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Abstract

Natural numbers with zero, one, successor, addition and multiplication, constitute

a classic example of an abstract datatype amenable for equational initial algebra spec-

ification. Datatype defining rewrite systems provide a specification which at the same

time is a complete, that is confluent and strongly terminating, rewrite system thereby

providing means for automatic implementation. Syntax for unary, binary, decimal, and

hexadecimal notation is introduced and corresponding rewrite systems are designed.
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1 Introduction

I will present four algebraic specifications of the same abstract datatype of natural numbers.
Each of these specifications comprises a complete, that is ground confluent and strongly ter-
minating, rewriting system. A complete rewriting system serving as a specification for an
abstract data type will be called a Complete Datatype Defining Rewrite System (CDDRS).

The concept of datatype is understood as being more specific than that of an abstract
datatype in the following sense: in a datatype entities are represented uniquely by preferred
closed expressions (normal forms) whereas an abstract datatype, being an isomorphism class
of algebras, entities are represented by classes of expressions.

These specifications incorporate different views on the same abstract data type. The unary
view provides a term rewriting system where terms in unary notation serve as normal forms.
The unary view also provides a semantic specification of binary notation, of decimal nota-
tion, and of hexadecimal notation. The three logarithmic notations were modified w.r.t. to
conventional notations in such a way that syntactic confusion between these notations cannot
arise.

In the binary view normal forms are natural number expressions in binary notation. Hav-
ing binary expressions as normal forms excludes having terms in unary notation, in decimal
notation, or in hexadecimal notation as normal forms.

I also specify the natural numbers in decimal view with a CDDRS having normal forms in
decimal notation, and finally a CDDRS is give for a hexadecimal view on natural numbers.

1.1 Motivation

The motivation for this work is that it can serve as a basis for further development in a variety
of directions. The following objectives can be mentioned:
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• Development of arithmetical datatypes for integers, fractions, and rationals. I

• Development of a precise definition of fractions, a seemingly well-know notion, that is
mostly dealt with in an unprecise manner. Such a definition must unavoidably be based
on an approach to natural numbers and integers.

• Development of the foundations of an initial part of (potentially innovative) teaching
methods for elementary mathematics based on term rewriting and datatypes.

• Philosophical and pragmatic analysis of the concept of a natural number.

• Conceptual analysis of the notion of a secret key (understood as a natural number).

1.2 Notational conventions

Digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F . Digits are enumerated in precisely this
order. The ordering is: 0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < A < B < C < D < E < F

For the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, A, B, C, D, E we denote with i′ the successor digit of i in
the given enumeration. This is specified formally in Table 1.

Further
∧i=m

i=n [t = r], with n, m ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} and n = m or
n < m. represents the set of rewrite rules t = r with i instantiated from n to and including
m.

1.3 A signature for natural numbers

The signature ΣN has the following elements:

1. sort N,

2. constants 0 and 1,

3. two place functions +, · : N × N → N,

4. (for unary notation:) a one place function S : N → N,

5. (for binary notation:) two one place functions −⊖ 0,−⊖ 1 : N × N → N,

6. (for decimal notation:) ten one-place functions −⊘ 0, ...,−⊘9 : N → N,

7. (for hexadecimal notation:) sixteen one-place functions −⊗ 0, ...,−⊗F : N → N.

Unary number terms have the form: 0, S(0), S(S(0)), .., for such terms brackets are of-
ten omitted: 0, S0, SS0, ... Binary number terms (intended normal forms) have the form:
0, 1, 1⊖ 0, 1⊖ 1, (1⊖ 0)⊖ 0.... In binary number terms like ((1⊖ 0)⊖ 0)⊖ 1 brackets and ap-
pend operators are usually omitted, thus obtaining 1001 as a representation of the (decimal)
number 9.

In decimal number terms like ((9⊘ 7)⊘ 5)⊘ 0 brackets and composition tokens are usu-
ally omitted, thus obtaining 9750 with its usual meaning. Similarly in hexadecimal notation
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((3⊗B)⊗F )⊗ 7 will be abbreviated to 3BF7. When needed disambiguation between ab-
breviated versions of binary, decimal, and hexadecimal notation may be realized by means of
subscripts. I refer to [11] for an account of natural number notations and their disambiguation.

1.4 About abstract data types and equational specifications

A survey of equational algebraic specifications for abstract data types is provided in [12]. In [7]
one finds the general result that computable data types can be specified by means of specifica-
tions which are confluent and strongly terminating term rewriting systems. In other words: for
every computable abstract datatype there exists a complete datatype defining rewrite system
(CDDRS). The result makes use of the possibility to introduce auxiliary functions.

Some general theory on algebraic specifications is found in [9, 6, 10]. An example of equa-
tional specification in the setting of many-valued logics is given in [1], and several more recent
applications of equational specifications are found in [?, 4, 5, 8].

1.5 RNNs and PRNNs

The predicate (property) of an entity of its being a natural number is supposed to be applicable
to a range of informal entities. In Paragraph 3.3 we consider the question why 23 is a natural
number (assuming it is).

In order to strengthen the language used to discuss “natural numberhood” I will make use
of the following predicates and abbreviations for these:

• NN(x): x is a natural number.

• RNN(x): x is a representation of a natural number.

• PRNN(x): x is a preferred representation of a natural number.

I will assume that being comfortable with NN(23) and similar assertions is a necessity for
any teacher of elementary mathematics. Each explanation of the ontology of natural numbers
that must portray NN(23) as false (in essence) rather than as true creates practical problems
because a question like: “which of the following natural numbers is larger, 37 of 389?” should
not be rejected off hands simply on the ground that 37 or 389 cannot qualify as a natural
number.

2 One abstract datatype, four datatypes

Following [6, 7] an abstract datatype may be understood as an isomorphism class of single-
sorted or many sorted algebras. The instantiations of an abstract datatype, which are (concrete
rather than abstract) datatypes. We will consider datatypes Nubdh with normal forms in unary
notation, Nbudh with normal forms in binary notation, Ndubh with normal forms in decimal
notation, Nhubd with normal forms in decimal notation. These structures are isomorphic, and
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for that reason constitute realizations of the same abstract data type. In each case a datatype
defining rewrite system is given.

2.1 Unary view

In Table 2 an algebraic specification is provided of the natural numbers with constants zero
and one, and with successor, addition and multiplication. Successor terms, that is expres-
sions involving zero and successor only serve as normal forms. We wil refer to the equations
contained in this table as E(Nubdh).

Binary notation and decimal notation are explained by expanding terms into successor
terms. This expansion involves a combinatorial explosion in size. That explosion renders the
specification in Table 2 unfeasible as a term rewrite system from which an implementation
can be generated.

Below we will consider adaptations of this specification, where normal forms are in binary
notation and in decimal notation respectively. Specifications become far more lengthy and
involved, but as a rewrite system the quality improves. We notice that when designing a
complete term rewrite system to specify a given algebra a choice needs to be made regarding
the normal forms. Obviously normal forms in unary notation, binary notation, and decimal
notation are mutually exclusive.

In the unary view natural numbers are 0, S(0), S(S(0)), S(S(S(0))), .... Brackets are often
left out, thus obtaining: 0, S0, SS0, SSS0, .... When confronted with SSSS0 (or SSSS0) a
reader will recognize the expression as a natural number in successor notation, that is in
unary view.

All other terms of the datatype are RNNs, though only the terms exclusively made from 0
and S are in classified as PRNN (and for that reason in NN).

2.2 Binary view

In Table 3 primitives for binary notation of natural numbers are specified by way of a complete
term rewriting system. In the binary view natural numbers are identified with normal forms
in binary notation. This datatype defining rewrite system produces the data type Nbud. We
refer to the equations contained in this table as E(Nbudh).

The specification defines a datatype which is isomorphic to the datatype defined by the
specification in Table 2. In other words both datatypes belong to the same abstract datatype.

2.3 Decimal view

In Table 4 and Table 5 a CDDRS for a decimal view of natural numbers is displayed. For a
decimal view one intends to have decimal normal forms. We refer to the equations contained
in this table as E(Ndubh).
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0′ ≡ 1

1′ ≡ 2

2′ ≡ 3

3′ ≡ 4

4′ ≡ 5

5′ ≡ 6

6′ ≡ 7

8′ ≡ 9

9′ ≡ A

A′ ≡ B

B′ ≡ C

C′ ≡ D

D′ ≡ E

E′ ≡ F

Table 1: Enumeration of decimal/hexadecimal digits

x + 0 = x (1)

x + S(y) = S(x + y) (2)

x · 0 = 0 (3)

x · S(y) = (x · y) + x (4)

i=E∧

i=0

[i′ = S(i)] (5)

x⊖ 0 = S(1) · x (6)

x⊘ 0 = S(9) · x (7)

x⊗ 0 = S(F ) · x (8)

x⊖ 1 = S(x⊖ 0) (9)

i=9∧

i=1

[(x⊘ i = (x⊘ 0) + i] (10)

i=F∧

i=1

[(x⊗ i = (x⊗ 0) + i] (11)

Table 2: Natural numbers in unary view (Nubdh)
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0⊖ 0 = 0 (12)

0⊖ 1 = 1 (13)

S(0) = 1 (14)

S(1) = 1⊖ 0 (15)

S(x⊖ 0) = x⊖ 1 (16)

S(x⊖ 1) = S(x)⊖ 0 (17)

x + 0 = x (18)

0 + x = x (19)

x + 1 = S(x) (20)

1 + x = S(x) (21)

(x⊖ 0) + (y ⊖ 0) = (x + y)⊖ 0 (22)

(x⊖ 0) + (y ⊖ 1) = (x + y)⊖ 1 (23)

(x⊖ 1) + (y ⊖ 0) = (x + y)⊖ 1 (24)

(x⊖ 1) + (y ⊖ 1) = ((x + y) + 1)⊖ 0 (25)

x · 0 = 0 (26)

0 · x = 0 (27)

x · 1 = x (28)

1 · x = x (29)

(x⊖ 0) · y = (x · y)⊖ 0 (30)

x · (y ⊖ 0) = (x · y)⊖ 0 (31)

(x⊖ 1) · y = (x · y)⊖ 0 + y (32)

x · (y ⊖ 1) = (x · y)⊖ 0 + x (33)

i=E∧

i=0

[i′ = S(i)] (34)

x⊘ 0 = S(9) · x (35)

x⊗ 0 = S(F ) · x (36)

i=9∧

i=1

[x⊘ i = (x⊘ 0) + i] (37)

i=F∧

i=1

[(x⊗ i = (x⊗ 0) + i] (38)

Table 3: Natural numbers in binary view (Nbudh)
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x + 0 = x (39)

0 + x = x (40)

i=8∧

i=1

[i + 1 = i′] (41)

9 + 1 = 1⊘ 0 (42)

i=E∧

i=9

[i′ = i + 1] (43)

i=8∧

i=1

[x + i′ = (x + i) + 1] (44)

i=8∧

i=1

[i′ + x = (x + i) + 1] (45)

i=8∧

i=0

[(x⊘ i) + 1 = x⊘ i′] (46)

i=8∧

i=0

[1 + (x⊘ i) = x⊘ i′] (47)

(x⊘ 9) + 1 = (x + 1)⊘ 0 (48)

1 + (x⊘ 9) = (x + 1)⊘ 0 (49)

i=9∧

i=0

j=9∧

j=0

[(x⊘ i) + (y ⊘ j) = (((x + y)⊘ i) + j] (50)

i=9∧

i=0

[0⊘ i = i] (51)

S(x) = x + 1 (52)

x⊖ 0 = S(1) · x (53)

x⊖ 1 = (x⊖ 0) + 1 (54)

x⊗ 0 = S(F ) · x (55)

i=F∧

i=1

[(x⊗ i = (x⊗ 0) + i] (56)

Table 4: Natural numbers with addition in decimal view (Ndubh first part)
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x · 0 = 0 (57)

0 · x = 0 (58)

i=8∧

i=0

[i′ · x = (i · x) + x] (59)

i=8∧

i=0

[x · i′ = (x · i) + x] (60)

i=9∧

i=0

[(x⊘ i) · y = (x · y)⊘ 0 + (i · y)] (61)

i=9∧

i=0

[x · (y⊘ i) = (x · y)⊘ 0 + (x · i)] (62)

Table 5: Multiplication in decimal view (Ndubh continued)

2.4 hexadecimal view

In Table 6 and Table 7 a CDDRS for a hexadecimal view of natural numbers is displayed. We
refer to the equations contained in both tables as E(Nhubd).

2.5 Assessment of the four rewrite systems

We notice that the CDDRS’s provide equivalent algebraic specifications, that is I(ΣN, E(Nubdh) ≃
I(ΣN, E(Nbudh) ≃ I(ΣN, E(Ndubh) ≃ I(ΣN, E(Nhubd). Once a choice for the format of normal
forms has been made four criteria remain for the design of a CDDRS:

1. readability (an informal notion)

2. conciseness, (either measured in terms of the number of rules or of the sum of their
sizes),

3. effectiveness (how fast can normal forms be found in terms of numbers of steps, given a
know reduction strategy),

4. number of auxiliary functions (auxiliary functions may be needed when encoding fast
algorithms for multiplication in a CDDRS).

The unary view is readable, concise, and does without auxiliary functions. Its main defi-
ciency is that it algorithmic content is problematic in that, for inputs in binary notation or
in decimal notation normalization of terms of the form t + r takes a number of steps growing
exponentially in the size of t and r. The other two specifications don’t have an algorith-
mic deficiency though each is quite specific for its own notation requiring conversions to and
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x + 0 = x (63)

0 + x = x (64)

i=E∧

i=1

[i + 1 = i′] (65)

F + 1 = 1⊗ 0 (66)

i=E∧

i=1

[x + i′ = (x + i) + 1] (67)

i=E∧

i=1

[i′ + x = (x + i) + 1] (68)

i=E∧

i=0

[(x⊗ i) + 1 = x⊗ i′] (69)

i=E∧

i=0

[1 + (x⊗ i) = x⊗ i′] (70)

(x⊗F ) + 1 = (x + 1)⊗ 0 (71)

1 + (x⊗F ) = (x + 1)⊗ 0 (72)

i=F∧

i=0

j=F∧

j=0

[(x⊗ i) + (y ⊗ j) = (((x + y)⊗ i) + j] (73)

i=F∧

i=0

[0⊗ i = i] (74)

S(x) = x + 1 (75)

x⊖ 0 = S(1) · x (76)

x⊖ 1 = (x⊖ 0) + 1 (77)

x⊘ 0 = S(9) · x (78)

i=9∧

i=1

[(x⊘ i = (x⊘ 0) + i] (79)

Table 6: Natural numbers with addition in hexadecimal view (Nhdub first part)
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x · 0 = 0 (80)

0 · x = 0 (81)

i=F∧

i=0

[i′ · x = (i · x) + x] (82)

i=F∧

i=0

[x · i′ = (x · i) + x] (83)

i=F∧

i=0

[(x⊗ i) · y = (x · y)⊗ 0 + (i · y)] (84)

i=F∧

i=0

[x · (y⊗ i) = (x · y)⊗ 0 + (x · i)] (85)

Table 7: Multiplication in hexadecimal view (Nhdub continued)

from other notations before and after each operation. Conciseness and readability are less
prominent with the CDDRSs for Nbudh, Ndubh, and Nhubd.

3 What are natural numbers? A plurality of datatypes

At this stage one may wish to understand natural numbers as the elements of the carrier of
an abstract data type. Unfortunately, abstract datatypes being isomorphism classes have no
elements. Only carriers of data types, that is carriers of instances of abstract data types, have
elements.

That is, we know of the structure of natural numbers as an abstract datatype I(ΣN, E(Nbudh)),
while individual numbers are only observed as values in carriers of data types. For the three
dataypes at hand these values are different closed terms over the common signature ΣN.

For each base of a number system a rewrite system can be designed having normal forms
characteristic of that base. However, for a base b different from 1, 2, 10, and 16 an extension
of the syntax is needed if a base b view on natural numbers is to be specified.

3.1 Notations for natural numbers

The proposal of this paper provides 8 notational schemes, conventions, or formats, for natural
numbers: unary, binary, decimal, and hexadecimal format with and without brackets and
operator symbols for appending a digit.

These representations all share the virtue that for each individual scheme numbers have
unique representation, which we take for a criterion that allows one to say that such a repre-
sentation (expression for a natural number in a particular format) is a natural number, rather
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than that it merely represents one.

Nevertheless one may insist that say 2 is no more than a representation of a natural number.
In the light of our abstract datatype, and using only the bracketed expressions that number is
a four-tuple: (S(S(0)), 1⊖ 0, 2, 2). In other words taking our abstract datatype for the natural
numbers as a point of departure numbers are quadruples of terms and at first inspection the
members of these quadruples are merely representations of numbers or in other words notations
of numbers, and such elements do not constitute the numbers themselves.

3.2 Taking the notational variation seriously

If one insists to take unbracketed expressions into account as well a number (say 2) becomes
an 8-tuple: (S(S(0)), SS0, 1⊖ 0, 10, 2, 2, 2, 2). At this stage the ordering in the tuple matters
because it helps to avoid confusion between the various logarithmic notations. Needless to say
that when writing a number in practice one prefers to provide only one of the members of the
8-tuple. Moreover one often prefers unbracketed decimal notation.

3.2.1 Advantages of the multiple datatype understanding of natural numbers

Understanding natural numbers as tuples of entities in a range (in this case four) of datatypes
is reasonable and complies with ordinary practice. Here are some further comments about the
practicality of that proposal.

• The signature ΣN is a rather natural choice which unifies three notations for natural
numbers: unary, binary, and decimal.

• For each notation unique normal forms provide canonical representations of natural
numbers. One may indeed say that 5 is the first (leading, decimal) digit of 578 because
only 578 is a normal form representing that number.

• We may state that 578 is a natural number although from a principled point of view it
is merely a representation of a natural number. We notice:

– This use of the language is unproblematic because in its kind the representation is
unique and the kind (decimal notation) can be derived from the representation.

– That 578 abbreviates (5⊘ 7)⊘ 8 creates no confusion, as the introduction of these
brackets and operator symbols follows in a unique and deterministic manner.

• By having multiple views different forms of algorithms for functions and of methods to
define functions can be supported.

3.2.2 Disadvantages of a multiple datatype understanding of natural numbers

The multiple datatype understanding of natural numbers has at least these weaknesses.
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• The signature ΣN is a rather arbitrary choice, both smaller and larger signatures will
be useful for the same purpose of identifying natural numbers. There is no “natural”
signature for the natural numbers.

• We provide only four datatypes for the abstract datatype at hand while infinitely many
such datatypes might relevant.

• In our setup a natural number, say 57, is identified with four different terms (each of
those bringing with it its own simplified form) over the same signature which have the
same meaning in the abstract datatype specified by three different specifications sharing
the same signature. This is plurality of terms denoting the same entity demonstrates
merely an approximation of the level of abstraction provided by an abstract datatype.

3.3 Why 23 is a natural number, and why 023 isn’t?

The point of departure for a pragmatic philosophy of natural numbers based on a CDDRS
portfolio is my assumption that (the teaching of) elementary mathematics needs to make use
of straightforward terminology while still admitting some precise analysis. I will consider in
detail the text fragment “23” and consider the question why 23 might qualify as a natural
number.

Following the definitions in Paragraph 1.5, NN(23) ≡ “23 is a natural number”. About
NN(23) I maintain the following viewpoints:

1. In school teaching one needs to be able to make assertions like these:

• NN(23),

• “23 is a prime number” (and therefore NN(23)).

• “−23 is an integer”,

• “23+ (−23) = 0, that’s how addition works for natural numbers and their negative
versions”

2. It is of no use in a school setting if one can only say: “23 is a natural number in decimal
notation”.

3. If one states that “23 is a notation for a natural number”, the obvious reply is to ask:
“for which natural number”. And then the answer can’t be 23 unless 23 is a natural
number (and not merely a notation for a natural number).

4. Notice that 23 is a different natural number in hexadecimal notation (in fact 35), al-
though it is also the 22th successor of 1 in hexadecimal notation.

5. There is a sliding scale:

• we may want to say: “
∑n=∞

n=1

1

n2 is a power series converging to a real number”
rather than “

∑n=∞

n=1

1

n2 is a a real number”.

• But we will not deny that “
∑n=∞

n=1

1

n2 is a real number” can be correctly asserted.
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• If we hold that integers are defined as pairs of naturals (say writing s for shift,
s(a, b) for a, b ∈ N (thus representing a + (−b)) then −23 is merely a notation for
s(0, 23).1

• If we write BV(“P = NP”) for “P = NP is a Boolean value”, many readers may
object to a claim of validity for the assertion BV(“P = NP”) on the grounds that
it is unclear which value is meant (that’s the famous open problem), and because
“P = NP” is at best an indirect specification of a Boolean value hardly deserving
the description “expression for a Boolean value”, let alone the simplified “Boolean
value”.

6. The assertion NN(23) may be contrasted with NN(023). I hold that it is not plausible
to assert both NN(23) and NN(0023) at the same time. In a setting where both 23
and 023 occur as expressions denoting natural numbers, it is reasonable to say that 23
is a decimal representation (of the number it denotes) without leading zeroes and that
023 is a representation with a leading zero, while 23 is a simplified form of 023, with
simplification involving the removal of leading zeroes.

It is implausible to say that 23 is a natural number without leading zeroes, and that 023
is a natural number with leading zeroes. Natural numbers don’t have that attribute,
instead the presence or absence of leading zeroes is a property of some logarithmic
number representations.

7. One may formalize the above argument about 23 and 023. Formalization leads to the
following implication: “if NN(23) then ¬ NN(023)”. By consequence “if NN(023) then
¬ NN(23)”.

In order to assert NN(23) one implicitly assumes notational conventions that exclude
023. If such conventions are absent than 23 advances no further than to the status of a
representation of a natural number (RNN(23) in the notation of Paragraph 1.5).

Now one finds: “if (RNN(23) and RNN(023)) then ¬ NN(23)”. Here it is implicitly
assumed that the condition RNN(23) and RNN(023) is evaluated in the same context.
Being equally true escapes from two valued logic, and this asks for some rephrasing.

One may advance further and write PRNN(w) for “w is a preferred representation of a
natural number”. Clearly PRNN(w) implies RNN(w). Now PRNN(23) may be assumed
to imply imply NN(23) but a less demanding interpretation is possible. In any case one
finds: “if (RNN(23) and ¬ PRNN(23)) then ¬ NN(23)”.

8. One may contemplate whether or not 23 is a natural number value (instead of being a
natural number) and 22+1 is also a natural number, (but not a natural number value),
and if “23 = 22+1” (assuming its truth) rests on the assumption that 23 and 22+1 are
the same kind of entity. We will hold that:

• 23 is a natural number and it is a natural number value as well.

1

This viewpoint would be criticized by those who feel that the foundational approach to mathematical struc-

tures which induces the construction of integers as pairs of naturals is not meant to have this pedantic influence

on the use of “ordinary” mathematical language.
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• 22+1 is a natural number because it denotes a natural number.

• 22+1 is a natural number and it is not a natural number value, though the value
of 22+1 is a natural number.

• 22+1 is a natural number form (NNF, form is assumed to be equivalent with ex-
pression).

• α ≡ 32+32+22+1 is a representation of 23 as a sum of four squares. This assertion
can be valid only if the actual form of an NNF matters and can have properties
that are not universal for NNs.

• β ≡ 42 + 22 + 1 + 1 + 1 is a representation of 23 as a sum of five squares. Now α

and β are different representations (if a natural number as a sum of squares).

• α 6≡ β in a realistic sense. However in that same sense (as representations in terms
of sums of squares): 42+22+1+1+1 ≡ 42+22+12+12+12 ≡ 12+12+12+42+22.

• A difference between two NNFs is determined (accepted, found, agreed) in the
context of an objective of representational form. It is plausible that differences
between representational forms are defined within dedicated subclasses of NNF. In
other words by merely writing that 42 +22 +1+1+1 6≡ 2 ·10+3 we fail to indicate
in what quality (property) both expressions differ.

9. If we write φ ≡ 23 + 23 = 46, φ will be considered a valid assertion by most readers. In
φ we find two different occurrences of 23 which are at the same time equal, in the sense
that both are natural numbers which, moreover, can only be the same natural numbers.
It appears that we have an inconsistency.

In order to explain this case I propose that as soon as one starts discussing occurrences
of 23 one needs to acknowledge that NN(23) is meant modulo “an arbitrary occurrence
of”. Thus NN(23) can be rephrased as: each occurrence of 23 is an occurrence of a
natural number. In other words, the meaning of NN(23) depends on the abstraction
level at which one is considering the matter. At a lower level of abstraction a different
definition of NN(23) may be needed.

10. Of course one may introduce an equivalence ≡ on decimal notations with and without
leading zeroes so that 23 ≡ 023, and subsequently work modulo that equivalence. How-
ever, doing so creates a situation in which the assertion that removing leading zeroes
turns 023 into 23 is wrong because both are equal modulo ≡ and there is no such thing
as leading zeroes modulo this equivalence.

4 Concluding remarks

We have proposed four datatype defining rewrite systems for as many different views on the
natural numbers. These views are instances of the same abstract datatype for which each of
the rewrite systems constitutes an equational initial algebra specification at the same time.

By considering a limited plurality of datatypes instantiating the same underlying abstract
datatype we determine an intermediate abstractions for the individual natural numbers, lying
in between the number as an entity in a specific datatype and the abstraction of that entity
in an abstract datatype.
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