function”, “binary digit tree constructor function”, and “decimal digit
tree constructor function”, and to be used for unary, binarynotation and decimal notation, respectively.
The latter two constructors serve to represent logarithmicnotation and satisfy the semantic equations
~x b̂ y� = 2 · ~x� + ~y� and~x d̂ y� = 10 · ~x� + ~y�.

For integer numbers in decimal view or binary view, normal forms are the relevant digits, all applica-
tions of the respective constructor with left argument a non-zero normal form and right argument a digit,
and all minus instances−t for each such non-zero normal formt, these satisfy~−(t)� = −(~t�). E.g.,

(9 d̂ 7) d̂ 5 and ((1b̂ 0) b̂ 0) b̂ 1

represent the decimal number 975, and the binary number 1001, respectively, and−(((1 b̂ 0) b̂ 0) b̂ 1) is
the normal form that represents the additional inverse of the latter. A minor complication with decimal
and binary digit tree constructors is that we now have to consider rewritings such as

2 d̂ (1 d̂ 5) = (2+ 1) d̂ 5 = 3 d̂ 5 (= 35),

which perhaps are somewhat non-intuitive. For integers in unary view, thus with unary digit tree con-
structor, this complication is absent (see Section 3.1).

We keep the presentation of the resulting DDRS’s (those defining the binary and decimal view are
based on [13, 14]) minimal in the sense that rules for conversion from the one view to the other are left
out. Of course, it is easy to define such rules. Rewrite rules for conversion to and from the datatypes
defined in Section 2 are also omitted, although such rules arealso not difficult to define.

3.1 Unary view with digit tree constructor

For naturals in this particular unary view, normal forms are0 and expressionst û 0 with t a normal form
(thus, with association of ˆu to the left). Of course, the phenomenon of “removing leadingzeros” does
not exist in this particular unary view (as in the datatypeNu′ defined in Table 4). The resulting datatype
Nut is defined in Table 10.

In the unary view, ˆu is an associative operator, as is clear from rule [ut1] (in contrast to digit tree
constructors for the binary and decimal case). Moreover, the commutative variantst û r andr û t rewrite
to the same normal form. The latter property also follows from the following semantics for closed terms:

~0� = 0,

~x û y� = ~x� + ~y� + 1,

~x+ y� = ~x� + ~y�,

~x · y� = ~x� · ~y�.
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x û (y û z) = (x û y) û z[ut1]

x+ 0 = x[ut2]

x+ (y û 0) = (x+ y) û 0[ut3]

x · 0 = 0[ut4]

x · (y û 0) = (x · y) + x[ut5]

Table 10:Nut, natural numbers in unary view with unary digit tree constructor

Observe that
x+ (y û z) = (x+ y) û z and x · (y û z) = (x · (y+ z)) + x

are valid equations inNut.

The extension to integer numbers can be done in a similar fashion as in the previous section, thus
obtaining normal forms of the form−(t) with t a non-zero normal form inNut. However, also terms
of the formx û (−y) and variations thereof have to be considered. We define thisextension in Table 11
below and call the resulting datatypeZut.

Adding the interpretation rule~−x� = −~x� and exploiting the commutativity of ˆu in ~x û y�, it can
be easily checked that [ut6]− [ut18] (as equations) are sound. Moreover, the equation

(−x) û y = y û (−x)

also holds inZut.

−0 = 0[ut6]

−(−x) = x[ut7]

0 û (−(x û 0)) = −x[ut8]

(x û 0) û (−(y û 0)) = x û (−y)[ut9]

(−(x û 0)) û 0 = −x[ut10]

(−(y û 0)) û (x û 0) = x û (−y)[ut11]

(−(x û 0)) û (−(y û 0)) = −((x+ y) û 0)[ut12]

0+ x = x[ut13]

(x û 0)+ (−(y û 0)) = x+ (−y)[ut14]

(−(y û 0))+ (x û 0) = x+ (−y)[ut15]

(−x) + (−y) = −(x+ y)[ut16]

x · (−y) = −(x · y)[ut17]

(−x) · y = −(x · y)[ut18]

Table 11: Zut, integer numbers in unary view with unary digit tree constructor, continuation of Table 10
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0 b̂ x = x[bt1]

x b̂ (y b̂ z) = (x+ y) b̂ z[bt2]

0+ x = x[bt3]

1+ 0 = 1[bt4]

1+ 1 = 1 b̂ 0[bt5]

1+ (x b̂ y) = x b̂ (1+ y)[bt6]

(x b̂ y) + z= x b̂ (y+ z)[bt7]

x · 0 = 0[bt8]

x · 1 = x[bt9]

x · (y b̂ z) = (x · y) b̂ (x · z)[bt10]

Table 12:Nbt, natural numbers in binary view with binary digit tree constructor

3.2 Binary view with digit tree constructor

For naturals in binary view with the binary digit tree constructor, the associated datatypeNbt is defined
in Table 12. The rewrite system defined by [bt1]− [bt7] (thus excluding multiplication) is taken from [7],
in which it was proven confluent and terminating.

In [14] a rewrite system for integer arithmetic is provided with next to juxtaposition and (unary)
minus also addition and subtraction and multiplication, and proven ground confluent and terminating
with respect to any radix using rule schemata (that is, parametric rules). In Table 13 we present a variant
of this rewrite system without subtraction for the binary digit tree constructor, and define the datatype
Zbi. Because binary view requires so few digits and because we will follow another approach for the
decimal view, we have no use for rule schemata and just define all relevant instances ([bi5], [bi10],
[bi15] − [bi17], and [bi20]− [bi21]).

0 b̂ x = x[bi1]

x b̂ (y b̂ z) = (x+ y) b̂ z[bi2]

0+ x = x[bi3]

x+ 0 = x[bi4]

1+ 1 = 1 b̂ 0[bi5]

x+ (y b̂ z) = y b̂ (x+ z)[bi6]

(x b̂ y) + z= x b̂ (y+ z)[bi7]

x · 0 = 0[bi8]

0 · x = 0[bi9]

1 · 1 = 1[bi10]

x · (y b̂ z) = (x · y) b̂ (x · z)[bi11]

(x b̂ y) · z= (x · z) b̂ (y · z)[bi12]

−0 = 0[bi13]

−(−x) = x[bi14]

1 b̂ (−1) = 1[bi15]

(x b̂ 0) b̂ (−1) = (x b̂ (−1)) b̂ 1[bi16]

(x b̂ 1) b̂ (−1) = (x b̂ 0) b̂ 1[bi17]

x b̂ (−(y b̂ z)) = −((y+ (−x)) b̂ z)[bi18]

(−x) b̂ y = −(x b̂ (−y))[bi19]

1+ (−1) = 0[bi20]

(−1)+ 1 = 0[bi21]

x+ (−(y b̂ z)) = −(y b̂ (z+ (−x)))[bi22]

(−(x b̂ y)) + z= −(x b̂ (y+ (−z)))[bi23]

x · (−y) = −(x · y)[bi24]

(−x) · y = −(x · y)[bi25]

Table 13: Zbi, integer numbers in binary view with binary digit tree constructor
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0 d̂ x = x[dt1]

x d̂ (y d̂ z) = (x+ y) d̂ z[dt2]

S(i) = i′[dt3.i ]8
i=0

S(9) = 1 d̂ 0[dt4]

S(x d̂ i) = x d̂ i′[dt5.i ]8
i=0

S(x d̂ 9) = S(x) d̂ 0[dt6]

x+ 0 = x[dt7]

x+ i′ = S(x) + i[dt8.i ]8
i=0

x+ (y d̂ i) = (y d̂ x) + i[dt9.i ]9
i=0

x · 0 = 0[dt10]

x · i′ = x+ (x · i)[dt11.i ]8
i=0

x · (y d̂ i) = ((x · y) d̂ 0)+ (x · i)[dt12.i ]9
i=0

Table 14: Ndt, natural numbers with decimal digit tree constructor in decimal view (usingi′ from
Figure 1)

3.3 Decimal view with digit tree constructor

For naturals in decimal view with the decimal digit tree constructor, we make use of successor terms, in
order to avoid (non-parametric) rules such as

1+ 1 = 2, ..., 9+ 8 = 1 d̂ 7, 9+ 9 = 1 d̂ 8,

1 · 1 = 1, ..., 8 · 9 = 7 d̂ 2, 9 · 9 = 8 d̂ 1.

The associated datatypeNdt is defined in Table 14. Note that rules of the form

i′ + x = i + S(x)

instead of (or next to) [dt8.i ]8
i=0 would destroy termination: 2+ 1 7→ 1 + S(1) 7→ S(1) + 1 7→ 2 + 1.

Moreover, the interplay between digit tree constructor, successor and normal form notation makes it by
rules [dt9.i ]9

i=0 possible not to incorporate the rewrite rule 0+ x = x in this particular, relatively simple
rewrite system.

The extension to integers is given by the rules in Table 15, which define the datatypeZdt. In con-
trast to the approaches in [13, 14] with juxtaposition, we now make use of both successor terms and
predecessor terms, and the rewrite system presented here iscomposed from rewrite rules for successor
and predecessor, rewrite rules defined in [13, 14], and combinations thereof. Note that we can still do
without the rewrite rule 0+ x = x:

0+ (−0) = 0 by [dt13] and [dt7],

0+ (−i′) = P(0)+ (−i) = ... = −i′ by [dt27.i ]8
i=0 (and some more rules),

0+ (−(t1 d̂ t2)) = −(t1 d̂ t2) by rules [dt28], [dt13], and [dt7].
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0 d̂ x = x[dt1]

x d̂ (y d̂ z) = (x+ y) d̂ z[dt2]

S(i) = i′[dt3.i ]8
i=0

S(9) = 1 d̂ 0[dt4]

S(x d̂ i) = x d̂ i′[dt5.i ]8
i=0

S(x d̂ 9) = S(x) d̂ 0[dt6]

x+ 0 = x[dt7]

x+ i′ = S(x) + i[dt8.i ]8
i=0

x+ (y d̂ i) = (y d̂ x) + i[dt9.i ]9
i=0

x · 0 = 0[dt10]

x · i′ = x+ (x · i)[dt11.i ]8
i=0

x · (y d̂ i) = ((x · y) d̂ 0)+ (x · i)[dt12.i ]9
i=0

−0 = 0[dt13]

−(−x) = x[dt14]

P(0) = −1[dt15]

P(i′) = i[dt16.i ]8
i=0

P(x d̂ 0) = P(x) d̂ 9[dt17]

P(x d̂ i′) = x d̂ i[dt18.i ]8
i=0

P(−x) = −S(x)[dt19]

S(−i′) = −i[dt20.i ]8
i=0

S(−(x d̂ 0)) = −(P(x) d̂ 9)[dt21]

S(−(x d̂ i′)) = −(x d̂ i)[dt22.i ]8
i=0

(−x) d̂ y = −(x d̂ (−y))[dt23]

i d̂ (− j) = P(i) d̂ j⋆[dt24i. j ]9
i, j=1

(x d̂ y) d̂ (−i) = P(x d̂ y) d̂ i⋆[dt25.i ]9
i=1

x d̂ (−(y d̂ z)) = −((y+ (−x)) d̂ z)[dt26]

x+ (−i′) = P(x) + (−i)[dt27.i ]8
i=0

x+ (−(y d̂ z)) = −(y d̂ (z+ (−x)))[dt28]

(−i′) + x = P(x) + (−i)[dt29.i ]8
i=0

(−(x d̂ y)) + z= −(x d̂ (y+ (−z)))[dt30]

x · (−y) = −(x · y)[dt31]

(−x) · y = −(x · y)[dt32]

Table 15:Zdt, integer numbers with decimal digit tree constructor in decimal view (usingi′ from Figure 1
andi⋆ from Figure 2)

4 Concluding remarks

This paper is about the design (by means of trial and error) ofdatatype defining rewrite systems rather
than about the precise analysis of the various rewrite systems per se. Termination proofs, Knuth-Bendix
completion, full confluence proofs, or merely ground confluence proofs, are postponed until a stable
design direction has been developed for a sequence of datatypes. What matters in addition to readability
and conciseness of each DDRS is at this stage a reasonable confidence that each of these rewrite systems
is strongly terminating and ground confluent and that the intended normal forms are reached by means
of rewriting.

When specifying a datatype of integers as an extension of thenaturals, the unary view leads to sat-
isfactory results, but with high inefficiency. For the binary view and the decimal view corresponding
extensions are possible (and provided), but the resulting rewrite systems are at first sight significantly
less concise and comprehensible. Some further remarks:
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1. The three DDRS’s (datatype defining rewrite systems) for integers given in Section 2 each produce
an extension datatype for a datatype for the natural numbers. An initial algebra specification of the
datatype of integers is obtained from any of the DDRS’s givenin [1] by

• taking the reduct to the signature involving unary, binary,and decimal notation only,

• removing rewrite rules involving operators for hexadecimal notation,

• expanding the signature with a unary additive inverse and a unary predecessor function,

• adding rewrite rules (in equational form) that allow for theunique normalization of closed
terms involving the minus sign,

while making sure that these rewrite rules (viewed as equations) are semantic consequences of the
equations for commutative rings.

2. Syntax for hexadecimal notation has been omitted becausethat usually plays no role when dealing
with integers. It is an elementary exercise to incorporate hexadecimal notation.

3. The DDRS’s for the binary view and the decimal view are hardly intelligible unless one knows
that the objective is to construct a commutative ring. A decimal normal form is defined as either a
digit, or an application of a decimal append function:d i to a non-zero normal form (for all digits
i). This implies the absence of (superfluous) leading zeros, and the (ground) normal forms thus
obtained correspond bijectively to the non-negative integers (that is,N). Incorporating all minus
instances−(t) for each non-zero normal formt yields the class of normal forms. The “semantics”
of these normal forms in the language of commutative rings isvery simple:

~0� = 0,

~i′� = ~i� + 1 for all digits i (andi′ defined as in Fig. 1),

~x:d i� = (10 · ~x�) + ~i� for all digits i and 10= ~9� + 1,

~−(x)� = −(~x�).

A binary normal form has similar semantics:~x:b i� = (2 · ~x�)+ ~i� for digits 0, 1, and 2= 1+ 1.

4. Understanding the concept of a commutative ring can be expected only from a person who has
already acquired an understanding of the structure of integers and who accepts the concept of
generalization of a structure to a class of structures sharing some but not all of its properties.

In other words, the understanding that a DDRS for the integers is provided in the binary view and
in the decimal view can only be communicated to an audience under the assumption that a reliable
mental picture of the integers already exists in the minds ofmembers of the audience. This mental
picture, however, can in principle be communicated by taking notice of the DDRS for the unary
view first.

This conceptual (near) circularity may be nevertheless be considered a significant weakness of the
approach of defining (and even introducing) the integers as an extension of naturals by means of
rewriting.

In Section 3 we discussed some alternatives for these DDRS’sbased on papers of Bouma and Wal-
ters [7], Walters [13], and Walters and Zantema [14] in whichdigit tree constructors are employed. In
this case, a digit is a normal form, and so is an application ofthe digit tree constructor that adheres to
association to the left and with the removal of (superfluous)leading zeros. Thus,n d̂ i is a normal form
if n is a non-zero normal form andi a digit. Incorporating all minus instances−(t) for each non-zero
normal formt yields the class of normal forms for integers.
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Of course, a decimal notation as 689 is so common that one usually does not question whether it
represents (6 :d 8) :d 9 or (6 d̂ 8) d̂ 9 or some other formally defined notation. Nevertheless, as we have
seen, different algorithmic approaches to for example addition may apply, although one would preferably
not hamper an (initial) arithmetical method with notation such asx d̂ (y d̂ z) and rewrite rules such as
x d̂ (y d̂ z) = (x+ y) d̂ zand those for+, and for this reason we have a preference for the DDRS’s defined
in Section 2 (and in the first version of this report).

In [13] a ground-complete term rewriting system (TRS) basedon juxtaposition for integer arithmetic
with addition and subtraction is presented; this system is proven ground confluent and terminating with
respect to any radix. In [14], the authors extend this systemwith multiplication and prove ground-
completeness, usingsemantic labellingfor their termination proof, and judge this rewrite system to
have good efficiency and readability (in comparison with some alternatives discussed in that paper).
Furthermore, the authors also discuss a TRS that is based on successor and predecessor notation, and in
which minus is not used: negative numbers are represented bynormal formsP(0),P(P(0)), and so on.
This rewrite system is comparable to the DDRS in Table 2 that definesZubd and is proven confluent and
terminating, and judged to have poor readability and (too) high complexity. Finally, in [14], the authors
also provide a complete TRS for natural numbers with addition and multiplication that is based on digit
append.

We briefly mention two other, comparable approaches to integer arithmetic that are also based on some
form of digit append constructors for representing integernumbers. In [11], Kennaway defines integer
arithmetic for any baseb > 1 (integers are represented as lists with appends to the left), using extra
digitsb to 2(b− 1) and also some auxiliary functions. This results in a complete TRS, of which a proper
subclass of the normal forms represents the integer numbers; moreover, this TRS allows for any total
recursive function an immediate extension in which also that function is represented while completeness
is preserved. Secondly, in [9], Contejean, Marché and Rabehasaina introduce integer arithmetic based
onbalanced ternary numbers, that is, numbers that can be represented by a digit append function :t with
digits -1,0,1 and semantics~i� = i and~x: t i� = 3 · ~x�+ i (see, e.g., Knuth [12]) and provide a TRS that
is confluent and terminating modulo associativity and commutativity of addition and multiplication.

Based on either a DDRS for the natural numbers or a DDRS for theintegers one may develop a DDRS
for rational numbers in various ways. It is plausible to consider the meadow of rational numbers of [6]
or the non-involutive meadow of rational numbers (see [2]) or the common meadow of rational numbers
(see [3]) as abstract algebraic structures for rationals inwhich unary, binary, and decimal notation are
to be incorporated in ways possibly based on the specifications presented above. Furthermore, one does
well to consider the work discussed in [9] on a term rewritingsystem for rational numbers, in which
arithmetic for rational numbers is specified (this is the main result in [9], for which the above-mentioned
work on integer arithmetic is a preliminary): the authors specify rational numbers by means of a TRS that
is complete modulo associativity and commutativity of addition and multiplication, taking advantage of
Stein’s algorithm for computing gcd’s of non-negative integers without any division2 (see, e.g., [12]).

A survey of equational algebraic specifications for abstract datatypes is provided in [15]. In [5] one
finds the general result that computable abstract datatypescan be specified by means of specifications
which are confluent and strongly terminating term rewritingsystems. Some general results on algebraic
specifications can be found in [8, 4, 10]. More recent applications of equational specifications can be
found in [6].

2Apart from halving even numbers, which is easy in binary notation, but can otherwise be specified with a shift operation.
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