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Abstract

Natural numbers with zero, one, successor, addition antipticsition, constitute a classic ex-
ample of an abstract datatype amenable for equationalliaitjebra specification. Datatype defin-
ing rewrite systems provide a specification which at the sameeis a complete, that is confluent and
strongly terminating, rewrite system thereby providingame for automatic implementation. Syn-
tax for unary, binary, decimal, and hexadecimal notatioimtisoduced and corresponding rewrite
systems are designed.

Keywords and phrase€quational specification, initial algebra, term rewritsygtem, abstract data
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1 Introduction

I will present four algebraic specifications of the same r@lgstdatatype of natural numbers. Each of
these specifications comprises a complete, that is grounftiemt and strongly terminating, rewriting
system. A complete rewriting system serving as a specificdtir an abstract data type will be called
a Complete Datatype Defining Rewrite System (CDDRS).

The concept of datatype is understood as being more spduificthat of an abstract datatype in
the following sense: in a datatype entities are represameégliely by preferred closed expressions
(normal forms) whereas an abstract datatype, being an igdnson class of algebras, entities are
represented by classes of expressions.

These specifications incorporatéfdrent views on the same abstract data type. The unary view
provides a term rewriting system where terms in unary nmtasierve as normal forms. The unary
view also provides a semantic specification of binary notatf decimal notation, and of hexadecimal
notation. The three logarithmic notations were modifiedtw conventional notations in such a way
that syntactic confusion between these notations caniset ar

In the binary view normal forms are natural number expressia binary notation. Having bi-
nary expressions as normal forms excludes having termsaryurotation, in decimal notation, or in
hexadecimal notation as normal forms.

| also specify the natural numbers in decimal view with a CCEYrwving normal forms in decimal
notation, and finally a CDDRS is given for a hexadecimal viewnatural numbers.



0=1 5=6 A =B
1'=2 6=7 B =C
2 =3 7=8 C'=D
I =4 8§=9 D'=E
4 =5 9=A E=F

11

Table 1: Enumeration of decimibbxadecimal digits

Motivation

The motivation for this work is that it can serve as a basisfiiother development in a variety of
directions. The following objectives can be mentioned:

1.2

Development of arithmetical datatypes for integers, foas, and rationals.

Development of a precise definition of fractions, a seeryimgdll-know notion, that is mostly
dealt with in an unprecise manner. Such a definition mustaidably be based on an approach
to natural numbers and integers.

Development of the foundations of an initial part of (potely innovative) teaching methods
for elementary mathematics based on term rewriting andygada.

Philosophical and pragmatic analysis of the concept of arabhumber.

Conceptual analysis of the notion of a secret key (undedsdsa natural number).

Notational conventions

Digits are 01,2,3,4,5,6,7,89,A,B,C,D, E andF. Digits are enumerated in precisely this order.
The ordering is:

0<1<2<3<4<5<6<7<8<9<A<B<C<D<E<F

For the digits 01,2, 3,4,5,6, 7,8, A, B,C, D, E we denote with’ the successor digit afin the given
enumeration. This is specified formally in Table 1.

FurtherA{" [t =r], withn,me {0,1,2,3,4,5,6,7,8,9, A B,C,D, E, F}andn < mrepresents the
set of rewrite rules = r with i instantiated fronm to and includingm.

1.3

A signature for natural numbers

The signaturé&yy has the following elements:

1.

SortN,



2. constants 0 and 1,

3. two place functions,- : Nx N — N,

4. (for unary notation:) a one place functién N — N,

5. (for binary notation:) two one place function®0,-61:N — N,

6. (for decimal notation:) ten one-place functiengo, ...,— 29 : N — N,

7. (for hexadecimal notation:) sixteen one-place fundie® 0, ...,—®F : N — N.

Unary number terms have the form; $10), S(S(0)), ..., for such terms brackets are often omit-
ted: 0S0,S90,.... Binary number terms (intended normal forms) have the fodpi; 160,161,
(1e0)e0... . In binary number terms like (€& 0)e 0)o 1 brackets and append operators are usually
omitted, thus obtaining 1001 as a representation of thdrtdgcnumber 9.

In decimal number terms like ((®7) @ 5) @ 0 brackets and composition tokens are usually omitted,
thus obtaining 9750 with its usual meaning. Similarly in dé&cimal notation ((3 B) ® F) ® 7 will be
abbreviated to BF7. When needed disambiguation between abbreviated vergfdsinary, decimal,
and hexadecimal notation may be realized by means of splscri refer to [1] for an account of
natural number notations and their disambiguation.

1.4 About abstract data types and equational specifications

A survey of equational algebraic specifications for abstiata types is provided in [13]. In [9] one

finds the general result that computable data types can lodfisdeby means of specifications which
are confluent and strongly terminating term rewriting systeln other words: for every computable
abstract datatype there exists a complete datatype defminge system (CDDRS). The result makes
use of the possibility to introduce auxiliary functions.

Some general theory on algebraic specifications is foun@lin§, 12]. An example of equational
specification in the setting of many-valued logics is givef], and several more recent applications
of equational specifications are found in [3, 4, 5, 7, 10].

1.5 RNNs and PRNNs

The predicate (property) of an entity of its being a naturahber is supposed to be applicable to
a range of informal entities. In Paragraph 3.3 we considemtestion why 23 is a natural number
(assuming it is).

In order to strengthen the language used to discuss “naturaberhood” | will make use of the
following predicates and abbreviations for these:

e NN(X): xis a natural number.
e RNN(X): xis a representation of a natural number.

e PRNN(): xis a preferred representation of a natural number.



X+0=x (2)

X+ S(y) = S(X+Y) (2)
x-0=0 3)
X-S(y) = (X-y) +x 4
Aol = S()] (5)
Aio[xei = (x-S(1)) +i] (6)
/\igzo[x®i=(X-S(9))+i] @)
Afo[x®i = (x-S(F)) +i] (8)

Table 2: Natural numbers in unary viei (g

I will assume that being comfortable with NN(23) and simitesertions is a necessity for any
teacher of elementary mathematics. Each explanation afrib@ogy of natural numbers that must
portray NN(23) as false (in essence) rather than as truéesrpaactical problems because a question
like: “which of the following natural numbers is larger, 37389?” should not be rejectedfchands
simply on the ground that 37 or 389 cannot qualify as a naturaiber.

2 One abstract datatype, four datatypes

Following [8, 9] an abstract datatype may be understood aisanorphism class of single-sorted
or many sorted algebras. The instantiations of an abstegatype, which are (concrete rather than
abstract) datatypes. We will consider datatyNgsyn with normal forms in unary notatioiNygn with
normal forms in binary notatiorifgupn with normal forms in decimal notatioip,pg With normal
forms in decimal notation. These structures are isomorpimd for that reason constitute realizations
of the same abstract data type. In each case a datatype defmirite system is given.

2.1 Unary view

In Table 2 an algebraic specification is provided of the rtmumbers with constants zero and one,
and with successor, addition and multiplication. Succetsmns, that is expressions involving zero
and successor only serve as normal forms. We wil refer to duat@®ns contained in this table as
E(Nypan)-

Binary notation and decimal notation are explained by egpanterms into successor terms. This
expansion involves a combinatorial explosion in size. Ehqutlosion renders the specification in Ta-
ble 2 unfeasible as a term rewrite system from which an impl&ation can be generated.

Below we will consider adaptations of this specificationgndnormal forms are in binary notation
and in decimal notation respectively. Specifications bexfan more lengthy and involved, but as a
rewrite system the quality improves. We notice that whengihiisg a complete term rewrite system



AiolOei=i] (9)

S(0)=1 (10)
S(1)=1e0 (11)

S(xe0) = xe1 (12)
S(xel)=S(x)e0 (13)
X+0=x (14)

0+ x=x (15)
X+1=S(x) (16)

1+ x=S(x) (17)

(x60)+ (yo0)=(x+y)o0 (18)
xe0)+(yel) =(x+y)el (29)
xel)+ (ye0)=(x+y)el (20)
(xel)+(yel)=S(x+y)e0 (22)
x-0=0 (22)

X-1=x (23)

Aolx- (yei) = (x-y)©0) +i] (24)
Ao li” =S(0)] (25)
Aio[x@i = (x-S(9) +i] (26)
Ao [x®i = (x- S(F)) +i] (27)

Table 3: Natural numbers in binary viewqr)

to specify a given algebra a choice needs to be made regatdinmgprmal forms. Obviously normal
forms in unary notation, binary notation, and decimal riotaire mutually exclusive.

In the unary view natural numbers areS{0), S(S(0)), S(S(S(0))). ... . Brackets are often left
out, thus obtaining: (80,S0,SSP,.... When confronted witt6 SS 8 (or SSSS0) a reader will
recognize the expression as a natural number in successiomgthat is in unary view.

All other terms of the datatype are RNNs, though only the ssexclusively made from O arfdlare
in classified as PRNN (and for that reason in NN).

2.2 Binary view

In Table 3 primitives for binary notation of natural numbare specified by way of a complete term
rewriting system. In the binary view natural numbers araliified with normal forms in binary no-
tation. This datatype defining rewrite system produces #ta typelN,,q. We refer to the equations



ALol0oi=i] (28)

Aio[S@) =i'] (29)
S(9) =100 (30)

A& [S(x0i) = x0i'] (31)
S(x29)=S(X) @0 (32)
X+0=x (33)
0+x=x (34)
A&olx+i" = S(¥) +1] (35)
AE [+ x=S(x) +i] (36)
Aol Ao [(x@i) + (Yo )) = (x+Y) @i) + j]] (37)
x-0=0 (38)
Afolx-i" = (x-i) +x] (39)
ALolx- (yoi) = (x-Y)@0) + (x-1)] (40)
Abo[xei=(x+X) +i] (41)
AL [X@1 = (x- S(F) +1] (42)

Table 4: Natural numbers with addition and multiplicatiardecimal view Ngypn)

contained in this table @&(Npygp).

The specification defines a datatype which is isomorphicda#iatype defined by the specification
in Table 2. In other words both datatypes belong to the sarsiteaait datatype.

2.3 Decimal view

In Table 4 a CDDRS for a decimal view of natural numbers is ldigpd. For a decimal view one
intends to have decimal normal forms. We refer to the eqoationtained in this table &Ngyypr).

2.4 Hexadecimal view

In Table 5 a CDDRS for a hexadecimal view of natural numbedssislayed. We refer to the equations
contained in this table &8(Nhubg).-



/\iF:o[o®i =]
AfZo[S() =]
S(F)=1®0
AEo[S(x®i) = x®i']
S(X®F) =S(X)®0
X+0=x
O+Xx=X
AEo[x+1" =S(X) +i]
AEo[i" + x=S(X) +1i]
Aol Aol(x@i) + (y® j) = (x+Y)®i) + j]]
x-0=0
Afolx-i" = (x-1) +x]
Ao [X- (y®i) = ((x-Y)®0) + (- i)]

Abo[xei=(x+X) +i]

AL [x@i = (x-S(9))+i]

(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)

(53)
(54)
(55)

(56)

(57)

Table 5: Natural numbers with addition and multiplicatiarhiexadecimal viewiNnhgup)



2.5 Assessment of the four rewrite systems

We notice that the CDDRS’s provide equivalent algebraiac#jgations, that isl (X, E(Nupan) =
| (Zn, ENpugn) = (X, E(Ngubh) = 1(Zn, E(Nhupd). Once a choice for the format of normal forms
has been made four criteria remain for the design of a CDDRS:

1. readability (an informal notion)
2. conciseness (either measured in terms of the numberexf onlof the sum of their sizes),

3. dfectiveness (how fast can normal forms be found in terms ofbmrmof steps, given a known
reduction strategy),

4. number of auxiliary functions (auxiliary functions mag heeded when encoding fast algorithms
for multiplication in a CDDRS).

The unary view is readable, concise, and does without aunyifunctions. Its main deficiency is
that its algorithmic content is problematic in that, for urtg in binary notation or in decimal notation
normalization of terms of the fortr+ r takes a number of steps growing exponentially in the size of
andr. The other two specifications don’t have an algorithmic desficy though each is quite specific
for its own notation requiring conversions to and from othetations before and after each operation.
Conciseness and readability are less prominent with the RBE®forNp,dh, Nauph andNpypg.

3 What are natural numbers? A plurality of datatypes

At this stage one may wish to understand natural numberseasl#iments of the carrier of an ab-
stract data type. Unfortunately, abstract datatypes heorgorphism classes have no elements. Only
carriers of data types, that is carriers of instances ofabisiata types, have elements.

That is, we know of the structure of natural numbers as arratislatatype (Zy, E(Npugr), while
individual numbers are only observed as values in carriedlaia types. For the three dataypes at hand
these values areftierent closed terms over the common signakiire

For each base of a number system a rewrite system can be e@s$igning normal forms charac-
teristic of that base. However, for a bdsdifferent from 1, 2, 10, and 16 an extension of the syntax is
needed if a basie view on natural numbers is to be specified.

3.1 Notations for natural numbers

The proposal of this paper provides 8 notational schemesgrions, or formats, for natural numbers:
unary, binary, decimal, and hexadecimal format with andhetit brackets and operator symbols for
appending a digit.

These representations all share the virtue that for eadvidlugdl scheme numbers have unique rep-
resentation, which we take for a criterion that allows onsayp that such a representation (expression
for a natural number in a particular format) is a natural nembather than that it merely represents
one.



Nevertheless one may insist that say 2 is no more than a mgeg®n of a natural number. In the
light of our abstract datatype, and using only the bracketgaessions that number is a four-tuple:
((S(S(0)),160,2,2). In other words, taking our abstract datatype for the nhturmbers as a point
of departure numbers are quadruples of terms and at firgtdétisp the members of these quadruples
are merely representations of numbers or in other wordgiongof numbers, and such elements do
not constitute the numbers themselves.

3.2 Taking the notational variation seriously

If one insists to take unbracketed expressions into accasimtell a number (say 2) becomes an 8-
tuple: (S(S(0)),S0,160,10,2,2,2,2). At this stage the ordering in the tuple matters because it
helps to avoid confusion between the various logarithmtatians. Needless to say that when writing
a number in practice one prefers to provide only one of the begmof the 8-tuple. Moreover one
often prefers unbracketed decimal notation.

3.2.1 Advantages of the multiple datatype understanding afatural numbers

Understanding natural numbers as tuples of entities in geréim this case four) of datatypes is rea-
sonable and complies with ordinary practice. Here are sambdr comments about the practicality
of that proposal.

e The signaturey is a rather natural choice which unifies four notations faurel numbers:
unary, binary, decimal, and hexadecimal.

e For each notation unique normal forms provide canonicalesgntations of natural numbers.
One may indeed say that 5 is the first (leading, decimal) difj78 because only 578 is a
normal form representing that number.

e \We may state that 578 is a natural number although from aiptettpoint of view it is merely
a representation of a natural number. We notice:

— This use of the language is unproblematic because in itstkimdepresentation is unique
and the kind (decimal notation) can be derived from the iegr&ation.

— That 578 abbreviates (57) @ 8 creates no confusion, as the introduction of these bracket
and operator symbols follows in a unique and determinisaamer.

e By having multiple views dferent forms of algorithms for functions and of methods tordefi
functions can be supported.

3.2.2 Disadvantages of a multiple datatype understandingfmatural numbers
The multiple datatype understanding of natural numberahksst these weaknesses.
e The signatur&y is a rather arbitrary choice, both smaller and larger signestwill be useful for

the same purpose of identifying natural numbers. There fmatural” signature for the natural
numbers.

10



e We provide only four datatypes for the abstract datatypeaathwhile infinitely many such
datatypes might be relevant.

e In our setup a natural number, say 57, is identified with foifiedent terms (each of those
bringing with it its own simplified form) over the same sigmia which have the same meaning
in the abstract datatype specified by threfetlent specifications sharing the same signature.
This is plurality of terms denoting the same entity demaates merely an approximation of the
level of abstraction provided by an abstract datatype.

3.3 Why 23 is a natural number, and why 023 isn’'t?

The point of departure for a pragmatic philosophy of natarahbers based on a CDDRS portfolio
is my assumption that (the teaching of) elementary mathiema¢eds to make use of straightforward
terminology while still admitting some precise analysiwill consider in detail the text fragment “23”
and consider the question why 23 might qualify as a natunaiber.

Following the definitions in Paragraph 1.5, NN(23)23 is a natural number”. About NN(23) |
maintain the following viewpoints:

1. In school teaching one needs to be able to make asseiitierthése:

o NN(23),

e “23is a prime number” (and therefore NN(23)).

e “—23is aninteger”,

e “23+(-23)= 0, that's how addition works for natural numbers and thegratiwe versions”

2. It is of no use in a school setting if one can only say: “23 igsa&ural number in decimal
notation”.

3. If one states that “23 is a notation for a natural numb&e,dbvious reply is to ask: “for which
natural number”. And then the answer can't be 23 unless 28&wal number (and not merely
a notation for a natural number).

4. Notice that 23 is a dlierent natural number in hexadecimal notation (in fact 3)pagh it is
also the 22th successor of 1 in hexadecimal notation.

5. There s a sliding scale:

e we may want to say: 5 ; n—12 is a power series converging to a real number” rather than
“Ym1 % isaareal number”.
e But we will notdenythat n—12 is a real number” can be correctly asserted.

¢ If we hold that integers are defined as pairs of naturals (s#ing s for shift, s(a, b) for
a,b e N (thus representing + (—b)) then—23 is merely a notation fos(0, 23) !

1This viewpoint would be criticized by those who feel that foendational approach to mathematical structures which
induces the construction of integers as pairs of naturat®tisneant to have this pedantic influence on the use of “orgina
mathematical language.
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o If we write BV(“P = NP”) for “P = NP is a Boolean value”, many readers may object
to a claim of validity for the assertion BV(“RE NP”) on the grounds that it is unclear
which value is meant (that’s the famous open problem), acdulre “P= NP” is at best an
indirect specification of a Boolean value hardly deservimgdescription “expression for
a Boolean value”, let alone the simplified “Boolean value”.

6. The assertion NN(23) may be contrasted with NN(023). dlhbét it is not plausible to assert
both NN(23) and NN(023) at the same time. In a setting whetl B8 and 023 occur as
expressions denoting natural numbers, it is reasonablytthat 23 is a decimal representation
(of the number it denotes) without leading zeroes and thai®a representation with a leading
zero, while 23 is a simplified form of 023, with simplificatiomvolving the removal of leading
zeroes.

It is implausible to say that 23 is a natural number withouatdieg zeroes, and that 023 is
a natural number with leading zeroes. Natural numbers dwve that attribute, instead the
presence or absence of leading zeroes is a property of sgaéthomic number representations.

7. One may formalize the above argument about 23 and 023.d}aation leads to the following
implication: “if NN(23) then— NN(023)". By consequence “if NN(023) thenNN(23)".

In order to assert NN(23) one implicitly assumes notatiaraiventions that exclude 023. If
such conventions are absent than 23 advances no furthetottfaa status of a representation of
a natural number (RNN(23) in the notation of Paragraph 1.5).

Now one finds: “if (RNN(23) and RNN(023)) then NN(23)". Here it is implicitly assumed
that the condition RNN(23) and RNN(023) is evaluated in @ém@as context. Being equally true
escapes from two valued logic, and this asks for some rejpigras

One may advance further and write PRNN(w) for “w is a prefémepresentation of a natu-
ral number”. Clearly PRNN(w) implies RNN(w). Now PRNN(23)ambe assumed to imply
NN(23) but a less demanding interpretation is possiblenincase one finds: “if (RNN(23) and
- PRNN(23)) ther= NN(23)".

8. One may contemplate whether or not 23 is a natural numidee {anstead of being a natural
number) and 221 is also a natural number (but not a natural number valud)if483 = 22+1”
(assuming its truth) rests on the assumption that 23 ard 22e the same kind of entity. We
will hold that:

e 23 is a natural number and it is a natural number value as well.
e 22+1is a natural number because it denotes a natural number.

e 22+1is a natural number and it is not a natural number value ghole value of 221 is
a natural number.

e 22+1is a natural number form (NNF, form is assumed to be equival@gh expression).

o @ = 3%+ 32+ 22+ 1is arepresentation of 23 as a sum of four squares. Thistiasser
can be valid only if the actual form of an NNF matters and carelpgoperties that are not
universal for NNs.

e B=42+224+1+1+1isarepresentation of 23 as a sum of five squares. dawdg are
different representations (if a natural number as a sum of sgjuare

12



e a # B in arealistic sense. However in that same sense (as repatisan in terms of sums
ofsquares): 4+ 22+ 1+1+1=424+224+124+124+12=12+12+ 12+ 42+ 22,

¢ A difference between two NNFs is determined (accepted, founeedpin the context of
an objective of representational form. It is plausible tiiffierences between representa-
tional forms are defined within dedicated subclasses of NNBther words by merely
writing that # + 22 + 1+ 1+ 1 # 2- 10+ 3 we fail to indicate in what quality (property)
both expressions fier.

9. If we write ¢ = 23+ 23 = 46, ¢ will be considered a valid assertion by most readers¢ In
we find two diferent occurrences of 23 which are at the same time equak isathse that both
are natural numbers which, moreover, can only be the sameahaumbers. It appears that we
have an inconsistency.

In order to explain this case | propose that as soon as orts distussing occurrences of 23 one
needs to acknowledge that NN(23) is meant modulo “an argittecurrence of”. Thus NN(23)
can be rephrased as: each occurrence of 23 is an occurremoatfral number. In other words,
the meaning of NN(23) depends on the abstraction level atlwiie is considering the matter.
At a lower level of abstraction a filerent definition of NN(23) may be needed.

10. Of course one may introduce an equivaleaamn decimal notations with and without leading
zeroes so that 2& 023, and subsequently work modulo that equivalence. Homyveeng
S0 creates a situation in which the assertion that remowadihg zeroes turns 023 into 23 is
wrong because both are equal modsland there is no such thing as leading zeroes modulo this
equivalence.

4 Concluding remarks

We have proposed four datatype defining rewrite systemssfanany diferent views on the natural
numbers. These views are instances of the same abstratyjddiar which each of the rewrite systems
constitutes an equational initial algebra specificatioihatsame time.

By considering a limited plurality of datatypes instaritigtthe same underlying abstract datatype
we determine intermediate abstractions for the indivishadliral numbers, lying in between the num-
ber as an entity in a specific datatype and the abstractidrab&ntity in an abstract datatype.

Acknowledgement. Alban Ponse has transformed the paper from version 2 toorefithereby
making use of improved formatting and notations that wekelbged in our joint sequel to this paper.
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