
University of Amsterdam

Theory of Computer Science

Refinement in the Function-Behaviour-
Structure Framework

(version 2)

B. Diertens

Report TCS1301v2 February 2015

B. Diertens

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam
the Netherlands

tel. +31 20 525.7593
e-mail: B.Diertens@uva.nl

Theory of Computer Science Electronic Report Series

Refinement in the Function-Behaviour-Structure Framework
(version 2)

Bob Diertens

section Theory of Computer Science, Faculty of Science, University of Amsterdam

ABSTRACT

We introduce refinement in the function-behaviour-structure framework for design, as
described by John Gero, in order to deal with complexity. We do this by connecting the
frameworks for the design of two models, one the refinement of the other. The result is a
framework for the design of an object that supports levels of abstraction in the design.
This framework can easily be extended for the design of an object on more than two
levels of abstraction.

Ke ywords:design model, refinement, abstraction, software design

1. Intr oduction

In software engineering, dealing with complexity is a major issue and it is the ground for many software
development methodologies. Most of these methodologies however do not take into account the nature and
process of design. Each methodology has its success stories, but one can seldom relate it to a more abstract
framework for design.A well-known method for dealing with complexity in other engineering disciplines
is modelling. By making a model one can leave out some detail and concentrate on the bigger picture.
Even a model can be too complicated, in which case one can make a model for the model.This results in a
design consisting of several levels, each higher level abstracting from details on the lower levels.

This is picked up in software engineering as well and resulted in model based software development and
similar approaches.Despite this, the problem with software engineering remains that the design is largely
focused on a too low lev el of abstraction. Thisis caused by the fact that software is build cheaply, and can
be done over and over again. Thismakes it possible to test on the lowest level and often results in a race to
the lowest level to start testing early in the design process.A step up to a higher level of abstraction to
repair design flaws is easily replaced by fixing the design on the lowest level. In that process, the higher
level design is discarded and complexity is taken into the lower levels instead of dealing with it on the
higher levels of design.

In our view it is better to incorporate methodologies that follow the nature and process of design on several
levels of abstraction. An important factor in this is the knowledge of what design really is. John Gero has
described a general framework for design [1] that is based on function, behaviour, and structure of the
object to be designed. This framework, however, omits levels of abstraction. Although one can argue that
through the reformulation processes of this framework it is possible to have lev els of abstraction in the
design, the levels of abstraction then are only implicit in the design process.For a thorough understanding
and execution of the design process it would be better to make the levels of abstraction explicit in the
design process.

In section 2 we give an overview of the function-behaviour-structure framework for design. We introduce
refinement in this framework in section 3 in order to support levels of abstraction in the design process
explicitly.

2. TheFunction-Behaviour-Structure Framework

In [1] Gero describes a framework for design that has sufficient power to capture the nature of the concepts
that support design processes. This framework, that involves the relation between function, behaviour, and
structure of a design, can be applied to any engineering discipline.Together with Kannengiesser, Gero

- 2 -

describes the framework in [2] in relation with the environment in which designing takes place, accounting
for the dynamic character of the context. We giv e an overview of the elements and processes that form the
function-behaviour-structure (FBS) framework.

The FBS framework elements has the following elements.

function (F) The set of functions expressing the requirements and objectives that must
be realized by the object.

structure (S) Describes the components of the object and their relationships.

expected behaviour (Be) The set of expected behaviours to fulfill the functionF .

structure behaviour (Bs) The set of behaviours the structureS exhibits.

description (D) The description of the design, giving all the information to build the object,
and what more there is to know about the design.

These elements are connected in the framework by processes (Figure 1).

F

Be Bs

S D
reformulation

Figure 1. The FBS framework

An outline of the process of the FBS framework is given below.

formulation (F → Be) Transforming the functionF into behaviour that is expected from the
object.

synthesis (Be → S) Transforming the expected behaviour into a solution intended to exhibit
this behaviour.

analysis (S → Bs) Deriving of the actual behaviour from the synthesized structure.

evaluation (Be ↔ Bs) Comparing the behaviour derived from the structure with the expected
behaviour.

documentation (S → D) Producing the design description for the constructing or manufacturing of
the object.

In addition the framework contains reformulation processes that are carried out, based on the outcome of
the evaluation of behaviours.

structure reformulation (S → S)
Changing of the structure in order to obtain a behaviour that is more in line
with the expected behaviour.

behaviour reformulation (S → Be)
Adjusting of the expected behaviour that fits the required function and is
more in line with the behaviour of the structure.

function reformulation (S → F)
Changing of the function due to a better insight in the problem.

- 3 -

3. Refinementof the FBS framework

To capture refinement in design we combine FBS frameworks into a framework (R−FBS) that shows
different levels of abstraction.We consider the design of two models,M and M ′, for a particular system.
The modelM ′ is supposed to be a faithful implementation of the modelM . This has as a consequence that
the two models both represent the system but on different levels of abstraction. Both models have their
own design process,FBS and FB S′, each of which can be described by the function-behaviour-structure
framework for design.

Because the modelM ′ on the lower level of abstraction is an implementation of the modelM on the higher
level of abstraction, the descriptionD for model M contains information for the design of modelM ′.
Because the modelM ′ is a refinement of the modelM , the structureS′ in the design processFB S′ is a
refinement of the structureS in the design processFBS. The relations described above between the
elements in the design processesFBSandFB S′ for the two models is shown in Figure 2.

F

Be Bs

S D

F ′

Be′ Bs′

S′ D′

refin
in

g

Figure 2. Design framework for two models

We like to integrate the two design processes, so that the processes that play a role in the refinement,
evalution of the refinement, and reformulation of the refinement become clear. In the following sections we
describe how these design processes can be interconnected and what the consequences are for the overall
design process.

3.1 Refinement

Each element ofFB S′ can be considered a refinement of the associated element ofFBS. In the following
we describe how the refinement processes between the two frameworks take place.

Functionality refinement ({ D, F} → F ′)
As the structureS consists of the components and their interaction for modelM , the description
D describes the functionality of these components and the interactions.It is this functionality
together with functionalityF that makes up the functionalityF ′ for modelM ′. This refinement
of functionality is indicated by 1 in Figure 3.

Expected behaviour refinement ({ Be, F ′} → Be′)
The expected behaviour Be′ can be obtained by refining the expected behaviour Be with
refinements extracted fromF ′. This is indicated by 2 in Figure 3.

Structure refinement ({ S, Be′} → S′)
In a FBS framework the structure is synthesized from the expected behaviour of the model.We
cannot obtain the structureS′ from Be′ in this way, since S′ must be a refinement ofS. We hav e

- 4 -

to synthesizeS′ from S and use refinements that are based onBe′. This is indicated by 3 in
Figure 3.

Documentation refinement ({ D, S′} → D′)
The descriptionD′ is the addition of the descriptionD and the description of the refinement
processes. Thisis indicated by 4 in Figure 3.

F

Be Bs

S D

F ′

Be′ Bs′

S′ D′

1

2

3 4

Figure 3. Refinement processes in the design framework

3.2 BehaviourEvaluation

Besides the behaviour evalution on both levels, we have to check if M ′ is a true implementation ofM . We
can do this by comparing a refinedBs with Bs′. But that leaves us with the problem how to refineBs. We
can however do the reverse. Instead of refiningBs we can abstractBs′ and compare it withBs (Figure 4). If
the behaviours do not match, the refinement process is wrong and has to be adjusted. The adjustment can
be done through reformulation processes described in the next section.

F

Be Bs

S D

F ′

Be′ Bs′

S′ D′

1

2

3 4

Figure 4. Refinement evaluation process in the design framework

- 5 -

3.3 Reformulation

The design frameworks for the modelsM andM ′ contain reformulation processes.For the modelM these
are the standard processes described earlier, but for the modelM ′ the reformulations have to be such that
the elements stay within the refinements of their corresponding abstract elements.

The situation can occur that a reformulation of one of the elements for modelM ′ is necessary and that
because of this reformulation it no longer conforms with the corresponding abstract element for modelM .
In that case, the current design must be rejected and a reformulation of the corresponding element for
modelM have to take place. All the reformulation processes are shown in Figure 5.

F

Be Bs

S D

F ′

Be′ Bs′

S′ D′

1

2

3 4

reformulation

Figure 5. Reformulation processes in the design framework

4. Conclusions

We introduced refinement in the FBS framework by connecting frameworks for the design of two models,
one model the refinement of the other. The resulting framework (R−FBS) can be used for the design of an
object on two lev els of abstraction. In a similar way, R−FBScan easily be further extended to a framework
for the design of an object on more than two lev els of abstraction.We can turnR−FBS into the original
framework by considering the refinement processes as reformulations and abstract from the details of the
refinement processes.In R−FBS the levels of abstraction in the design are made explicit. This R−FBScan
be used to develop several models that are related to each other through refinement and abstraction.

Acknowledgements

Many thanks to Alban ponse for his proofreading and feedback.

References

[1] J.S.Gero, ‘‘Design Prototypes: A Knowledge Representation Scheme for Design,’’ AI Magazine, vol.
11, no. 4, pp. 26-36, 1990.

[2] J.S. Gero and N. Kannengiesser, ‘‘The Situated Function-Behavior-Structure Framework,’’ Design
Studies, vol. 25, no. 4, pp. 373-391, 2004.

Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

[TCS1410v2] J.A.Bergstra and A. Ponse,Division by Zero in Common Meadows (version 2),section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1414] J.A.Bergstra,Fr om Softwae Crisis to Informational Money, section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1413] J.A.Bergstra and I. Bethke, Note on Paraconsistency on the Logic of Fractions,section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1412] J.A.Bergstra, I. Bethke, and A. Ponse,Rekenen-Informatica,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1411] J.A.Bergstra,Bitcoin: not a Currency-like Informational Commodity, section Theory of Computer
Science - University of Amsterdam, 2014.

[TCS1409v2] J.A.Bergstra and A. Ponse,Three Datatype Defining Rewrite Systems for Datatypes of Integers each
extending a Datatype of Naturals (version 2),section Theory of Computer Science - University of
Amsterdam, 2014.

[TCS1410] J.A.Bergstra and A. Ponse,Division by Zero in Common Meadows,section Theory of Computer
Science - University of Amsterdam, 2014.

[TCS1407v3] J.A.Bergstra,Four Complete Datatype Defining Rewrite Systems for an Abstract Datatype of Natural
Numbers (version 3),section Theory of Computer Science - University of Amsterdam, 2014.

[TCS1409] J.A.Bergstra and A. Ponse,Three Datatype Defining Rewrite Systems for Datatypes of Integers each
extending a Datatype of Naturals, section Theory of Computer Science - University of Amsterdam,
2014.

[TCS1406v3] J.A.Bergstra,Bitcoin and Islamic Finance (version 3),section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1407v2] J.A.Bergstra,Four Complete Datatype Defining Rewrite Systems for an Abstract Datatype of Natural
Numbers (version 2),section Theory of Computer Science - University of Amsterdam, 2014.

[TCS1408] J.A.Bergstra,Bitcoin: Informational Money en het Einde van Gewoon Geld,section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1407] J.A.Bergstra,Four Complete Datatype Defining Rewrite Systems for an Abstract Datatype of Natural
Numbers,section Theory of Computer Science - University of Amsterdam, 2014.

[TCS1406v2] J.A.Bergstra,Bitcoin and Islamic Finance (version 2),section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1406] J.A.Bergstra,Bitcoin and Islamic Finance, section Theory of Computer Science - University of
Amsterdam, 2014.

[TCS1405] J.A.Bergstra,Rekenen in een Conservatieve Schrapwet Weide,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1404] J.A.Bergstra,Division by Zero and Abstract Data Types,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1403] J.A.Bergstra, I. Bethke, and A. Ponse,Equations for Formally Real Meadows,section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1402] J.A.Bergstra and W.P. Weijland,Bitcoin, a Money-like Informational Commodity, section Theory of
Computer Science - University of Amsterdam, 2014.

[TCS1401] J.A.Bergstra,Bitcoin, een "money-like informational commodity",section Theory of Computer
Science - University of Amsterdam, 2014.

[TCS1301] B. Diertens,The Refined Function-Behaviour-Structure Framework,section Theory of Computer
Science - University of Amsterdam, 2013.

[TCS1202] B. Diertens,Fr om Functions to Object-Orientation by Abstraction, section Theory of Computer
Science - University of Amsterdam, 2012.

[TCS1201] B. Diertens, Concurrent Models for Object Execution,section Theory of Computer Science -
University of Amsterdam, 2012.

[TCS1102] B.Diertens,Communicating Concurrent Functions,section Theory of Computer Science - University
of Amsterdam, 2011.

[TCS1101] B. Diertens,Concurrent Models for Function Execution,section Theory of Computer Science -
University of Amsterdam, 2011.

[TCS1001] B.Diertens,On Object-Orientation,section Theory of Computer Science - University of Amsterdam,
2010.

The above reports and more are available through the website: ivi.fnwi.uva.nl/tcs/

Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XG Amsterdam
the Netherlands

ivi.fnwi.uva.nl/tcs/

