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Abstract

Integer arithmetic is specified according to three views: unary, binary, and decimal notation.
In each case we find ground confluent and terminating datatypedefining rewrite system. In each
case the resulting datatype is a canonical term algebra which extends a corresponding canonical
term algebra for natural numbers.
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1 Introduction

Using the specifications for natural numbers from [1] we develop specifications for datatypes of
integers. We will entertain the strategy of [1] to develop different views characteristic for unary
notation, binary notation, and decimal notation respectively. Each of the specifications is a so-called
DDRS (datatype defining rewrite system) and consists of a number of equations that define a term
rewriting system by orienting the equations from left-to-right. A DDRS must be strongly terminating
and ground confluent.

This paper is a sequel to the report [1] and it constitutes a further stage in the development of
a family of arithmetical data types with corresponding specifications. The resulting specifications
(DDRSs) incorporate different “views” on the same abstract data type. Theunary viewprovides
a term rewriting system where terms in unary notation serve as normal forms. The unary view
also provides a semantic specification of binary notation, of decimal notation, and of hexadecimal
notation. The three logarithmic notations were modified in [1] with respect to conventional notations
in such a way that syntactic confusion between these notations cannot arise. In this paper, the
hexadecimal viewis left out as that seems to be an unusual viewpoint for integer arithmetic.

It seems to be the case that for the unary view the specification of the integers (given in Table 3) is
entirely adequate, whereas the subsequent specifications for thebinary viewanddecimal viewmay
provide no more than a formalization of a topic which must be somehow understood before taking
notice of that same formalization. It remains to be seen to what extent the DDRS for the unary case
may serve exactly that expository purpose.

The strategy of the work is somewhat complicated: on the one hand we look for specifications
that may genuinely be considered introductory, that is, descriptions that can be used to construct
the data type at hand for the first time in the mind of a person. On the other hand awareness of the
datatype in focus may be needed to produce an assessment of the degree of success achieved in the
direction of the first objective.

1.1 Digits and rewrite rules in equational form

Digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and are ordered in the common way:

0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

For the digits 0, 1, 2, 3, 4, 5, 6,7, 8 we denote withi′ the successor digit ofi in the given enumer-
ation. In Table 1 the successor notation on digits is specified as a transformation of syntax, and we
adopt this notation throughout the paper.

Furthermore, forn,m∈ {0, 1, 2, 3, 4, 5, 6, 7,8, 9} andn < m, the notation

∧m
i=n [ t = r ]

represents the set of rewrite rulest = r with i instantiated fromn to m.
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0′ ≡ 1 3′ ≡ 4 6′ ≡ 7

1′ ≡ 2 4′ ≡ 5 7′ ≡ 8

2′ ≡ 3 5′ ≡ 6 8′ ≡ 9

Table 1: Enumeration and successor notation of digits of typeZ

1.2 A signature for integers

The signatureΣZ has the following elements:

1. A sortZ,

2. Ten different constants 0, ..., 9 (“digits”),

3. Three one-place functionsS,P,− : Z→ Z (“successor”, “predecessor” and “minus”),

4. Addition and multiplication+, · : Z × Z→ Z,

5. Two one-place functions⊖ 0, ⊖ 1 : Z → Z (“binary append zero” and “binary append one”);
these functions will be used for binary notation,

6. Ten one-place postfix functions

⊘ 0, ⊘1, ⊘ 2, ⊘3, ⊘ 4, ⊘5, ⊘ 6, ⊘ 7, ⊘8, ⊘ 9 : Z→ Z

(“decimal append zero”, ...,“decimal append nine”); thesefunctions will be used for decimal
notation.

The “binary append” and “decimal append” functions can be viewed as instantiations of more gen-
eral two-place functions “binary digit append” and “decimal digit append”, but that would require
the introduction of sorts for bits (binary digits) and for digits (decimal digits). This is why we
instantiate such “digit append” functions per digit to unary functions.

We will usepostfix notationfor applications of the “digit append” functions, e.g.

(9⊘7)⊘5 and ((1⊖ 0)⊖ 0)⊖ 1

represent the decimal number 975, and the binary number 1001, respectively.

For the unary view normal the normal forms are those of the unary view on naturals, that is

0,S(0),S(S(0)), ...,

and all minus instances−t for each non-zero normal formt, e.g.−(S(S(0))). Similarly for the binary
view and for the decimal view, normal forms are obtained by extending the respective sets of normal
forms with−t for each such normal formt that differs from 0. Thus−((9⊘7)⊘5) is an example of
a normal form in decimal view, and so is−((1⊖ 0)⊖ 0)⊖ 1 in binary view.
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x+ 0 = x (1)

x+ S(y) = S(x+ y) (2)

x · 0 = 0 (3)

x · S(y) = (x · y) + x (4)

∧8
i=0 [ i′ = S(i) ] (5)

∧1
i=0 [ x⊖ i = (x · S(1))+ i ] (6)
∧9

i=0 [ x⊘ i = (x · S(9))+ i ] (7)

Table 2: Natural numbers in unary view (Nubd)

2 One ADT, three datatypes

An abstract datatype (ADT) may be understood as the isomorphism class of its instantiations which
are datatypes. The datatypes considered in [1] are so-called canonical term algebras which means
that carriers are non-empty sets of closed terms which are closed under taking subterms.

2.1 Unary view

Table 2 provides a DDRS for the natural numbers. Minus and predecessor are absent in this datatype.
Successor terms, that is expressions involving zero and successor only, serve as normal forms.

In Table 3 an algebraic specification is provided of the integers numbers with constants zero and
one, and with successor, predecessor, addition, and multiplication. This specification extends that of
Table 2. We notice that we do not need equations for rewriting

−x · y

because multiplication is defined by recursion on its right-argument, and that is why equation (21)
is sufficient, and why addition is defined by recursion on both its arguments and also requires (18).

In Table 4 one finds a listing of equations that are true in the datatypeZubd that is specified by
the DDRS of Table 3. This ensures that these rewrite rules (viewed as equations) are semantic
consequences of the equations for commutative rings.

Binary notation and decimal notation are defined by expanding terms into successor terms. This
expansion involves a combinatorial explosion in size. Thatexplosion renders the specification in
Tables 2 and 3 irrelevant as term rewrite systems from which an efficient implementation can be
generated.

In the next section we will consider adaptations of this specification, where normal forms are in
binary notation and in decimal notation respectively. Specifications become far more lengthy and
involved, but as a DDRS the quality improves because normal forms are smaller and are reached in
fewer rewriting steps.
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−0 = 0 (8)

−(−x) = x (9)

P(0) = −S(0) (10)

P(S(x)) = x (11)

P(−x) = −S(x) (12)

S(−(S(x))) = −x (13)

x+ 0 = x (14)

0+ x = 0 (15)

x+ S(y) = S(x+ y) (16)

S(x) + y = S(x+ y) (17)

(−x) + (−y) = −(x+ y) (18)

x · 0 = 0 (19)

x · S(y) = (x · y) + x (20)

x · (−y) = −(x · y) (21)

∧ 8
i=0 [ i′ = S(i) ] (22)

∧1
i=0 [ x⊖ i = (x · S(1))+ i ] (23)
∧9

i=0 [ x⊘ i = (x · S(9))+ i ] (24)

Table 3: Integers in unary view (Zubd)

x+ (y+ z) = (x+ y) + z (25)

x+ y = y+ x (26)

x+ 0 = x (27)

x+ (−x) = 0 (28)

(x · y) · z= x · (y · z) (29)

x · y = y · x (30)

1 · x = x (31)

x · (y+ z) = (x · y) + (x · z) (32)

x⊖0 = x+ x (33)

x⊖1 = (x+ x) + 1 (34)

Table 4: Equations valid inZubd, where (25)− (32) axiomatize commutative rings
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∧1
i=0 [0⊖ i = i ] (35)

S(0) = 1 (36)

S(1) = 1⊖ 0 (37)

S(x⊖ 0) = x⊖ 1 (38)

S(x⊖ 1) = S(x)⊖ 0 (39)

x+ 0 = x (40)

0+ x = x (41)

x+ 1 = S(x) (42)

1+ x = S(x) (43)

(x⊖ 0)+ (y⊖ 0) = (x+ y)⊖ 0 (44)

(x⊖ 0)+ (y⊖ 1) = (x+ y)⊖ 1 (45)

(x⊖ 1)+ (y⊖ 0) = (x+ y)⊖ 1 (46)

(x⊖ 1)+ (y⊖ 1) = S(x+ y)⊖ 0 (47)

x · 0 = 0 (48)

x · 1 = x (49)
∧ 1

i=0 [ x · (y⊖ i) = (x · y)⊖ 0+ i ] (50)

∧8
i=0 [ i′ = S(i) ] (51)

∧ 9
i=0 [ x⊘ i = (x · S(9))+ i ] (52)

Table 5: Naturals in binary view (Nbud)

2.2 Binary view

In Table 5 a specification for a binary view of natural numbersis displayed. In the binary view natural
numbers are identified with normal forms in binary notation.The specification has a canonical term
algebraNbud which is isomorphic to the canonical term algebraNubd of the specification in Table 2.

In Table 6 minus and predecessor are introduced and the transition from a signature for natural
numbers to a signature for integers is made. We attempt to provide some intuition for equations (63)
and (64):

−(x)⊖ i

should be equal to−(x⊖0)+ i, so−(x)⊖ 0 = −(x⊖ 0), and (−x)⊖ 1 is determined by−(P(x⊖ 0))
(57)
=

−(P(x)⊖ 1).

Equations (61) and (62) can be explained in a similar way:S(−(x⊖ 0)) should be equal to
−(P(x⊖ 0)) = −(P(x)⊖ 1), andS(−(x⊖ 1)) should be equal to−(P(x⊖ 1)) = −(x⊖ 0).
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−0 = 0 (53)

−(−x) = x (54)

P(0) = −1 (55)

P(1) = 0 (56)

P(x⊖ 0) = P(x)⊖ 1 (57)

P(x⊖ 1) = x⊖ 0 (58)

P(−x) = −S(x) (59)

S(−1) = 0 (60)

S(−(x⊖ 0)) = −(P(x)⊖ 1) (61)

S(−(x⊖ 1)) = −(x⊖ 0) (62)

(−x)⊖ 0 = −(x⊖ 0) (63)

(−x)⊖ 1 = −(P(x)⊖ 1) (64)

x+ (−1) = P(x) (65)

(−1)+ x = P(x) (66)

(x⊖ 0)+ (−(y⊖ 0)) = (x+ (−y))⊖ 0 (67)

(x⊖ 0)+ (−(y⊖ 1)) = P(x+ (−y))⊖ 1 (68)

(x⊖ 1)+ (−(y⊖ 0)) = (x+ (−y))⊖ 1 (69)

(x⊖ 1)+ (−(y⊖ 1)) = (x+ (−y))⊖ 0 (70)

(−(y⊖ 0))+ (x⊖ 0) = (x+ (−y))⊖ 0 (71)

(−(y⊖ 0))+ (x⊖ 1) = (x+ (−y))⊖ 1 (72)

(−(y⊖ 1))+ (x⊖ 0) = P(x+ (−y))⊖ 1 (73)

(−(y⊖ 1))+ (x⊖ 1) = (x+ (−y))⊖ 0 (74)

(−x) + (−y) = −(x+ y) (75)

x · (−y) = −(x · y) (76)

Table 6: Additional rules for integers in binary view (Zbud), continuation of Table 5
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∧9
i=0 [0⊘ i = i ] (77)

∧8
i=0 [ S(i) = i′ ] (78)

S(9) = 1⊘0 (79)
∧ 8

i=0 [ S(x⊘ i) = x⊘ i′ ] (80)

S(x⊘ 9) = S(x)⊘0 (81)

x+ 0 = x (82)

0+ x = x (83)
∧8

i=0 [ x+ i′ = S(x) + i ] (84)
∧8

i=0 [ i′ + x = S(x) + i ] (85)
∧9

i=0 [
∧ 9

j=0 [ (x⊘ i) + (y⊘ j) = ((x+ y)⊘ i) + j ]] (86)

x · 0 = 0 (87)
∧8

i=0 [ x · i′ = (x · i) + x] (88)
∧ 9

i=0 [ x · (y⊘ i) = (x · y)⊘0+ (x · i) ] (89)

∧ 1
i=0 [ x⊖ i = (x+ x) + i ] (90)

Table 7: Natural numbers with addition and multiplication in decimal view (Ndub)

2.3 Decimal view

In Table 7 a DDRS for a decimal view of natural numbers is displayed. Of course, successor terms
are to be rewritten in this case.

Table 9 contains an extension of the same DDRS to the case of integers. In order to cope with
terms of the form (−x)⊘ i with i = 1, ..., 9 we define

i⋆

as the “10 minus” digit ofi in Table 8.

The (twenty) equations captured by (99)− (102) can be explained in a similar fashion as was done
in the previous section for (61)− (64): for example,

(−5)⊘3

should be equal to−(5⊘0) + 3 = −(4⊘7), and this follows immediately from the appropriate
equation in (102).
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1⋆ ≡ 9 4⋆ ≡ 6 7⋆ ≡ 3

2⋆ ≡ 8 5⋆ ≡ 5 8⋆ ≡ 2

3⋆ ≡ 7 6⋆ ≡ 4 9⋆ ≡ 1

Table 8: “10 minus” subtraction for decimal digits

−0 = 0 (91)

−(−x) = x (92)

P(0) = −1 (93)
∧8

i=0 [ P(i′) = i ] (94)

P(x⊘ 0) = P(x)⊘9 (95)
∧8

i=0 [ P(x⊘ i′) = x⊘ i ] (96)

P(−x) = −S(x) (97)

∧8
i=0 [ S(−i′) = −i ] (98)

S(−(x⊘0)) = −(P(x)⊘9) (99)
∧8

i=0 [ S(−(x⊘ i′)) = −(x⊘ i) ] (100)

(−x)⊘0 = −(x⊘0) (101)
∧ 9

i=1 [ (−x)⊘ i = −(P(x)⊘ i⋆) ] (102)

∧8
i=0 [ x+ (−i′) = P(x) + (−i) ] (103)
∧8

i=0 [ (−i′) + x = P(x) + (−i) ] (104)
∧9

i=0 [
∧ 9

j=0 [ (x⊘ i) + (−(y⊘ j)) = ((x+ (−y))⊘ i) + (− j) ]] (105)
∧9

i=0 [
∧ 9

j=0 [ (−(y⊘ j)) + (x⊘ i) = ((x+ (−y))⊘ i) + (− j) ]] (106)

(−x) + (−y) = −(x+ y) (107)

x · (−y) = −(x · y) (108)

Table 9: Integers in decimal view (Zdub), continuation of Table 7 (and usingi⋆ from Table 8)
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3 Concluding remarks

When specifying a datatype of integers as an extension of thenaturals, the unary view leads to
satisfactory results. For the binary view and the decimal view corresponding extensions are possi-
ble (and provided), but the resulting rewrite systems are atfirst sight significantly less concise and
comprehensible. Some further remarks:

1. The three DDRS’s (datatype defining rewrite systems) for integers given in the paper each
produce an extension datatype for a datatype for the naturalnumbers. An initial algebra spec-
ification of the datatype of integers is obtained from any of the DDRS’s given in [1] by

• taking the reduct to the signature involving unary, binary,and decimal notation only,

• removing rewrite rules involving operators for hexadecimal notation,

• expanding the signature with a unary additive inverse and a unary predecessor function,

• adding rewrite rules (in equational form) that allow for theunique normalization of
closed terms involving the minus sign,

while making sure that these rewrite rules (viewed as equations) are semantic consequences
of the equations for commutative rings.

2. Syntax for hexadecimal notation has been omitted becausethat usually plays no role when
dealing with integers. It is an elementary exercise to incorporate hexadecimal notation in the
specifications below.

3. The DDRS’s for the binary view and the decimal view below are hardly intelligible unless one
knows that the objective is to construct a commutative ring.

4. Understanding the concept of a commutative ring can be expected only from a person who has
already acquired an understanding of the structure of integers and who accepts the concept of
generalization of a structure to a class of structures sharing some but not all of its properties.

In other words the understanding that a DDRS for the integersis provided in the binary view
and in the decimal view can only be communicated to an audience under the assumption that a
reliable mental picture of the integers already exists in the minds of members of the audience.
This mental picture, however, can in principle be communicated by taking notice of the DDRS
for the unary view first.

This conceptual (near) circularity may be nevertheless be considered a significant weakness
of the approach of defining (and even introducing) the integers as an extension of naturals by
means of rewriting.

This paper is about the design (by means of trial and error) ofdatatype defining rewrite systems rather
than about the precise analysis of the various rewrite systems per se. Termination proofs, Knuth-
Bendix completion, full confluence proofs, or merely groundconfluence proofs, are postponed until
a stable design direction has been developed for a sequence of datatypes.

What matters in addition to readability and conciseness of each DDRS is at this stage a reasonable
confidence that each of these rewrite systems is strongly terminating and ground confluent and that
the intended normal forms are reached by means of rewriting.
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A survey of equational algebraic specifications for abstract data types is provided in [8]. In [4]
one finds the general result that computable abstract data types can be specified by means of speci-
fications which are confluent and strongly terminating term rewriting systems. Some general results
on algebraic specifications can be found in [6, 3, 7]. More recent applications of equational specifi-
cations can be found in [5].
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