
Univer sity of Amsterdam

Theor y of Computer Science

The Refined Function-Behaviour-Structure
Framework

B. Diertens

Report TCS1301 September 2013



B. Diertens

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam
the Netherlands

tel. +31 20 525.7593
e-mail: B.Diertens@uva.nl

Theory of Computer Science Electronic Report Series



The Refined Function-Behaviour-Structure Framework

Bob Diertens

section Theory of Computer Science, Faculty of Science, University of Amsterdam

ABSTRACT

We refine the function-behaviour-structure framework for design introduced by John
Gero in order to deal with complexity. We do this by connecting the frameworks for the
desing of two models, one the refinement of the other. The result is a refined framework
for the design of an object on two lev els of abstraction. This framework can easily be
extended for the design of an object on more than two lev els of abstraction.

Ke ywords:design model, refinement, abstraction, software design

1. Intr oduction

In software engineering, dealing with complexity is a major issue and it is the ground for many software
development methodologies. Most of these methodologies however do not take into account the nature and
process of design. Each methodology has its success stories, but one can seldom relate it to a more general
framework for design.A well-known method for dealing with complexity in other engineering disciplines
is modelling. By making a model one can leave out some detail and concentrate on the bigger picture.
Even a model can be too complicated, in which case one can make a model for the model. This results in a
design consisting of several levels, each higher level abstracting from details on the lower levels.

This is picked up in software engineering as well and resulted in model based software development and
similar approaches. Despite this, the problem with software engineering remains that the design is largely
focused on a too low lev el of abstraction. Thisis caused by the fact that software is build cheaply, and can
be done over and over again. Thismakes it possible to test on the lowest level and often results in a race to
the lowest level to start testing early in the design process.A step up to a higher level of abstraction to
repair design flaws is easily replaced by fixing the design on the lowest level. In that process, the higher
level design is discarded and complexity is taken into the lower levels instead of dealing with it on the
higher levels of design.

In our view it is better to incorporate methodologies that follow the nature and process of design on several
levels of abstraction. An important factor in this is to know what design really is. John Gero has described
a general framework for design [1] that is based on function, behaviour, and structure, of the object to be
designed. Thisframework, however, omits levels of abstraction. Although one can argue that through the
reformulation processes of this framework it is possible to have lev els of abstraction in the design, the
levels of abstraction then are only implicit in the design process.For a thorough understanding and
execution of the design process it is better to make the levels of abstraction explicit in the design process.

In section 2 we give an overview of the function-behaviour-structure framework for design.We refine this
framework in section 3 to a framework that makes levels of abstraction in the design process explicit.

2. TheFunction-Behaviour-Structure Framework

In [1] Gero describes a framework for design that has sufficient power to capture the nature of the concepts
that support design processes.This framework that involves the relation between function, behaviour, and
structure, of a design can be applied to any engineering discipline.Together with Kannengiesser, Gero
describes the framework in [2] in relation with the environment in which designing takes place, accounting
for the dynamic character of the context. We giv e an overview of the elements and processes that form the
function-behaviour-structure (FBS) framework.



- 2 -

The FBS framework elements has the following elements.

function (F) The set of functions the object that must be fulfilled by the object.

structure (S) Describes the components of the object and their relationships.

expected behaviour (Be) The set of expected behaviours to fulfill the functionF .

structure behaviour (Bs) The set of behaviours the structureS exhibits.

description (D) The description of the design, giving all the information to build the object,
and more.

These elements are connected in the framework by processes (Figure 1).

F

Be Bs

S D
reformulation

Figure 1. The FBS framework

An outline of the process of the FBS framework is given below.

formulation (F → Be) Transforming the functionF into behaviour that is expected from the
object.

synthesis (Be → S) Transforming the expected behaviour into a solution intended to exhibit
this behaviour.

analysis (S → Bs) Deriving of the actual behaviour from the synthesized structure.

evaluation (Be ↔ Bs) Comparing the behaviour derived from the structure with the expected
behaviour.

documentation (S → D) Producing the design description for the constructing or manufacturing of
the object.

In addition the framework contains reformulation processes that are carried out, based on the outcome of
the evaluation of behaviours.

structure reformulation (S → S)
Changing of the structure in order to obtain a behaviour that is more in line
with the expected behaviour.

behaviour reformulation (S → Be)
Adjusting of the expected behaviour that fits the required function and is
more in line with the behaviour of the structure.

function reformulation (S → F)
Changing of the function due to a better insight in the problem.

3. Refinementof the FBS framework

To introduce separate levels of abstraction in the FBS framework we consider the design of two models,M
and M ′, for a particular system. The modelM ′ is supposed to be a faithful implementation of the model
M . This has as a consequence that the two models both represent the system but on different levels of
abstraction. Bothmodels have their own design process,FBSandFB S′, each of which can by described by



- 3 -

the function-behaviour-structure framework for design.

Because the modelM ′ on the lower level of abstraction is an implementation of the modelM on the higher
level of abstraction, we can use documentationD for modelM as input for the design of modelM ′. But,
apart from this relation, it leaves the two design processes completely separate, while there are other
relations between elements of the design processes.Because the modelM ′ is a refinement of the modelM ,
the structureS′ in the design processFB S′ is a refinement of the structureS in the design processFBS.
This relation between the structures in the design processesFBSandFB S′ for the two models is shown in
Figure 2.

F

Be Bs

S D

F ′

Be′ Bs′

S′ D′

refin
in

g

Figure 2. Design framework for two models

The relation of refinement between the two structures does not show up in the design processes.We like to
integrate the two design processes, so that all refinement relations between the two design proceses become
clear and that immediate feedback can be made through the relations between the different parts of the
overall design process. In the following sections we describe how these design processes can be
interconnected and what the consequences are for the overall design process.

3.1 Refinement

Each element ofFB S′ can be considered a refinement of the similar element ofFBS. In the following we
describe how the refinement processes between the two frameworks take place.

Functionality refinement
As the structureS consists of the components and their interaction for modelM , the
documentationD describes the functionality of these components and the interactions. It is this
functionality together with functionalityF that makes up the functionalityF ′ for modelM ′. This
refinement of functionality is indicated by 1 in Figure 3.

Expected behaviour refinement
The expected behaviour Be′ can be obtained by refining the expected behaviour Be with
refinements extracted fromF ′. This is indicated by 2 in Figure 3.

Structure refinement
In a FBS framework the structure is synthesized from the expected behaviour of the model.We
cannot obtain the structureS′ from Be′ in this way, since S′ must be a refinement ofS. We hav e
to synthesizeS′ from S and use refinements that are based onBe′. This is indicated by 3 in
Figure 3.



- 4 -

Documentation refinement
The documentationD′ is the addition of the documentationD and the documentation of the
refinement processes. This is indicated by 4 in Figure 3.

F

Be Bs

S D

F ′

Be′ Bs′

S′ D′

1

2

3 4

Figure 3. Refinement processes in the design framework

3.2 BehaviourEvaluation

Besides the behaviour evalution on both levels, we have to check if M ′ is a true implementation ofM . We
can do this by comparing a refinedBs with Bs′. But that leaves us with the problem how to refineBs. We
can however do the reverse. Instead of refiningBs we can abstractBs′ and compare it withBs (Figure 4). If
the behaviours do not match, the refinement process is wrong and has to be adjusted. The adjustment can
be done through reformulation processes described in the next section.

F

Be Bs

S D

F ′

Be′ Bs′

S′ D′

1

2

3 4

Figure 4. Refinement evaluation process in the design framework



- 5 -

3.3 Reformulation

The design frameworks for the modelsM andM ′ contain reformulation processes.For the modelM these
are the normal processes, but for the modelM ′ the reformulations have to be such that the elements stay
within the refinements of their corresponding abstract elements.

The situation can occur that a reformulation of one of the elements for modelM ′ is necessary and that
because of this reformulation it no longer conforms with the corresponding abstract element for modelM .
In that case, the current design must be rejected and a reformulation of the corresponding element for
modelM have to take place. All the reformulation processes are shown in Figure 5.

F

Be Bs

S D

F ′

Be′ Bs′

S′ D′

1

2

3 4

reformulation

Figure 5. Reformulation processes in the design framework

4. Conclusions

We refined the FBS framework by connecting frameworks for the design of two models, one model the
refinement of the other. The refined framework can be used for the design of an object on two lev els of
abstraction. Ina similar way, the refined framework can easily be further refined to a framework for the
design of an object on more than two lev els of abstraction.We can turn the refined framework into the
original framework by considering the refinement processes as reformulations and abstract from the details
of the refinement processes.In the refined framework the levels of abstraction in the design are made
explicit. This refined framework can be used to develop several models that are related to each other
through refinement and abstraction.

References

[1] J.S.Gero, ‘‘Design Prototypes: A Knowledge Representation Scheme for Design,’’ AI Magazine, vol.
11, no. 4, pp. 26-36, 1990.

[2] J.S. Gero and N. Kannengiesser, ‘‘The Situated Function-Behavior-Structure Framework,’’ Design
Studies, vol. 25, no. 4, pp. 373-391, 2004.





Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

[TCS1202] B. Diertens,Fr om Functions to Object-Orientation by Abstraction, section Theory of Computer
Science - University of Amsterdam, 2012.

[TCS1201] B. Diertens, Concurrent Models for Object Execution,section Theory of Computer Science -
University of Amsterdam, 2012.

[TCS1102] B.Diertens,Communicating Concurrent Functions,section Theory of Computer Science - University
of Amsterdam, 2011.

[TCS1101] B. Diertens,Concurrent Models for Function Execution,section Theory of Computer Science -
University of Amsterdam, 2011.

[TCS1001] B.Diertens,On Object-Orientation,section Theory of Computer Science - University of Amsterdam,
2010.

Within former series (PRG) the following reports appeared.

[PRG0914] J.A.Bergstra and C.A. Middelburg, Autosolvability of Halting Problem Instances for Instruction
Sequences,Programming Research Group - University of Amsterdam, 2009.

[PRG0913] J.A.Bergstra and C.A. Middelburg, Functional Units for Natural Numbers, Programming Research
Group - University of Amsterdam, 2009.

[PRG0912] J.A.Bergstra and C.A. Middelburg, Instruction Sequence Processing Operators, Programming
Research Group - University of Amsterdam, 2009.

[PRG0911] J.A. Bergstra and C.A. Middelburg, Partial Komori Fields and Imperative Komori Fields,
Programming Research Group - University of Amsterdam, 2009.

[PRG0910] J.A.Bergstra and C.A. Middelburg, Indirect Jumps Improve Instruction Sequence Performance,
Programming Research Group - University of Amsterdam, 2009.

[PRG0909] J.A. Bergstra and C.A. Middelburg, Arithmetical Meadows,Programming Research Group -
University of Amsterdam, 2009.

[PRG0908] B.Diertens,Software Engineering with Process Algebra: Modelling Client / Server Architecures,
Programming Research Group - University of Amsterdam, 2009.

[PRG0907] J.A.Bergstra and C.A. Middelburg, Inversive Meadows and Divisive Meadows,Programming
Research Group - University of Amsterdam, 2009.

[PRG0906] J.A.Bergstra and C.A. Middelburg, Instruction Sequence Notations with Probabilistic Instructions,
Programming Research Group - University of Amsterdam, 2009.

[PRG0905] J.A.Bergstra and C.A. Middelburg, A Protocol for Instruction Stream Processing,Programming
Research Group - University of Amsterdam, 2009.

[PRG0904] J.A. Bergstra and C.A. Middelburg, A Process Calculus with Finitary Comprehended Terms,
Programming Research Group - University of Amsterdam, 2009.

[PRG0903] J.A.Bergstra and C.A. Middelburg, Tr ansmission Protocols for Instruction Streams,Programming
Research Group - University of Amsterdam, 2009.

[PRG0902] J.A. Bergstra and C.A. Middelburg, Meadow Enriched ACP Process Algebras, Programming
Research Group - University of Amsterdam, 2009.

[PRG0901] J.A.Bergstra and C.A. Middelburg, Timed Tuplix Calculus and the Wesseling and van den Berg
Equation,Programming Research Group - University of Amsterdam, 2009.



[PRG0814] J.A. Bergstra and C.A. Middelburg, Instruction Sequences for the Production of Processes,
Programming Research Group - University of Amsterdam, 2008.

[PRG0813] J.A.Bergstra and C.A. Middelburg, On the Expressiveness of Single-Pass Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0812] J.A.Bergstra and C.A. Middelburg, Instruction Sequences and Non-uniform Complexity Theory,
Programming Research Group - University of Amsterdam, 2008.

[PRG0811] D.Staudt,A Case Study in Software Engineering with PSF: A Domotics Application,Programming
Research Group - University of Amsterdam, 2008.

[PRG0810] J.A.Bergstra and C.A. Middelburg, Thread Algebra for Poly-Threading,Programming Research
Group - University of Amsterdam, 2008.

[PRG0809] J.A.Bergstra and C.A. Middelburg, Data Linkage Dynamics with Shedding, Programming Research
Group - University of Amsterdam, 2008.

[PRG0808] B.Diertens,A Process Algebra Software Engineering Environment,Programming Research Group -
University of Amsterdam, 2008.

[PRG0807] J.A.Bergstra, S. Nolst Trenite, and M.B. van der Zwaag,Tuplix Calculus Specifications of Financial
Tr ansfer Networks,Programming Research Group - University of Amsterdam, 2008.

[PRG0806] J.A.Bergstra and C.A. Middelburg, Data Linkage Algebra, Data Linkage Dynamics, and Priority
Rewriting,Programming Research Group - University of Amsterdam, 2008.

[PRG0805] J.A.Bergstra, S. Nolst Trenite, and M.B. van der Zwaag,UvA Budget Allocatie Model,Programming
Research Group - University of Amsterdam, 2008.

[PRG0804] J.A.Bergstra and C.A. Middelburg, Thread Algebra for Sequential Poly-Threading,Programming
Research Group - University of Amsterdam, 2008.

[PRG0803] J.A. Bergstra and C.A. Middelburg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0802] A.Barros and T. Hou, A Constructive Version of AIP Revisited, Programming Research Group -
University of Amsterdam, 2008.

[PRG0801] J.A.Bergstra and C.A. Middelburg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - University of Amsterdam, 2008.

The above reports and more are available through the website: www.science.uva.nl/research/prog/





Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

www.science.uva.nl/research/prog/


