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Abstract

We consider the signatures Σm = (0, 1,−, +, ·,

−1) of meadows and (Σm, s) of signed
meadows. We give two complete axiomatizations of the equational theories of the real
numbers with respect to these signatures. In the first case, we extend the axiomatization
of zero-totalized fields by a single axiom scheme expressing formal realness; the second
axiomatization presupposes an ordering. We apply these completeness results in order to
obtain complete axiomatizations of the complex numbers.

Keywords and phrases: formally real meadow, signed meadow, real numbers, complex
numbers, completeness theorems.

1 Introduction

The signature Σf = (0, 1,−,+, ·) of fields has two constants 0 and 1, a unary function −,
and two binary functions + and ·. The first-order theory of fields is given by the axioms of
commutative rings (see Table 1) and two additional axioms, namely

0 6= 1,

x 6= 0 → ∃y x · y = 1.

A field F is said to be ordered if there exists a subset F>0 ⊆ F—the set of positive elements
in F—such that F>0 is closed under addition and multiplication, and F is the disjoint union
of F>0, {0}, and {−a | a ∈ F>0}. Then F is totally ordered if we define a > b to mean
a − b ∈ F>0. Moreover, if a > b, then a + c > b + c for every c and a · c > b · c for every
c ∈ F>0. The theory of ordered fields is formulated over the signature Σof = (0, 1,−,+, ·, <).
It has all the field axioms and, in addition, the axioms for a total ordering that is compatible
with the field operations given in Table 2.

In 1927, the theory of ordered fields grew into the Artin-Schreier theory of ordered fields
and formally real fields.

Definition 1.1. A field F is called formally real if −1 is not a sum of squares in F .
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(x+ y) + z = x+ (y + z)

x+ y = y + x

x+ 0 = x

x+ (−x) = 0

(x · y) · z = x · (y · z)

x · y = y · x

1 · x = x

x · (y + z) = x · y + x · z

Table 1: The set CR of axioms for commutative rings

A main result of the Artin-Schreier theory (see e.g. [9]) states:

Proposition 1.2. Let F be an arbitrary field. F is formally real if and only if for all n ≥ 0
and all x0, . . . , xn ∈ F we have

Σn
i=0x

2
i = 0 ⇒ x0 = · · · = xn = 0.

Formally real fields can therefore be axiomatized by the following infinite list of axioms,
one for each n ≥ 0,

∀x0∀x1 · · · ∀xn(x0 · x0 + · · · + xn · xn = 0 → (x0 = 0 ∧ · · · ∧ xn = 0)).

A formally real field has no defined order relation. However, it is always possible to find an
ordering (and often more) that will change a formally real field into an ordered field. One can
view a formally real field as an ordered field where the ordering is not explicitly given. The
fields of rational numbers Q and of real numbers R are examples.

x 6= 0 → (x < 0 ∨ 0 < x) (OF1)

x < y → ¬(y < x ∨ x = y) (OF2)

x < y → x+ z < y + z (OF3)

x < y ∧ 0 < z → x · z < y · z (OF4)

Table 2: The set OF of axioms for ordered fields

Since the signature of fields does not include a multiplicative inverse, the axiom for the
inverse is not universal, and therefore a substructure of a field closed under multiplication
is not always a field. This can be remedied by adding a unary inverse operation −1 to the
language. In [6] meadows were defined as members of a variety specified by equations. A
meadow is a commutative ring equipped with a total unary operation −1 named inverse that
satisfies 0−1 = 0. Every field F can be expanded to a meadow (or zero-totalized field) F0
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after making the inverse operator total by 0−1 = 0. Thus Q0, R0 and C0 are meadows—the
meadows of the rational, real and complex numbers, respectively.

An advantage of meadows over working with the signature of fields is that it facilitates
formal reasoning without requiring the use of either a logic of partial operations or a three
valued logic. We will exploit this advantage and prove two completeness results the statement
and meaning of which are accessible to all people who have been exposed to real numbers in
elementary mathematics. We will view the real numbers as a formally real meadow which can
be equipped with an ordering that is encoded in a sign function. We will prove that all valid
equations over the meadow of reals are derivable from the axioms of meadows plus an axiom
scheme expressing formal realness; the valid equations over the signed meadow of the reals
follow from the axioms of meadows together with the axioms for the sign function.

The remainder of this paper is organized as follows. The next section comprises prelimi-
naries and a digression on meadows of characteristic 0. In Section 3 we introduce formally
real meadows and provide two axiomatizations with accompanying completeness results. Our
first completeness result is

Md + EFR ⊢ s = t if and only if R0 |= s = t (†)

where Md is a finite equational axiomatization of meadows and EFR is an equational ax-
iom scheme expressing formal realness. We obtain (†) as an immediate consequence of the
Artin-Schreier Theorem and Tarski’s theorem on quantifier elimination for real closed fields.
Moreover, we introduce signed meadows and give a finite axiomatization of formally real mead-
ows expanded by a sign function. Our second completeness result with respect to formally
real meadows is

Md + Signs ⊢ s = t if and only if (R0, s) |= s = t (‡)

with Signs a finite set of axioms for the sign function s. Also (‡) relies on both the Artin-
Schreier Theorem and Tarski’s theorem. In the last section, we apply these completeness
results and obtain complete axiomatizations of the meadow of complex numbers.

2 Preliminaries

In [6] meadows were defined as the members of a variety specified by twelve equations. How-
ever, in [3] it was established that the ten equations in Table 3 imply those used in [6]. Sum-
marizing, a meadow is a commutative ring with unit equipped with a total unary operation
−1 named inverse that satisfies the two equations

(x−1)−1 = x,

x · (x · x−1) = x. (RIL)

Here RIL abbreviates Restricted Inverse Law. We write Md for the set of axioms in Table 3
and write Σm = (Σf ,

−1 ) for the signature of meadows. From the axioms in Md the following
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(x+ y) + z = x+ (y + z)

x+ y = y + x

x+ 0 = x

x+ (−x) = 0

(x · y) · z = x · (y · z)

x · y = y · x

1 · x = x

x · (y + z) = x · y + x · z

(x−1)−1 = x

x · (x · x−1) = x

Table 3: The set Md of axioms for meadows

identities are derivable:

0−1 = 0,

(−x)−1 = −(x−1),

(x · y)−1 = x−1 · y−1,

0 · x = 0,

x · −y = −(x · y),

−(−x) = x.

We often use the derived operators subtraction, pseudo ones and pseudo zeros given in
Table 4. Pseudo constants enjoy a couple of nice properties which are listed in the appendix.
The most prominent are 00 = 11 = 1, 01 = 10 = 0 and

0t + 1t = 1 and 0t · 1t = 0.

for all terms t. In the remainder we shall tacitly assume that a meadow has subtraction
and pseudo constants. Moreover, we freely use numerals n—defined by 0 = 0, 1 = 1 and
n+ 1 = n+ 1 for n ≥ 1—and exponentiation with constant integer exponents.

x− y = x+ (−y)

1x = x · x−1

0x = 1 − 1x

Table 4: The derived operators subtraction, pseudo ones and pseudo zeros
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The term cancellation meadow is introduced in [4] for a zero-totalized field that satisfies
the so-called “cancellation axiom”

x 6= 0 ∧ x · y = x · z → y = z.

An equivalent version of the cancellation axiom that we shall further use in this paper is the
Inverse Law (IL), i.e., the conditional axiom

x 6= 0 → x · x−1 = 1. (IL)

So IL states that there are no proper zero divisors. (Another equivalent formulation of the
cancellation property is x ·y = 0 → x = 0 ∨ y = 0.) Paradigm cancellation meadows are Q0,
R0 and C0. However, there also exist meadows with proper zero devisors and infinite meadows
with characteristic 0 different from Q0, R0 and C0. For example, in [7] it is proved that Z/nZ

with elements {0, 1, . . . , n − 1} where arithmetic is performed modulo n is a meadow if n is
squarefree, i.e. n is the product of pairwise distinct primes. Thus Z/10Z is a meadow where
2 6= 0 6= 5 but 2 · 5 = 0. The existence of an infinite non-cancellation meadow is shown in the
following theorem.

Theorem 2.1. There exists a non-cancellation meadow M of characteristic 0 which does not
have Q0 as a subalgebra.

Proof. Choose a new constant symbol a. For k ∈ N let

Ek = {a 6= 0} ∪ {n 6= 0 | n ∈ N, 0 < n < k} ∪ {2 · a = 0} ∪ Md.

Moreover, choose a prime p 6= 2 exceeding k and interpret a in Z/2pZ by p. Then Z/2pZ |= Ek.
It follows that Ek is consistent and therefore E =

⋃∞

k=1 Ek is consistent by the compactness
theorem. Let M be a model for E. Then

1. M is a meadow, since Md ⊆ E,

2. M has characteristic 0, since M |= n 6= 0 for all n ∈ N with n 6= 0,

3. M is not a cancellation meadow, since M |= 2 6= 0, M |= a 6= 0, but M |= 2 · a = 0, and

4. M |= 2 · 2−1 6= 1, for otherwise

a = 1 · a = 2 · 2−1 · a = 2−1 · 2 · a = 2−1 · 0 = 0;

hence Q0 is not a subalgebra of M .

In [2], we proved a finite basis result for the equational theory of cancellation meadows.
This result is formulated in a generic way so that it can be applied to any expansion of a
meadow that satisfies the propagation properties defined below.
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Definition 2.2. Let Σ be an extension of Σm and E ⊇ Md.

1. (Σ, E) has the propagation property for pseudo ones if for each pair of Σ-terms t, r and
context C[ ],

E ⊢ 1t · C[r] = 1t · C[1t · r].

2. (Σ, E) has the propagation property for pseudo zeros if for each pair of Σ-terms t, r and
context C[ ],

E ⊢ 0t · C[r] = 0t · C[0t · r].

Preservation of these propagation properties admits the following nice result:

Theorem 2.3 (Generic Basis Theorem for Cancellation Meadows). If Σ ⊇ Σm, E ⊇ Md and
(Σ, E) has the pseudo one propagation property and the pseudo zero propagation property, then

E ⊢ s = t if and only if E + IL |= s = t

for all s, t ∈ Σ.

Proof. This is Theorem 3.1 of [2].

Meadow terms can be represented in a particular standard way.

Definition 2.4. A term P over Σm is a Standard Meadow Form (SMF) if, for some n ∈ N,
P is an SMF of level n. SMFs of level n are defined as follows:

SMF of level 0: each expression of the form s · t−1 with s and t Σf -terms,

SMF of level n+ 1: each expression of the form

0t · P + 1t ·Q

with t a Σf -term and P and Q SMFs of level n.

Theorem 2.5. For each term s over Σm there exists an SMF s′ with the same variables such
that Md ⊢ s = s′.

Proof. This is Theorem 2.1 of [2].

It follows that every meadow equation has a first-order representation over the signature of
fields. Since we will apply the first-order representation solely in the context of cancellation
meadows we may freely use IL.

Corollary 2.6. For each equation s = t over Σm there exists a quantifier-free first-order
formula φ(s, t) over Σf with the same variables such that

Md + IL ⊢ s = t↔ φ(s, t).

Proof. By the preceding theorem we may assume that both s and t are SMF’s. We employ
induction on the levels n,m of s and t, respectively.
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1n+1 = 1 (C0n)

Table 5: The set of axioms C0 for meadows of characteristic 0

1. n = 0: Then there are terms s1, s2 over Σf such that s = s1 · s
−1
2 .

(a) m = 0: Then there are terms t1, t2 over Σf such that t = t1 · t
−1
2 . Since s = t we

have s2 · t2 · (s1 · t2 − t1 · s2) = 0 and hence s2 = 0 or t2 = 0 or s1 · t2 = t1 · s2. Thus
we can take

φ(s, t) ≡ (s2 = 0 → (t1 = 0 ∨ t2 = 0)) ∧

(t2 = 0 → (s1 = 0 ∨ s2 = 0)) ∧

(s2 · t2 6= 0 → s1 · t2 = t1 · s2).

(b) m = k + 1: Then t = 0t′ · P + 1t′ · Q for some Σf term t′ and SMFs of level k.
Observe that if t′ = 0, then 1t′ = 0 and 0t′ = 1 and therefore s = P . Likewise, if
t′ 6= 0, then 1t′ = 1 and 0t′ = 0 and therefore s = Q. Thus we can take

φ(s, t) ≡ (t′ = 0 → φ(s, P )) ∧ (t′ 6= 0 → φ(s,Q)).

2. n = l+ 1: Then s = 0s′ ·P + 1s′ ·Q for some Σf -term s′ and SMFs P,Q of level k. Now
we argue as in case 1(b) and take

φ(s, t) ≡ (s′ = 0 → φ(P, t)) ∧ (s′ 6= 0 → φ(Q, t)).

We use pseudo ones to give an infinite axiomatization of meadows of characteristic 0 in
Table 5. As a corollary to Theorem 2.3 we have:

Corollary 2.7. Let s, t ∈ Σm. Then

Md + C0 ⊢ s = t if and only if Md + C0 + IL |= s = t.

Proof. Since (Md, Σm) has the propagation properties (see Corollary 3.1 of [2]), the derived
operators also share these properties. We therefore can apply Theorem 2.3.

An extension field F̂ of a field F is any field containing F as a subalgebra. An element x of
F̂ is said to be algebraic over F if there exists a non-zero polynomial P with coefficients from
F such that P (x) = 0. An extension field F̂ of F is said to be algebraically closed if all its
elements are algebraic. Every field has an algebraic closure. In 1951, Tarski [12] proved that the
theory of algebraically closed fields in the first-order language over the signature (0, 1,−,+, ·)
admits elimination of quantifiers. The most important model theoretic consequences hereof
are the completeness of the theory of algebraically closed fields of a given characteristic—in
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0x2
0
+···+x2

n
· x0 = 0 (EFRn)

Table 6: The set EFR of axioms for formally real meadows

particular, the theory of algebraically closed fields of characteristic 0 coincides with the theory
of the complex numbers over the signature (0, 1,−,+, ·)—and its decidability (see e.g. [8, 10]).

A reduct of an algebraic structure is obtained by omitting some of the operations and
relations of that structure. The converse of a reduct is an expansion. In the sequel, we will
write M |Σ′ for the reduct of the Σ-algebra M to Σ′ ⊆ Σ and (M, ⋄) for the expansion of M
by an operation or relation ⋄. In particular, we will write M |Σf for the reduct of the meadow
M to the signature of fields, and (M, s) and (M,<) for the expansion of the meadow M with
a sign function and order relation, respectively.

Theorem 2.8. Let s, t be Σm-terms. Then Md + C0 ⊢ s = t if and only if C0 |= s = t.

Proof. Because C0 constitutes a meadow of characteristic 0, soundness is immediate.

Assume that s = t is not derivable from Md + C0. By the previous corollary, there exists
a cancellation meadow M of characteristic 0 with M 6|= s = t. Since M is a field, it has an

algebraic closure, say, M̂ . Then M̂ 6|= s = t and hence M̂ |Σf 6|= φ(s, t) where φ(s, t) is the
Σf -representation given in Corollary 2.6. Therefore C0|Σf 6|= φ(s, t) by completeness and thus
C0 6|= s = t.

Remark 2.9. Initial algebras provide standard models of equational specifications. They con-
tain only elements that can be constructed from those appearing in the specification, and satisfy
only those closed equations that appear in the specification or are logical consequences of them.
It is easy to see that Md+C0 constitutes an initial algebra specification of the rational numbers.
See also [6].

Remark 2.10. In a way very similar to Theorem 2.8 one can show that Md + {p = 0} is a
complete axiomatization of algebraically closed fields of characteristic p.

3 Formally real meadows

Our first axiomatization of formal realness is the infinite set of axioms given in Table 6.

Definition 3.1. A meadow M is called formally real if M |= EFR.

Observe that (EFRn) is an equational representation of the conditional axiom

CEFRn ≡ x2
0 + · · ·x2

n = 0 → x0 = 0.

Proposition 3.2. For all n ≥ 0, Md + EFR ⊢ CEFRn.

Proof. Suppose x2
0 + · · ·x2

n = 0. Then 0x2
0
+···x2

n
= 00 = 1. Hence x0 = 0 by (EFRn).
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Again Q0 and R0 are formally real meadows; however, C0 is not formally real.

As a corollary to Theorem 2.3 we have

Corollary 3.3. Let s, t ∈ Σm. Then

Md + EFR ⊢ s = t if and only if Md + EFR + IL ⊢ s = t.

Proof. This follows again from the fact that (Md, Σm) has the propagation properties (see
Corollary 3.1 of [2]).

Remark 3.4. As an alternative we could have chosen the axiom scheme AEFR given in
Table 7 as an axiomatization of formal realness. Observe that (AEFRn) expresses the fact
that

Σn
i=0x

2
i 6= −1

which is somewhat closer to the definition of formal realness found in the literature (see also
Definition 1.1). In the following theorem we prove that EFR and AEFR are indeed equivalent
in the context of meadows.

11+x2
0
+···+x2

n
= 1 (AEFRn)

Table 7: The set AEFR of alternative axioms for formally real meadows

Theorem 3.5. Let M be a meadow and s, t ∈ Σm. Then

Md + EFR ⊢ s = t if and only if Md + AEFR ⊢ s = t.

Proof. Observe that Corollary 3.3 also holds for AEFR instead of EFR. It therefore suffices
to prove that

M |= EFR if and only if M |= AEFR

for every cancellation meadow M . The claim now follows from Proposition 1.2 and the fact
that a cancellation meadow is a field.

A real closed field F is a formally real field in which every positive element has a square root
and, moreover, every polynomial of odd degree in one indeterminate with coefficients in F has
a root. In [12], Tarski also proved quantifier elimination for real closed fields in the first-order
language over the signature (0, 1,−,+, ·, <). As a consequence, the theory of real closed fields
is complete —in particular, the theory of real closed fields coincides with the theory of the
real numbers over the signature (0, 1,+, ·,−, <)—and is decidable (see e.g. [8, 10]).

If (F,<) is an ordered field, the Artin-Schreier Theorem [1] states that F has an algebraic

extension, called the real closure F̂ of F , such that F̂ is a real closed field whose ordering is
an extension of the given ordering < on F and is unique up to isomorphism of fields. The
classical proof of this theorem relies on the use of Zorn’s Lemma which is equivalent to the
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axiom of choice. However, in 1991 Sander [11] showed the existence of real closures of ordered
fields in Zermelo-Fränkel axiomatic set theory.

Our first completeness result for formally real meadows follows the proof of Theorem 2.8
and, in addition, relies on the Artin-Schreier Theorem and Tarski’s theorem for real closed
fields.

Theorem 3.6. Let s, t be Σm-terms. Then Md + EFR ⊢ s = t if and only if R0 |= s = t.

Proof. Because the meadow of real numbers is formally real, soundness is immediate.

Assume that s = t is not derivable from Md+EFR. From Corollary 3.3 we get the existence
of a formally real cancellation meadow M with M 6|= s = t. Since M is formally real, it is

orderable by, say, <. By the Artin-Schreier Theorem (M,<) has the real closure (M̂,<). Since

(M̂,<) 6|= s = t, we find that (M̂,<)|Σf 6|= φ(s, t) where φ(s, t) is the first-order representation
of s = t given in Corollary 2.6. Since the theory of real closed fields coincides with the theory
of the real numbers over the signature (0, 1,−,+, ·, <), we can conclude that R0|Σf 6|= φ(s, t)
and therefore R0 6|= s = t.

A finite axiomatization of formal realness is obtained by extending the signature Σm of
meadows with the unary sign (or signum) function s(x). We write Σfs, Σms for these extended
signatures, so Σfs = (Σf , s) and Σms = (Σm, s). The sign function s(x) presupposes an
ordering on its domain and is defined by

s(x) =






−1 if x < 0,

0 if x = 0,

1 if x > 0.

We define the sign function in an equational manner by the set Signs of axioms given in
Table 8. First, notice that by Md and axiom (S1) (or axiom (S2)) we find

s(0) = 0 and s(1) = 1.

Then, observe that in combination with the inverse law IL, axiom (S6) is an equational
representation of the conditional axiom

s(x) = s(y) → s(x+ y) = s(x).

From Md and axioms (S3)–(S6) one can easily compute s(t) for any closed term t. Some more
consequences of the Md + Signs axioms are these (see [2]):

s(x2) = 1x (S7)

s(x3) = s(x) (S8)

1x · s(x) = s(x) (S9)

s(x)−1 = s(x) (S10)

s(s(x)) = s(x) (S11)
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s(1x) = 1x (S1)

s(0x) = 0x (S2)

s(−1) = −1 (S3)

s(x−1) = s(x) (S4)

s(x · y) = s(x) · s(y) (S5)

0
s(x)−s(y) · (s(x+ y) − s(x)) = 0 (S6)

Table 8: The set Signs of axioms for the sign function

Expanding Q0 and R0 in the obvious way, we obtain signed meadows (Q0, s) and (R0, s).

Signed meadows need not be cancellation meadows. This can easily be seen as follows.
Expand the signature of signed meadows by two new constants a, b and consider the equational
theory T = Md + Signs + {a · b = 0}. We obtain a model for T by interpreting in (R0, s) a by
0 and b by 1 and construct a second model by interchanging the interpretations of a and b. It
follows that the initial algebra of T satisfies neither a = 0 nor b = 0. However, Md∪Signs has
the propagation properties for pseudo ones and zeros (see Corollary 5.1 of [2]). We therefore
have the following finite basis result for signed cancellation meadows.

Corollary 3.7. Let s, t ∈ Σms. Then

Md + Signs ⊢ s = t if and only if Md + Signs + IL |= s = t.

Signed meadows are formally real.

Proposition 3.8. For every n ≥ 0, Md + Signs ⊢ EFRn.

Proof. We give a semantic proof; a syntactic proof can be found in the appendix. By Corol-
lary 3.7 it suffices to prove that M |= EFRn for all signed cancellation meadows. Thus assume
M |= Md + Signs + IL. Observe that if a2

0 + · · · + a2
n 6= 0 then 1a2

0
+···+a2

n
= 1 and hence

0a2
0
+···+a2

n
· a0 = 0. We can therefore assume that a2

0 + · · ·+ a2
n = 0 and prove M |= EFRn by

induction on n. EFR0 follows from the cancellation property. For n = m + 1 we distinguish
three cases.

Case a0 = 0: Then 0a2
0
+···+a2

m+1
· a0 = 0.

Case ai = 0 for some 0 < i ≤ m + 1: Without loss of generality we may assume that
i = m+ 1. Then a2

0 + · · · + a2
m+1 = a2

0 + · · · + a2
m. Hence

0a2
0
+···+a2

m+1
· a0 = 0a2

0
+···+a2

m
· a0 = 0

by the induction hypothesis.

Case ai 6= 0 for all 0 ≤ i ≤ m + 1: We obtain a contradiction as follows. Since a2
0 +

· · · + a2
m+1 = 0 we have s(a2

0 + · · · + a2
m+1) = s(0) = 0. On the other hand, it follows

from the cancellation property and (S7) that s(a2
i ) = 1 for every 0 ≤ i ≤ m + 1 and hence

s(a2
0 + · · · + a2

m+1) = 1 by (S6).
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We can represent signed meadow terms in a standard way similar to ordinary meadow
terms.

Definition 3.9. A term P over Σms is a Signed Standard Meadow Form (SSMF) if, for some
n ∈ N, P is an SSMF of level n. SSMFs of level n are defined as follows:

SSMF of level 0: each expression of the form s · t−1 with s and t Σfs-terms,

SSMF of level n+ 1: each expression of the form

0t · P + 1t ·Q

with t a Σfs-term and P and Q SSMFs of level n.

Theorem 3.10. For each term s over Σms there exists an SSMF s′ with the same variables
such that Md + Signs ⊢ s = s′.

Proof. In [2] a proof is given for Σm-terms by structural induction. It thus suffices to prove
that the set of SSMFs is closed under s. We employ induction on level height n. If the SSMF
t has level 0 then t = s1 · s2

−1 for Σfs-terms s1, s2. Then

s(t) = s(s1 · s
−1
2 ) = s(s1) · s(s

−1
2 ) = s(s1) · s(s2) = s(s1 · s2) · 1

−1

by axiom (S4) and (S5). Assume t = 0s · P + 1s · Q for some Σfs-term s and SSMFs P,Q of
level n. Then 0s · t = 0s · P and 1s · t = 1s ·Q. Hence

s(t) = (0s + 1s) · s(t)

= 0s · s(t) + 1s · s(t)

= s(0s · t) + s(1s · t)

= 0s · s(P ) + 1s · s(Q)

by (S1), (S2) and (S5).

As in the case of ordinary meadow equations, it follows that every signed meadow equation
has a first-order representation over the signature of signed fields. In the corollary and the
proposition below we again apply freely IL since we will use these results only in the context
of cancellation meadows.

Corollary 3.11. For each equation s = t over Σms there exists a quantifier-free first-order
formula φ(s, t) over Σfs with the same variables such that

Md + Signs + IL ⊢ s = t↔ φ(s, t).

Given a signed cancellation meadow, we shall consider it ordered by the order induced by
the sign function. This can be expressed by the axiom

x < y ↔ s(y − x) = 1. (SO )

12



Proposition 3.12.

1. Md + IL + Signs + SO ⊢ OF , and

2. for all terms s, t over Σfs there exists a formula ψ(s, t) over (Σf , <) with the same free
variables such that

Md + IL + Signs + SO ⊢ s = t↔ ψ(s, t).

Proof. 1. We prove the derivability of the axioms given in Table 2.

(OF1): Assume x 6= 0. Then 1x = 1. Therefore

(1 − s(x)) · (1 + s(x)) = 1x · (1 − s(x)2)

= 1x − s(x)2 by (S9)

= 1x − 1x by (S5), (S7)

= 0.

Hence s(x) = 1 or s(x) = −1 by cancellation. If s(x) = 1 then 0 < x; if s(x) = −1 then
1 = −1 · s(x) = s(−1) · s(x) = s(−x) and thus x < 0.

(OF2): Assume x < y. Then s(y − x) = 1. Thus, if y < x then s(x − y) = s(y − x) and
so 0 = s(0) = s((y − x) + (x − y)) = 1 by (S6). Likewise, if x = y, then 0 = s(x − x) =
s(y − x) = 1. Thus ¬(y < x ∨ x = y).

(OF3): If x < y then 1 = s(y − x) = s((y + z) − (x+ z)). Hence x+ z < y + z.

(OF4): If x < y and 0 < z then s(y−x) = 1 and s(z) = 1. Thus 1 = 1·1 = s(y−x)·s(z) =
s((y − x) · z) = s(y · z − x · z), i.e. x · z < y · z.

2. Let t be a Σfs-term, Var (t) be the set of variables occurring in t and x 6∈ Var(t).
By structural induction, we will first construct a formula γ(x, t) over (Σf , <) with free
variables Var (t) ∪ {x} such that for all (Σf , s)-terms s, M ′ |= s = t↔ γ(s, t).

(a) t = 0, t = 1 or t = y (y 6≡ x): γ(x, t) ≡ x = t,

(b) t ≡ −t′: γ(x, t) ≡ ∀z(γ(z, t′) → x = −z) with z 6∈ Var (t′) ∪ {x},

(c) t ≡ t1 ⋄ t2 with ⋄ ∈ {+, ·}: γ(x, t) ≡ ∀y∀z(γ(y, t1) ∧ γ(z, t2) → x = y ⋄ z) with
y, z 6∈ Var (t1 ⋄ t2) ∪ {x},

(d) t ≡ s(t′):

γ(x, t) ≡ (x = 0 → γ(x, t′)) ∧

(x 6= 0 → ∀z(γ(z, t′) →

((0 < z ∧ x = 1) ∨ (z < 0 ∧ x = −1))))

with z 6∈ Var (t′) ∪ {x}.

We prove that γ(x, s(t′)) meets the requirements. γ(x, s(t′)) is a formula over (Σf , <)
since γ(x, t′) is so. Moreover, the free variables in γ(x, s(t′)) are Var (t′) ∪ {x} =
Var (s(t′)) ∪ {x}. Now assume s = s(t′). If s = 0 then s(t′) = 0. If t′ 6= 0 we can
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argue as in (1) in the case of (OF1) to derive a contradiction. Thus t′ = 0. Hence s = t′

and therefore γ(s, t′). To prove the second conjunct assume s 6= 0 and z = t′. Then
z 6= 0 and hence 0 < z or z < 0 by (OF1). If 0 < z then s = s(z) = 1; likewise, if z < 0
then s(−z) = 1 and hence s = s(z) = −1. γ(s, s(t′)) → s = s(t′) follows in a similar
fashion. Now observe that

M ′ |= s = t↔ ∀x∀y((x = s ∧ y = t) → x = y)

with x, y 6∈ Var (s) ∪ Var (t). Thus we can take

ψ(s, t) ≡ ∀x∀y((γ(x, s) ∧ γ(y, t)) → x = y).

We slightly modify the proof of Theorem 3.6 in order to obtain:

Theorem 3.13. Let s, t be Σms-terms. Then Md+Signs ⊢ s = t if and only if (R0, s) |= s = t.

Proof. Soundness is again immediate.

Assume that s = t is not derivable from Md+Signs. By Corollary 3.7 we now have a counter
model M which is a signed cancellation meadow. Since M is formally real by Proposition 3.8,
it is orderable. We consider the particular order given by

x < y ↔ s(y − x) = 1.

Then (M,<) is an ordered field by Proposition 3.12.1. By the Artin-Schreier Theorem (M,<)

has real closure (M̂,<) whose ordering is an extension of the given ordering. We find that

(M̂,<) 6|= s = t. By Corollary 3.11, s = t is equivalent to a (Σf , s)-formula φ(s, t). Every
equation s′ = t′ in φ(s, t) can be replaced by a (Σf , <)-formula ψ(s′, t′) by Proposition 3.12.2.

Thus there exists a (Σf , <)-formula Γ such that (M̂,<) |= s = t↔ Γ and hence (M̂,<)|Σf 6|=
Γ. Since the theory of real closed fields coincides with the theory of the real numbers over the
signature (0, 1,−,+, ·, <), we can conclude that R0 6|= Γ. Therefore (R0, s) 6|= s = t.

Corollary 3.14. If an open quantifier free formula φ(x1, ..., xk) is satisfiable in some signed
cancellation meadow then that formula is satisfiable in the signed meadow of reals.

Proof. This is the same fact in another wording. If φ(x1, ..., xk) is not satisfiable in the
signed reals then ¬φ(x1, ..., xk) is valid in the reals and by the preceding theorem it must be
derivable from Md+Signs, whence it is true in all cancellation meadows in contradiction with
the assumption.

Remark 3.15. It should be noted that whether or not the equational theory of signed rationals
can be finitely axiomatized is still an open problem. The case of the reals is much simpler
indeed.
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0 = 0 (CC0)

1 = 1 (CC1)

i = −i (CC2)

−x = −x (CC3)

x+ y = x+ y (CC4)

x · y = x · y (CC5)

x−1 = x−1 (CC6)

x = x (CC7)

i · i = −1 (CC8)

1x = 1x (CC9)

Table 9: The set CC of axioms for complex conjugation

11+x0·x0+···+xn·xn
= 1 (SSAVn)

Table 10: The set SSAV of axioms for the absolute value of complex numbers

4 The meadow of complex numbers

Rational complex numbers have been studied before in [5]. In this section, we generalize that
approach in order to give a completeness result for arbitrary complex meadow terms.

We extend the signature Σm of meadows to the signature of complex numbers (Σm, i, )̄
where i is the imaginary unit and ¯ is the unary operation of complex conjugation. The
defining equations are listed in Table 9 and Table 10. (CC0)—(CC8) are the usual equalities
for complex numbers and (CC9) ensures propagation; SSAV expresses the fact that any sum
of squares of absolute values of complex numbers cannot yield -1. As a special instance of
SSAV we obtain the set of axioms C0 for meadows of characteristic 0 (see also Table 5):

1n+1 = 11+1·1+···+1·1 = 1 (C0n)

In the sequel we will use the derived unary operators re( ) and im( )—the real part and
the imaginary part of a complex number—given in Table 11. Here we write s

t
for s · t−1. re( )

and im( ) enjoy a couple of nice properties which are listed in Table 12.

Proposition 4.1. For i ∈ {0, . . . , 22},

Md + CC + SSAV ⊢ RIi

Proof. We prove (RI0), (RI1), (RI2), (RI13) and (RI21).
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re(x) =
1

2
· (x+ x)

im(x) = −
i

2
· (x− x)

Table 11: The derived operators re( ) and im( )

x = re(x) + im(x) · i (RI0)

re(x) = re(x) (RI1)

im(x) = im(x) (RI2)

re(re(x)) = re(x) (RI3)

re(im(x)) = im(x) (RI4)

im(re(x)) = 0 (RI5)

im(im(x)) = 0 (RI6)

re(0) = 0 (RI7)

re(1) = 1 (RI8)

re(i) = 0 (RI9)

re(−x) = −re(x) (RI10)

re(x + y) = re(x) + re(y) (RI11)

re(x · y) = re(x) · re(y) − im(x) · im(y) (RI12)

re(x−1) = re(x) · (re(x) · re(x) + im(x) · im(x))−1 (RI13)

re(x) = re(x) (RI14)

im(0) = 0 (RI15)

im(1) = 0 (RI16)

im(i) = 1 (RI17)

im(−x) = −im(x) (RI18)

im(x+ y) = im(x) + im(y) (RI19)

im(x · y) = re(x) · im(y) + im(x) · re(y) (RI20)

im(x−1) = −im(x) · (re(x) · re(x) + im(x) · im(x))−1 (RI21)

im(x) = −im(x) (RI22)

Table 12: Properties of the real part and the imaginary part of complex numbers
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• (RI0):
re(x) + im(x) · i = 1

2 · (x+ x) − i
2 · (x− x) · i

= 1
2 · (x+ x) + 1

2 · (x− x) by (CC8)

= 1
2 · x+ 1

2 · x

= 2 · 2−1 · x
= x by (C01)

• (RI1):

re(x) = 1
2 (x+ x)

= 1
2 (x+ x) by (CC1), (CC4), (CC5), (CC6)

= 1
2 (x+ x) by (CC4)

= 1
2 (x+ x) by (CC7)

= 1
2 (x+ x)

= re(x)

• (RI2):

im(x) = − i
2 (x− x)

= i
2 (x− x) by (CC1), (CC2), (CC3), (CC4), (CC5), (CC6)

= i
2 (x− x) by (CC3), (CC4)

= i
2 (x− x) by (CC7)

= − i
2 (x− x)

= im(x)

• (RI13), (RI21): Observe that

t−1 = t−1 · 1t−1

= t−1 · 1t

= t−1 · 1t by (CC9)

= t−1 · t
−1

· t by (CC5), (CC6)
= (t · t)−1 · t
= (re(t) · re(t) + im(t) · im(t))−1 · (re(t) − im(t) · i) by (RI0), (RI1), (RI2),

(CC2)

Thus

re(t−1) = 1
2 (t−1 + t−1)

= 1
2 ((re(t) · re(t) + im(t) · im(t))−1 · (re(t) − im(t) · i)

+(re(t) · re(t) + im(t) · im(t))−1 · (re(t) + im(t) · i)) by (RI1), (RI2),
(CC2), (CC3), (CC4)

= re(t) · (re(t) · re(t) + im(t) · im(t))−1
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Likewise

im(t−1) = − i
2 (t−1 − t−1)

= − i
2 ((re(t) · re(t) + im(t) · im(t))−1 · (re(t) − im(t) · i)

−(re(t) · re(t) + im(t) · im(t))−1 · (re(t) + im(t) · i)) by (RI1), (RI2),
(CC2), (CC3), (CC4)

= −im(t) · (re(t) · re(t) + im(t) · im(t))−1

The real and the imaginary part of a complex number can be represented by so-called real
forms.

Definition 4.2. The set of real forms is defined inductively as follows.

1. 0 and 1 are real forms,

2. re(x) and im(x) are real forms for every variable x,

3. if s and t are real forms then so are −s, s−1, s+ t and s · t.

Lemma 4.3. For each t ∈ (Σm, i, )̄ there exist real forms t1, t2 such that

Md + CC ⊢ re(t) = t1 and Md + CC ⊢ im(t) = t2.

Proof. This follows by an easy induction on t.

Since real and imaginary parts of complex numbers are independent, we can interpret
ordinary meadow terms as complex terms while retaining provable equality.

Proposition 4.4. Let s, t be Σm-terms with free variables among {x0, . . . , xn, y0, . . . yn}. For
fresh variables {z0, . . . , zn},

t∗ ≡ t[x0, . . . , xn := re(z0), . . . , re(zn)][y0, . . . , yn := im(z0), . . . , im(zn)]

and
s∗ ≡ s[x0, . . . , xn := re(z0), . . . , re(zn)][y0, . . . , yn := im(z0), . . . , im(zn)]

are real forms such that

Md + AEFR ⊢ s = t⇒ Md + CC + SSAV ⊢ s∗ = t∗

Here, we adopt the notation [v1, . . . , vn := r1, . . . , rn] for the substitution σ with σ(vi) = ri for
0 ≤ i ≤ n and σ(v) = v for all v 6≡ vi, 0 ≤ i ≤ n.

Proof. Suppose Md + CC + SSAV 6⊢ s∗ = t∗. Then there exists a (Σm, i, )̄-structure M =
(U, 0, 1, i,−,+, ·, −1, )̄ with M 6|= s∗ = t∗. Let M′ = (U ′, 0M′ , 1M′ ,−M′ ,+M′ , ·M′ , −1M′ ) be
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the Σm-structure obtained from M by stipulating U ′ = {re(u) | u ∈ U}, 0M′ = 0, 1M′ = 1,
and for u, u0, u1 ∈ U ′,

−M′(u) = −u
+M′(u0, u1) = u0 + u1

·M′(u0, u1) = u0 · u1

(u)−1M′ = u−1.

Then M′ is well-defined: 0M′ , 1M′ ∈ U ′ by (RI7), (RI8), and e.g. since

re(re(u)−1) = re(re(u)) · (re(re(u)) · re(re(u)) + im(re(u)) · im(re(u)))−1 by (RI13)

= re(u) · (re(u) · re(u))−1 by (RI3), (RI5)

= re(u)−1

it follows that (u)−1M′ ∈ U ′ for every u ∈ U ′. Moreover, since M 6|= s∗ = t∗, M′ 6|= s = t.
Clearly, M′ |= Md and as

11+re(x0)·re(x0)+···+re(xn)·re(xn) = 11+re(x0)·re(x0)+···+re(xn)·re(xn) = 1

also M′ |= AEFR. Thus Md + AEFR 6⊢ s = t.

We can now apply our previous completeness result in order to prove the axiomatization of
the complex numbers to be complete.

Theorem 4.5. Let s, t be (Σm, i, )̄-terms. Then Md + CC + SSAV ⊢ s = t if and only if
(C0, i, )̄ |= s = t.

Proof. Soundness is again immediate.

Assume (C0, i, )̄ |= s = t. Then (C0, i, )̄ |= s − t = 0. By Lemma 4.3 we can pick real
forms r1, r2 such that

Md + CC + SSAV ⊢ re(s− t) = r1 and Md + CC + SSAV ⊢ im(s− t) = r2.

Then
(C0, i, )̄ |= re(s− t) = r1 and (C0, i, )̄ |= im(s− t) = r2.

From (RI7) and (RI15) it follows that

(C0, i, )̄ |= r1 = 0 and (C0, i, )̄ |= r2 = 0.

Without loss of generality, we may assume that the free variables of r1 and r2 are amongst
{z0, . . . , zn}. Now choose fresh variables {x0, . . . , xn, y0, . . . yn} and consider the meadow terms
u1, u2 obtained from r1, r2 by replacing occurrences of a subterm of the form re(zi) by the
variable xi and occurrences of subterms of the form im(zi) by the variable yi. Then

R0 |= u1 = 0 and R0 |= u2 = 0

and hence
Md + EFR ⊢ u1 = 0 and Md + EFR ⊢ u2 = 0
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s(1x) = 1x (S1)

s(0x) = 0x (S2)

s(−1) = −1 (S3)

s(re(x)−1) = s(re(x)) (S*4)

s(re(x) · re(y)) = s(re(x)) · s(re(y)) (S*5)

0
s(re(x))−s(re(y)) · (s(re(x) + re(y)) − s(re(x))) = 0 (S*6)

s(x) = s(re(x)) (S*7)

s(x) = s(x) (S*8)

Table 13: The set Signs* of axioms for the sign function for complex numbers

by Theorem 3.6. Whence

Md + AEFR ⊢ u1 = 0 and Md + AEFR ⊢ u2 = 0

by Theorem 3.5. Since r1 ≡ u∗1 and r2 ≡ u∗2, it follows from Proposition 4.4 that

Md + CC + SSAV ⊢ r1 = 0 and Md + CC + SSAV ⊢ r2 = 0.

Therefore
Md + CC + SSAV ⊢ s− t = re(s− t) + im(s− t) · i = 0,

and thus Md + CC + SSAV ⊢ s = t.

Remark 4.6. One obtains a finite axiomatization of the complex numbers by replacing SSAV
by the eight axioms (S1) – (S3), (S*4) – (S*8) for the sign function given in Table 13. Note
that s differs from the usual generalizations of the sign function on R to C − {0} given by
sgn(z) = z/|z|—where |z| is the absolute value of z—and

csgn(z) =






1 if re(z) > 0,

−1 if re(z) < 0,

sgn(im(z)) if re(z) = 0.

That Md+CC+Signs∗ is indeed a complete axiomatization of the meadow of complex numbers
can be seen by redoing the proof given above. Observe that (C01)—which is used in Proposition
4.1—follows from Signs* by

12 = s(12) = s(re(1)) = s(1) = 1.

.
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Appendix

In this appendix we will give a syntactic proof of Proposition 3.8 without the use of IL. We
obtained this proof from a proof relying on IL by applying the IL-elimination steps suggested
in the proof of Theorem 2.3. We first list some properties of pseudo ones and pseudo zeros in
Table 14.
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0t · 0t = 0t (PC1)

0t2 = 0t (PC2)

0t · t = 0 (PC3)

0s · 0s+t = 0s · 0t (PC4)

1t · 1t = 1t (PC5)

1t2 = 1t (PC6)

1t · t = t (PC7)

1s · 1t = 1s·t (PC8)

Table 14: Some properties of pseudo constants for Σms-terms s, t

We derive (PC4): Since

0s · (s+ t) = 0s · s+ 0s · t

= 0s · t by (PC3)

we have

0−1
s · (s+ t)−1 = (0s · (s+ t))−1

= (0s · t)
−1

= 0−1
s · t−1

and hence

0s · (s+ t)−1 = 02
s · 0

−1
s · (s+ t)−1

= 02
s · 0

−1
s · t−1

= 0s · t
−1.

Thus

0s · 0s+t = 0s − 0s · (s+ t) · (s+ t)−1

= 0s − 0s · t
−1 · (s+ t)

= 0s − 0s · t · t
−1

= 0s · 0t.

For the remaining identities see [2]. Moreover, we have the following useful identity.

Lemma 4.7. For all n ∈ N, Md + Signs ⊢ 0x2
0
+···+x2

n
· 1x0· ··· ·xn

= 0.

Proof. We first prove by induction on n that

Md + Signs ⊢ 1x0· ··· ·xn
· s(x2

0 + · · · + x2
n) = 1x0· ··· ·xn

(†)
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For n = 0 observe that 1x · s(x2) = 1x · 1x = 1x by (S7) and (PC5). Suppose n = m+ 1. By
the induction hypothesis we have

1x0· ··· ·xm
· s(x2

0 + · · · + x2
m) = 1x0· ··· ·xm

and thus 1x0· ··· ·xm+1
· s(x2

0 + · · · + x2
m) = 1x0· ··· ·xm+1

by (PC8). It follows that

0 = 1x0· ··· ·xm+1
· s(x2

0 + · · · + x2
m) − 1x0· ··· ·xm+1

= 1x0· ··· ·xm+1
· s(x2

0 + · · · + x2
m) − 1x0· ··· ·xm

· 1xm+1
by (PC8)

= 1x0· ··· ·xm+1
· s(x2

0 + · · · + x2
m) − 1x0· ··· ·xm

· 1xm+1
· 1xm+1

by (PC5)

= 1x0· ··· ·xm+1
· s(x2

0 + · · · + x2
m) − 1x0· ··· ·xm+1

· 1xm+1
by (PC8)

= 1x0· ··· ·xm+1
· s(x2

0 + · · · + x2
m) − 1x0· ··· ·xm+1

· s(x2
m+1) by (S7)

= 1x0· ··· ·xm+1
· (s(x2

0 + · · · + x2
m) − s(x2

m+1)).

Therefore
1x0· ··· ·xm+1

· 0
s(x2

0
+···+x2

m
)−s(x2

m+1
) = 1x0· ··· ·xm+1

and hence by (S6), (S7) and (PC5)

0 = 1x0· ··· ·xm+1
· 0

= 1x0· ··· ·xm+1
· 0

s(x2
0
+···+x2

m
)−s(x2

m+1
) · (s(x

2
0 + · · · + x2

m+1) − s(x2
m+1))

= 1x0· ··· ·xm+1
· 1x0· ··· ·xm+1

· (s(x2
0 + · · · + x2

m+1) − 1x0· ···xm+1
)

= 1x0· ··· ·xm+1
· s(x2

0 + · · · + x2
m+1) − 1x0· ··· ·xm+1

,

i.e. 1x0· ··· ·xm+1
· s(x2

0 + · · · + x2
m+1) = 1x0· ··· ·xm+1

.

We then have

0 = 0 · 1x0· ··· ·xn

= s(0) · 1x0· ··· ·xn

= s(0x2
0
+···+x2

n
· (x2

0 + · · · + x2
n)) · 1x0· ··· ·xn

by (PC3)

= 0x2
0
+···+x2

n
· s(x2

0 + · · · + x2
n) · 1x0· ··· ·xn

by (S2), (S5)

= 0x2
0
+···+x2

n
· 1x0· ··· ·xn

by (†).

We now prove:

Proposition 3.8 (revisited). For every n ≥ 0, Md + Signs ⊢ EFRn.

Proof. We prove EFRn by induction on n. For n = 0 observe that 0x2 · x = 0x · x = 0 by
(PC2) and (PC3). For n = m+ 1 assume that Md +Signs ⊢ 0y2

0
+···+y2

m
· y0 = 0 (IH). Then for

all 0 ≤ i ≤ m+ 1

0x2
0
+···+x2

m+1
· 0xi

· x0 = 0 : (‡)
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for i = 0, this follows from 0x0
· x0 = 0 (PC3); for 1 ≤ i ≤ m+ 1 we have

0x2
0
+···+x2

m+1
· 0xi

· x0 = 0x2
0
+···+x2

m+1
· 0x2

i

· x0 by (PC2)

= 0x2
i

· 0x2
0
+···+x2

m+1
· x0

= 0x2
i

· 0x2
0
+···+x2

i−1
+x2

i+1
+···+x2

m+1
+x2

i

· x0

= 0x2
i

· 0x2
0
+···+x2

i−1
+x2

i+1
+···+x2

m+1
· x0 by (PC4)

= 0 by (IH).

Thus

0x2
0
+···+x2

m+1
· x0

= 0x2
0
+···+x2

m+1
· (1x0

+ 0x0
) · x0

= 0x2
0
+···+x2

m+1
· 1x0

· x0 by (‡)

= 0x2
0
+···+x2

m+1
· 1x0

· (1x1
+ 0x1

) · x0

= 0x2
0
+···+x2

m+1
· 1x0·x1

· x0 by (‡) and (PC8)

...

= 0x2
0
+···+x2

m+1
· 1x0· ··· ·xm

· (1xm+1
+ 0xm+1

) · x0

= 0x2
0
+···+x2

m+1
· 1x0· ··· ·xm+1

· x0 by (‡) and (PC8).

We may therefore conclude that

0x2
0
+···+x2

m+1
· x0

= 0x2
0
+···+x2

m+1
· (1x0· ··· · xm+1

+ 0x0· ··· ·xm+1
) · x0

= 0x2
0
+···+x2

m+1
· 1x0· ··· · xm+1

· x0 + 0x2
0
+···+x2

m+1
· 0x0· ··· · xm+1

· x0

= 0x2
0
+···+x2

m+1
· 0x0· ··· · xm+1

· x0 by Lemma 4.7

= 0x2
0
+···+x2

m+1
· 1x0· ··· · xm+1

· 0x0· ··· · xm+1
· x0 by the above identity

= 0 since 1t · 0t = 0.
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