University of Amsfterdam
Theory of Computer Science

Refilnement in the Function-Behaviour-
Structure Framgork
(version 2)

B. Diertens

Report TCS1301v2 February 2015

B. Diertens

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam
the Netherlands

tel. +31 20 525.7593
e-mail: B.Diertens@uva.nl

Theory of Computer Science Electronic Report Series

Refinement in the Function-Behaviour-Structue Framework
(version 2)

Bob Diertens

section Theory of Computer Science, Faculty of Sciencejetily of Amsterdam

ABSTRACT

We introduce refinement in the function-betwaur-structure frameork for design, as
described by John Gero, in order to deal with corifyle We do his by connecting the
framaworks for the design of taymodels, one the refinement of the oth&he result is a
framavork for the design of an object that supportgele of abstraction in the design.
This framevork can easily be extended for the design of an object on more tlsan tw
levels of abstraction.

Keywords: design model, refinement, abstraction, software design

1. Introduction

In software engineering, dealing with complexity is a major issue and it is the ground fosaftarare
development methodologies. Most of these methodologiegeher do not take into account the nature and
process of design. Each methodology has its success statiesigbcan seldom relate it to a more abstract
frameawork for design. A well-known method for dealing with complexity in other engineering disciplines
is modelling. By making a model one canveaut some detail and concentrate on the bigger picture.
Even a model can be too complicated, in which case one camamaddel for the model.This results in a
design consisting of geral levels, each higher lel abstracting from details on the loweréts.

This is picked up in softare engineering as well and resulted in model based softwaglemtaent and
similar approachesDespite this, the problem with software engineering remains that the desiggelg lar
focused on a too o levd of abstraction. Thigs caused by the fact that software is build cheaplg can
be done wer and over again. Thismalkes it possible to test on the lowestdeand often results in a race to
the lowest led to start testing early in the design procegsstep up to a higher Vel of abstraction to
repair design flas is easily replaced by fixing the design on the lowest.ldn that process, the higher
level design is discarded and complexity is taken into the lowedslénstead of dealing with it on the
higher levels of design.

In our view it is better to incorporate methodologies that fallthe nature and process of design oress
levels of abstraction. An importanaétor in this is the knowledge of what design really is. John Gero has
described a general framerk for design [1] that is based on function, bebar, and structure of the
object to be designed. This framak, havever, omits levels of abstraction. Although one can argue that
through the reformulation processes of this framr& it is possible to ha levds of abstraction in the
design, the ledls of abstraction then are only implicit in the design procéss.a thorough understanding
and eecution of the design process it would be better toanhk levels of abstraction explicit in the
design process.

In section 2 we ge an overview of the function-behaour-structure frameork for design. We introduce
refinement in this franveork in section 3 in order to supportvéts of abstraction in the design process

explicitly.

2. TheFunction-Behaviour-Structure Framework

In [1] Gero describes a franverk for design that has sufficient power to capture the nature of the concepts
that support design processes. This fraork, that irvolves the relation between function, belbar, and
structure of a design, can be applied tg angineering discipline.Together with Kannengiesse®ero

describes the frama@rk in [2] in relation with the environment in which designing takes place, accounting
for the dynamic character of the cortteWe gve an orerview of the elements and processes that form the
function-behaviour-structure (FBS) framark.

The FBS frameork elements has the following elements.

function) The set of functions expressing the requirements and olgedtat must
be realized by the object.

structure §) Describes the components of the object and their relationships.
expected behaviouB;) The set of expected behaviours to fulfill the functian
structure behavioul;) The set of behaviours the struct@exhibits.

description D) The description of the designyaig all the information to build the object,
and what more there is to km@bout the design.

These elements are connected in the freorie by processes (Figure 1).

m
= ﬂ_\;s_»D

Be =<+—» B

Figure 1 The FBS fram&ork
An outline of the process of the FBS framoek is given below.

formulation & - Bg) Transforming the functior into behaviour that is expected from the

object.

synthesisB, —» S) Transforming the xpected behaviour into a solution intended xdbileit
this behaviour.

analysis § - By) Deriving of the actual behaviour from the synthesized structure.

evduation B, « By) Comparing the behaviour deed from the structure with thexpected
behaviour.

documentation§ —» D) Producing the design description for the constructing or nzentwfing of
the object.

In addition the framgork contains reformulation processes that are carried out, based on the outcome of
the evaluation of behaviours.

structure reformulationy - S)
Changing of the structure in order to obtain a behaviour that is more in line
with the expected behaviour.

behaviour reformulation - By)
Adjusting of the expected behaviour that fits the required function and is
more in line with the behaviour of the structure.

function reformulation$ — F)
Changing of the function due to a better insight in the problem.

3. Refinementof the FBS framework

To capture refinement in design we combine FBS fraonks into a frameork (R-FBS) that shavs
different levels of abstraction.We @nsider the design of twmodels,M and M’, for a particular system.
The modelM' is supposed to be aithful implementation of the mod&l. This has as a consequence that
the two models both represent the system but on differarddeof abstraction. Both models Ve their
own design processBS and FBS, each of which can be described by the function-biehe-structure
framework for design.

Because the mod®l’ on the lower leel of abstraction is an implementation of the moleln the higher
level of abstraction, the descriptio® for model M contains information for the design of moddl.

Because the modéll’ is a refinement of the mod#, the structureS' in the design procedsBS is a
refinement of the structur8 in the design procesBBS. The relations described al® ketween the
elements in the design procesE&SandFBS for the two models is shown in Figure 2.

F /_> S y
Be =-—» B

Buiuiyal

\
o S —» D
\ /A_/>
B

e =w-—» B

Figure 2 Design framerork for two models

We like to integrate the tw design processes, so that the processes that play a role in the refinement,
evdution of the refinement, and reformulation of the refinement become tfetwe following sections we
describe her these design processes can be interconnected and what the consequences areefall the o
design process.

3.1 Refinement

Each element oFBS can be considered a refinement of the associated elemeEBtSofln the following
we describe hwe the refinement processes between theftamavorks tale pace.

Functionality refinemen{ D, F} - F')
As the structurés consists of the components and their interaction for mildehe description
D describes the functionality of these components and the interactioissthis functionality
together with functionality= that makes up the functionalify’ for modelM'. This refinement
of functionality is indicated by 1 in Figure 3.

Expected behaviour refinemefig;, F'} - B.')
The expected bekiur B, can be obtained by refining the expected biela B, with
refinements extracted froR. This is indicated by 2 in Figure 3.

Structure refinemen{ §, B,'} - S)
In a FBS framwork the structure is synthesized from the expected behaviour of the nvudel.
cannot obtain the structuf from B,' in this way, sSnce S’ must be a refinement & We have

to synthesizeS' from S and use refinements that are basedBgn This is indicated by 3 in
Figure 3.

Documentation refinement, S} - D')
The descriptionD' is the addition of the descriptio® and the description of the refinement
processes. This indicated by 4 in Figure 3.

F /—> S —» D
Be =-—» B

3 4

S D'

~

2
F /\‘
B'

e w—» B

Figure 3 Refinement processes in the design fraonk

3.2 BehaviouEvaluation

Besides the beki@ur evalution on both lgels, we hae o check if M' is a true implementation dfl. We

can do this by comparing a refinBd with BS'. But that leaes us with the problem hw to refineB;. We

can havever do the reverse. Instead of refininBs we can abstradd,’ and compare it witlBs (Figure 4). If

the behaiours do not match, the refinement process is wrong and has to be adjusted. The adjustment can
be done through reformulation processes described in the next section.

Figure 4 Refinement edluation process in the design framek

3.3 Reformulation

The design frameorks for the model$/1 and M’ contain reformulation processeBor the modelM these
are the standard processes described eailiefor the modeM' the reformulations hee o be sich that
the elements stay within the refinements of their corresponding abstract elements.

The situation can occur that a reformulation of one of the elements for mddel necessary and that
because of this reformulation it no longer conforms with the corresponding abstract element favimodel

In that case, the current design must be rejected and a reformulation of the corresponding element for
modelM have take gdace. Allthe reformulation processes are shown in Figure 5.

AN
E PS—»D

B =-—» B

Figure 5 Reformulation processes in the design framr&

4. Conclusions

We introduced refinement in the FBS framoek by connecting franweorks for the design of tavmodels,

one model the refinement of the oth&he resulting frameork (R-FBS) can be used for the design of an
object on tw levds of abstraction. In a similaray, R-FBScan easily be further extended to a framek

for the design of an object on more tham tevds of abstraction.We @an turnR-FBS into the original
framavork by considering the refinement processes as reformulations and abstract from the details of the
refinement processetn R-FBSthe levels of abstraction in the design are maxplieit. This R-FBScan

be used to deslop several models that are related to each other through refinement and abstraction.

Acknowledgements

Many thanks to Alban ponse for his proofreading and feedback.

References

[1] J.S.Gero, “Design Prototypes: A Knowledge Representation Scheme for DegigMagazine vol.
11, no. 4, pp. 26-36, 1990.

[2] J.S.Gero and N. KannengiesséiThe Situated Function-Beligr-Structure Framgork,” Design
Studiesvol. 25, no. 4, pp. 373-391, 2004.

Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

[TCS1410v2] J.ABemgstra and A. Ponsdivision by Zeo in Common Meadows (v&pbn 2),section Theory of
Computer Science - Urnrsity of Amsterdam, 2014.

[TCS1414] J.A.Bergstra,From Sftwae Crisis to Informational Moggesection Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1413] J.A.Bemgstra and |. Bethk Note on Rraconsistency on the Logic ofa€tions, section Theory of
Computer Science - Urndrsity of Amsterdam, 2014.

[TCS1412] J.ABemstra, I. Bethke, and A. Pondeekenen-Informaticasection Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1411] J.A.Bergstra,Bitcoin: not a Curency-lile Informational Commoditysection Theory of Computer
Science - Uniersity of Amsterdam, 2014.

[TCS1409v2] J.ABemgstra and A. Ponsdhree Datatype Defining Rewrite Systems for Datatypes afdateach
exending a Datatype of Naturals (version 8gction Theory of Computer Science - unsity of
Amsterdam, 2014.

[TCS1410] J.A.Bemstra and A. Ponsdivision by Zeo in Common Meadowssection Theory of Computer
Science - Uniersity of Amsterdam, 2014.

[TCS1407v3] J.ABergstrafour Complete Datatype Defining Rewrite Systems for an Abstract Datatype adiNatur
Numbes (version 3) section Theory of Computer Science - nsity of Amsterdam, 2014.

[TCS1409] J.ABemgstra and A. Ponsdhree Datatype Defining Rewrite Systems for Datatypes afdateach
exending a Datatype of Natals, section Theory of Computer Science - insity of Amsterdam,
2014.

[TCS1406v3] J.A.Bergstra, Bitcoin and Islamic Finance (version 3jgction Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1407v2] J.ABergstrafour Complete Datatype Defining Rewrite Systems for an Abstract Datatype adiNatur
Numbes (version 2) section Theory of Computer Science - nsity of Amsterdam, 2014.

[TCS1408] J.A.Bergstra,Bitcoin: Informational Mong en tet Einde van Gewoon Geldgction Theory of
Computer Science - Urdrsity of Amsterdam, 2014.

[TCS1407] J.ABergstrafour Complete Datatype Defining Rewrite Systems for an Abstract Datatype adiNatur
Numberssection Theory of Computer Science - insity of Amsterdam, 2014.

[TCS1406v2] J.A.Bergstra, Bitcoin and Islamic Finance (version 23gection Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1406] J.A.Bergstra,Bitcoin and Islamic bance, section Theory of Computer Science - \émnsity of
Amsterdam, 2014.

[TCS1405] J.ABergstraRelenen in een Conservaiie Sbrapwet Wide,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1404] J.A.Bergstra,Division by Zeo and Abstract Data yipes,section Theory of Computer Science -
University of Amsterdam, 2014.

[TCS1403] J.A.Bemstra, |. Bethke, and A. Ponsggquations for Formally Real Meadowsection Theory of
Computer Science - Urdrsity of Amsterdam, 2014.

[TCS1402] J.ABemstra and WP. Weijland, Bitcoin, a Mong-like Informational Commaoditysection Theory of
Computer Science - Urdrsity of Amsterdam, 2014.

[TCS1401] J.A.Bergstra,Bitcoin, een "monelike informational commodity”section Theory of Computer
Science - Uniersity of Amsterdam, 2014.

[TCS1301] B.Diertens, The Refined Function-Behavie8tructue Famework,section Theory of Computer
Science - Uniersity of Amsterdam, 2013.

[TCS1202] B.Diertens, From Functions to Object-Orientation by Abattion, section Theory of Computer
Science - Uniersity of Amsterdam, 2012.

[TCS1201] B. Diertens, Concurent Models for Object Executiorsection Theory of Computer Science -
University of Amsterdam, 2012.

[TCS1102] B.Diertens,Communicating Concurrent Functiorsection Theory of Computer Science - \nsity
of Amsterdam, 2011.

[TCS1101] B.Diertens,Concurent Models for Function Executiosection Theory of Computer Science -
University of Amsterdam, 2011.

[TCS1001] B.Diertens,On Object-Orientationsection Theory of Computer Science - nsity of Amsterdam,
2010.

The abee reports and more arealable through the website: ivi.fnwi.uva.nl/tcs/

Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XG Amsterdam
the Netherlands

ivi.fnwi.uva.nl/tcs/

