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Abstract

Integer arithmetic is specified according to three viewsarynbinary, and decimal notation.
In each case we find ground confluent and terminating datatgfieing rewrite system. In each
case the resulting datatype is a canonical term algebrahwexiends a corresponding canonical

term algebra for natural numbers.
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1 Introduction

Using the specifications for natural numbers from [1] we dgvespecifications for datatypes of

integers. We will entertain the strategy of [1] to develoffatient views characteristic for unary

notation, binary notation, and decimal notation respettivEach of the specifications is a so-called
DDRS (datatype defining rewrite system) and consists of abaurof equations that define a term
rewriting system by orienting the equations from left-ight. A DDRS must be strongly terminating

and ground confluent.

This paper is a sequel to the report [1] and it constitutesrthdn stage in the development of
a family of arithmetical data types with corresponding sfieations. The resulting specifications
(DDRSs) incorporate €lierent “views” on the same abstract data type. Thary viewprovides
a term rewriting system where terms in unary notation sesva@mal forms. The unary view
also provides a semantic specification of binary notatiérlezimal notation, and of hexadecimal
notation. The three logarithmic notations were modifiedLinWith respect to conventional notations
in such a way that syntactic confusion between these natatannot arise. In this paper, the
hexadecimal views left out as that seems to be an unusual viewpoint for imtagénmetic.

It seems to be the case that for the unary view the specificafithe integers (given in Table 3) is
entirely adequate, whereas the subsequent specificatiotisebinary viewanddecimal viewmay
provide no more than a formalization of a topic which must @@show understood before taking
notice of that same formalization. It remains to be seen tatwktent the DDRS for the unary case
may serve exactly that expository purpose.

The strategy of the work is somewhat complicated: on the @mel lwe look for specifications
that may genuinely be considered introductory, that iscdeons that can be used to construct
the data type at hand for the first time in the mind of a persamth® other hand awareness of the
datatype in focus may be needed to produce an assessmeatdefgtee of success achieved in the
direction of the first objective.

1.1 Digitsand rewriterulesin equational form

Digitsare 01,2,3,4,5,6, 7, 8,9, and are ordered in the common way:

0<1<2<3<4<5<6<7<8<09.

For the digits 01, 2, 3, 4,5, 6, 7, 8 we denote with’ the successor digit ofin the given enumer-
ation. In Table 1 the successor notation on digits is spelcigea transformation of syntax, and we
adopt this notation throughout the paper.

Furthermore, fon,me {0, 1,2, 3,4,5, 6, 7,8, 9} andn < m, the notation
mlt=r]

represents the set of rewrite rutes r with i instantiated frorm to m.



0=1 I=4 6=7
1'=2 4 =5 7 =8
2=3 5=6 8=9

Table 1: Enumeration and successor notation of digits & &/p

1.2 A signaturefor integers
The signatur&y has the following elements:

1. AsortZ,

2. Ten diferent constants,Q., 9 (“digits”),

3. Three one-place functioi® P, — : Z — Z (“successor”, “predecessor” and “minus”),
4. Addition and multiplication+, - : Zx Z — Z,

5

. Two one-place functions 0, 61 : Z — Z (“binary append zero” and “binary append one”);
these functions will be used for binary notation,

6. Ten one-place postfix functions
20,201,202, 23,04, 05 06,007,028, 09:Z—-Z

(“decimal append zero”, ...,“decimal append nine”); thiesections will be used for decimal
notation.

The “binary append” and “decimal append” functions can lesveid as instantiations of more gen-
eral two-place functions “binary digit append” and “declrdait append”, but that would require
the introduction of sorts for bits (binary digits) and fogds (decimal digits). This is why we
instantiate such “digit append” functions per digit to ynamctions.

We will usepostfix notatiorfor applications of the “digit append” functions, e.g.
(9@7) o5 and ((Iv0)s0)ol

represent the decimal number 975, and the binary number, 1€§dectively.
For the unary view normal the normal forms are those of theyuiaw on naturals, that is

0, S(0), S(S(0)), ...,

and all minus instances for each non-zero normal fortne.g.—(S(S(0))). Similarly for the binary
view and for the decimal view, normal forms are obtained kgeding the respective sets of normal
forms with—t for each such normal formthat difers from 0. Thus-((9@7)@5) is an example of
a normal form in decimal view, and so-i§(1e0)o0)o 1 in binary view.



X+0=x 1)

X+ S(y) = S(X+Y) 2
x-0=0 3)
X-S(y) = (X-y) +x 4)
Aioli” = S()] 5)
Aisolxei = (x-S(1)) +i] (6)
Aol x@i = (x-S(9)+i] )

Table 2: Natural numbers in unary vieW (,q)

2 0OneADT, three datatypes

An abstract datatype (ADT) may be understood as the isonmrptiass of its instantiations which
are datatypes. The datatypes considered in [1] are sadazdieonical term algebras which means
that carriers are non-empty sets of closed terms which asedlunder taking subterms.

2.1 Unary view

Table 2 provides a DDRS for the natural numbers. Minus andgmessor are absent in this datatype.
Successor terms, that is expressions involving zero arakssor only, serve as normal forms.

In Table 3 an algebraic specification is provided of the iatesgiumbers with constants zero and
one, and with successor, predecessor, addition, and tadtipn. This specification extends that of
Table 2. We notice that we do not need equations for rewriting

_X.y

because multiplication is defined by recursion on its rigfgument, and that is why equation (21)
is suficient, and why addition is defined by recursion on both itsiargnts and also requires (18).

In Table 4 one finds a listing of equations that are true in thatypeZ,nq that is specified by
the DDRS of Table 3. This ensures that these rewrite rulesvgd as equations) are semantic
consequences of the equations for commutative rings.

Binary notation and decimal notation are defined by expaptirms into successor terms. This
expansion involves a combinatorial explosion in size. Téwtlosion renders the specification in
Tables 2 and 3 irrelevant as term rewrite systems from whickflacient implementation can be
generated.

In the next section we will consider adaptations of this #jtion, where normal forms are in
binary notation and in decimal notation respectively. $pmtions become far more lengthy and
involved, but as a DDRS the quality improves because noranai$ are smaller and are reached in
fewer rewriting steps.



-0=0 (8)
—(=%) =X 9)
P(0) = -S(0) (10)
P(S(x)) = x (11)
P(-X) = —S(x) (12)
S(=(S(x))) = -x (13)
X+0=x (14)
0+x=0 (15)
X+ S(y) = S(x+Y) (16)
S(X) +y=S(x+Y) a7)
(=% + (=y) = =(x+Y) (18)
x-0=0 (19)
X-S(y) = (X-y) + x (20)
X (=y) = =(x-y) (21)
Aol =S(0)] (22)
Aiso[xei = (x-S(1) +i] (23)
Ao [x@i = (x-S(9)) +i] (24)
Table 3: Integers in unary vievZ(q)

X+(Y+2=(X+y)+z (25)
X+Y=y+X (26)
X+0=x (27)

X+(-X) =0 (28)
(x-y)-z=x-(y-2 (29)
1-x=x (31)
X-(y+2 =(x-y)+(x-2 (32)
x60=Xx+X (33)
xol=(x+x) +1 (34)

Table 4: Equations valid if,,q, Where (25)- (32) axiomatize commutative rings



Aiol0ei=i] (35)

S(0)=1 (36)
S(1)=1e0 (37)
S(xe0)=xe1 (38)
S(xe1)=S(x)e0 (39)
X+0=x (40)

0+ x=x (42)
X+1=S(X) (42)

1+ x=S(X (43)

(x60)+ (yo0)=(x+y)o0 (44)
xe0)+(yol) =(x+y)o1l (45)
xel)+(ye0)=(x+y)o1l (46)
xel)+(yol)=S(x+y)e0 47
x-0=0 (48)

X-1=x (49)
Aiolx-(yei) = (x-y)©0+i] (50)
Aol = S()] (51)
ALo[x@i = (x-S(9)) +i] (52)

Table 5: Naturals in binary viewNp,q)

2.2 Binary view

In Table 5 a specification for a binary view of natural numhedisplayed. In the binary view natural
numbers are identified with normal forms in binary notatidhe specification has a canonical term
algebraN,,q which is isomorphic to the canonical term algebkaq of the specification in Table 2.

In Table 6 minus and predecessor are introduced and thettoanfsom a signature for natural
numbers to a signature for integers is made. We attempt todegsome intuition for equations (63)
and (64):

—-(x) oi
should be equal te(x60) +i, so—(xX) 60 = —-(x&0), and £x) & 1 is determined by-(P(xe 0)) &)
—-(P(x)e1).

Equations (61) and (62) can be explained in a similar w&y§+(xe0)) should be equal to
—(P(xe0)) = -(P(x)© 1), andS(—(xe 1)) should be equal te(P(xe 1)) = —(x©0).



-0=0
—(-x)=x

P(O)=-1
P(1)=0
P(xe0)=P(x) ol
P(xel)=xe0
P(=x) = =S(x)
S(-1)=0
S(-(xe0))=-(P(x)o1)
S(-(xel))=-(xe0)
(-x)e0=-(xs0)
(-x)el=-(P(¥)e1)
X+ (-1) = P(X)
(-1)+x=P(x)

(xe0)+(-(ye0)) = (x+(-y)e0
(xe0)+(=(yel)) = P(x+(-y)el
(xel)+(=(ye0)=(x+(-y)el
(xel)+(-(yel)) = (x+(-y)e0
(-(ye0))+ (xe0) = (x+(-y)) €0
(-(ye0)+(xel)=(x+(-y)el
(-(yel)+(xe0)=P(x+(-y)el
(-(yel)+(xel)=(x+(-y)e0

(=X) + (=) = =(x+Y)
X-(=y) = =(X-y)

(53)
(54)

(55)
(56)
(57)
(58)
(59)

(60)
(61)
(62)

(63)
(64)

(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)

(76)

Table 6: Additional rules for integers in binary viei,q4), continuation of Table 5



AiolO@i=i] (77)

Aio[S@) =i'] (78)
S(9) =100 (79)

A& [S(x0i) = x0i'] (80)
S(x29)=S(X) @0 (81)
X+0=X (82)
0+x=x (83)
/\iszo[x+i’=S(x)+i] (84)
A& [+ x=S(x) +i] (85)
Aol Ao [(x@i) + (Yo )) = (x+Y) @i) + j]] (86)
x-0=0 (87)
Afolx-i" = (x-i) +x] (88)
ALolx- (yoi) = (x-Y) @0+ (x-1)] (89)
Abo[xei=(x+X) +i] (90)

Table 7: Natural numbers with addition and multiplicatiardiecimal view Ngyp)

2.3 Decimal view

In Table 7 a DDRS for a decimal view of natural numbers is digptl. Of course, successor terms
are to be rewritten in this case.

Table 9 contains an extension of the same DDRS to the casdegfeirs. In order to cope with
terms of the form£x) @i withi = 1, ..., 9 we define

i x
|

as the “10 minus” digit of in Table 8.

The (twenty) equations captured by (99)L02) can be explained in a similar fashion as was done
in the previous section for (61 (64): for example,

(-5 o3

should be equal te-(5@0) + 3 = —(4@7), and this follows immediately from the appropriate
equationin (102).



1*=9 4" =6 7 =3
2*=8 5*=5 g =2
3 =7 6 =4 o =1

Table 8: “10 minus” subtraction for decimal digits

-0=0 (91)
—(-x)=x (92)

P(0) = -1 (93)

Aol P() =1] (94)

P(x20) = P(x)@9 (95)

/\?zo[P(xcai’) = X0i] (96)

P(-X) = -S(¥) (97)

ALo[S(=i") = —i] (98)

S(-(x20)) = -(P(x) @9) (99)

Ao [S(-(xoi") = —(x@1i)] (100)

(-X) @0 = —(x20) (101)

A l(=¥ei=—-(P(X)oi*)] (102)

Ao [X+ (=) = P(x) + (=)] (103)

Ao [(=1) + x = P(x) + (=i)] (104)
Aol Ao l(x@i) + (=(y@ ]) = (x+ (=) @i) + (-])]] (105)
Aol Ao l(=(y@ ) + (x@i) = (x+ (=) @i) + (-])]] (106)
(=X + (-y) = =(x+Y) (107)

X-(=y) = =(x-) (108)

Table 9: Integers in decimal vievZg,y,), continuation of Table 7 (and usint from Table 8)



3 Concluding remarks

When specifying a datatype of integers as an extension ohdherals, the unary view leads to
satisfactory results. For the binary view and the decimalgorresponding extensions are possi-
ble (and provided), but the resulting rewrite systems afesdtsight significantly less concise and
comprehensible. Some further remarks:

1. The three DDRS’s (datatype defining rewrite systems)rtggers given in the paper each
produce an extension datatype for a datatype for the naturabers. An initial algebra spec-
ification of the datatype of integers is obtained from anyhefDDRS’s given in [1] by

taking the reduct to the signature involving unary, binand decimal notation only,
removing rewrite rules involving operators for hexadedinmation,
expanding the signature with a unary additive inverse antbayupredecessor function,

adding rewrite rules (in equational form) that allow for theique normalization of
closed terms involving the minus sign,

while making sure that these rewrite rules (viewed as egngliare semantic consequences
of the equations for commutative rings.

2. Syntax for hexadecimal notation has been omitted bedhaseisually plays no role when
dealing with integers. It is an elementary exercise to ipocate hexadecimal notation in the
specifications below.

3. The DDRS'’s for the binary view and the decimal view belowlaardly intelligible unless one
knows that the objective is to construct a commutative ring.

4. Understanding the concept of a commutative ring can beatzd only from a person who has
already acquired an understanding of the structure of &mtsegnd who accepts the concept of
generalization of a structure to a class of structures shaome but not all of its properties.

In other words the understanding that a DDRS for the inteiggusovided in the binary view
and in the decimal view can only be communicated to an audiender the assumption that a
reliable mental picture of the integers already exists érttinds of members of the audience.
This mental picture, however, can in principle be commueid&y taking notice of the DDRS
for the unary view first.

This conceptual (near) circularity may be neverthelessdmsidered a significant weakness
of the approach of defining (and even introducing) the integs an extension of naturals by
means of rewriting.

This paper is about the design (by means of trial and erratatztype defining rewrite systems rather
than about the precise analysis of the various rewrite systger se. Termination proofs, Knuth-

Bendix completion, full confluence proofs, or merely growodfluence proofs, are postponed until
a stable design direction has been developed for a sequédatatypes.

What matters in addition to readability and concisenesadfi®DRS is at this stage a reasonable
confidence that each of these rewrite systems is strongtyjiriating and ground confluent and that
the intended normal forms are reached by means of rewriting.

10



A survey of equational algebraic specifications for abstiata types is provided in [8]. In [4]
one finds the general result that computable abstract da¢s tgan be specified by means of speci-
fications which are confluent and strongly terminating teemriting systems. Some general results
on algebraic specifications can be found in [6, 3, 7]. Moren¢@pplications of equational specifi-
cations can be found in [5].
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