University of Amsterdam
Theory of Computer Science

The Refined Function-Behaviour-Structure
Frameavork

B. Diertens

Report TCS1301 September 2013

B. Diertens

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 904
1098 XH Amsterdam
the Netherlands

tel. +31 20 525.7593
e-mail: B.Diertens@uva.nl

Theory of Computer Science Electronic Report Series

The Refined Function-Behaviour-Structue Framework
Bob Diertens

section Theory of Computer Science, Faculty of Scienceetitly of Amsterdam

ABSTRACT

We refine the function-bek#@ur-structure frameork for design introduced by John
Gero in order to deal with compigy. We do his by connecting the framerks for the
desing of tvo models, one the refinement of the oth€he result is a refined framverk
for the design of an object on dwevds of abstraction. This fram@rk can easily be
extended for the design of an object on more thanléwds of abstraction.

Kewords:design model, refinement, abstraction, software design

1. Introduction

In software engineering, dealing with comfite is a major issue and it is the ground for maoftware
development methodologies. Most of these methodologiegehe do not take into account the nature and
process of design. Each methodology has its success stotiesiebcan seldom relate it to a more general
framawork for design. A well-known method for dealing with complexity in other engineering disciplines
is modelling. By making a model one can leaaut some detail and concentrate on the bigger picture.
Even a model can be too complicated, in which case one camarmaddel for the model. This results in a
design consisting of geral levels, each higher el abstracting from details on the lower#ts.

This is picked up in softare engineering as well and resulted in model based softweslemheent and
similar approaches. Despite this, the problem with sofvengineering remains that the design igelgr
focused on a too W leve of abstraction. Thiss caused by the fact that software is build cheaply can
be done wer and over again. Thismakes it possible to test on the lowestdeand often results in a race to
the lowest led to start testing early in the design procegsstep up to a higher Vel of abstraction to
repair design flaws is easily replaced by fixing the design on wWesidevel. In that process, the higher
level design is discarded and complexity isdakinto the lower lels instead of dealing with it on the
higher levels of design.

In our view it is better to incorporate methodologies that fallthe nature and process of design oress
levels of abstraction. An important factor in this is to Wnwhat design really is. John Gero has described
a ¢eneral frameork for design [1] that is based on function, bebar, and structure, of the object to be
designed. Thisramework, however, omits levels of abstraction. Although one can argue that through the
reformulation processes of this framak it is possible to hae levds of abstraction in the design, the
levels of abstraction then are only implicit in the design procdss. a thorough understanding and
execution of the design process it is better to enthle levels of abstraction explicit in the design process.

In section 2 we ge an overview of the function-behdour-structure frameork for design. We refine this
framawork in section 3 to a frameork that makes hels of abstraction in the design process explicit.

2. TheFunction-Behaviour-Structure Framework

In [1] Gero describes a framverk for design that has sufficientywer to capture the nature of the concepts
that support design processé&sis framavork that involves the relation between function, beioar, and
structure, of a design can be applied tg angineering discipline.Together with Kannengiesse®ero
describes the framark in [2] in relation with the environment in which designing takes place, accounting
for the dynamic character of the cortteWe gve an oserview of the elements and processes that form the
function-behaviour-structure (FBS) framark.

The FBS frameork elements has the following elements.
function) The set of functions the object that must be fulfilled by the object.
structure §) Describes the components of the object and their relationships.
expected behaviouB;) The set of expected behaviours to fulfill the functian
structure behavioul;) The set of behaviours the struct@exhibits.

description D) The description of the designyaig all the information to build the object,
and more.

These elements are connected in the freorie by processes (Figure 1).

m
= ﬂ_\;s_»D

Be «+—» B

Figure 1 The FBS fram&ork
An outline of the process of the FBS framoek is given below.

formulation & - Bg) Transforming the functior into behaviour that is expected from the

object.

synthesisB, —» S) Transforming the xpected behaviour into a solution intended xbileit
this behaviour.

analysis § - By) Deriving of the actual behaviour from the synthesized structure.

evduation B, ~ By) Comparing the behaviour deed from the structure with thexpected
behaviour.

documentation§ —» D) Producing the design description for the constructing or nzentwfing of
the object.

In addition the framgork contains reformulation processes that are carried out, based on the outcome of
the evaluation of behaviours.

structure reformulationy - S)
Changing of the structure in order to obtain a behaviour that is more in line
with the expected behaviour.

behaviour reformulation - By)
Adjusting of the expected behaviour that fits the required function and is
more in line with the behaviour of the structure.

function reformulation$ — F)
Changing of the function due to a better insight in the problem.

3. Refinementof the FBS framework

To introduce separatevids of abstraction in the FBS framerk we consider the design of tvmodels,M

and M', for a particular system. The moddl' is supposed to be a faithful implementation of the model
M. This has as a consequence that the mwdels both represent the system but on differarddeof
abstraction. Botimodels hge teir own design procesEBSandFBS, each of which can by described by

the function-behaviour-structure framark for design.

Because the mod®ll’ on the lower ledl of abstraction is an implementation of the mobiebn the higher

level of abstraction, we can use documentatidrior modelM as input for the design of modil’. But,

apart from this relation, it leas the two design processes completely separate, while there are other
relations between elements of the design proce&ssause the moddl' is a refinement of the mod#,

the structureS in the design procedsBS is a refinement of the structugin the design procedsBS.

This relation between the structures in the design procé&gandFBS for the two models is shown in
Figure 2.

F /_’ S D
Be «+—» B

Buiuial

y

N T

1

e =w-—p B

Figure 2 Design framevork for two models

The relation of refinement between thetsructures does not stvaup in the design processe¥Ve like to
integrate the tw design processes, so that all refinement relations betweendluedign proceses become
clear and that immediate feedback can be made through the relations betweefertret gidrts of the
oveall design process. In the following sections we describe tleese design processes can be
interconnected and what the consequences are fovétedl@esign process.

3.1 Refinement

Each element oFBS can be considered a refinement of the similar elemeRB&f In the following we
describe he the refinement processes between theftamavorks tale gdace.

Functionality refinement
As the structureS consists of the components and their interaction for mddel the
documentatiorD describes the functionality of these components and the interactions. It is this
functionality together with functionalitif that males up the functionalitf{F' for modelM'. This
refinement of functionality is indicated by 1 in Figure 3.

Expected behaviour refinement
The expected beliur B, can be obtained by refining the expected bisha B, with
refinements extracted froR. This is indicated by 2 in Figure 3.

Structure refinement
In a FBS frameork the structure is synthesized from the expected behaviour of the nvudel.
cannot obtain the structuf from B.' in this way, Snce S' must be a refinement & We have
to synthesizeS' from S and use refinements that are basedBgn This is indicated by 3 in
Figure 3.

Documentation refinement
The documentatioD' is the addition of the documentatidh and the documentation of the
refinement processes. This is indicated by 4 in Figure 3.

Figure 3 Refinement processes in the design fraonk

3.2 BehaviouEvaluation

Besides the bek@ur evalution on both lgels, we hae check if M’ is a true implementation dfl. We

can do this by comparing a refinBd with By'. But that leaes us with the problem he to refineB;. We

can hovever do the reverse. Instead of refininBs we can abstradds' and compare it witlBs (Figure 4). If

the behsiours do not match, the refinement process is wrong and has to be adjusted. The adjustment can
be done through reformulation processes described in the next section.

Figure 4 Refinementeduation process in the design franuek

3.3 Reformulation

The design frameorks for the model$/1 and M’ contain reformulation processeBor the modelM these
are the normal processes, but for the madethe reformulations he © be sich that the elements stay
within the refinements of their corresponding abstract elements.

The situation can occur that a reformulation of one of the elements for mddel necessary and that
because of this reformulation it no longer conforms with the corresponding abstract element favimodel

In that case, the current design must be rejected and a reformulation of the corresponding element for
modelM have take gdace. Allthe reformulation processes are shown in Figure 5.

AN
E PS—»D

B =-—» B

Figure 5 Reformulation processes in the design framr&

4. Conclusions

We refined the FBS frameork by connecting frameorks for the design of tav models, one model the
refinement of the otherThe refined fram&ork can be used for the design of an object oo levds of
abstraction. Ima dmilar way, the refined fram&ork can easily be further refined to a framoek for the

design of an object on more thanottevds of abstraction.We @n turn the refined fram@rk into the

original frameavork by considering the refinement processes as reformulations and abstract from the details
of the refinement processel the refined frameork the levels of abstraction in the design are made
explicit. This refined frameork can be used to ddop several models that are related to each other
through refinement and abstraction.

References

[1] J.S.Gero, “Design Prototypes: A Knowledge Representation Scheme for DesigMagazine vol.
11, no. 4, pp. 26-36, 1990.

[2] J.S.Gero and N. KannengiesséiThe Situated Function-Belier-Structure Framegork,” Design
Studiesvol. 25, no. 4, pp. 373-391, 2004.

Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

[TCS1202]

[TCS1201]

[TCS1102]

[TCS1101]

[TCS1001]

B. Diertens, From Functions to Object-Orientation by Abattion, section Theory of Computer
Science - Uniersity of Amsterdam, 2012.

B. Diertens, Concurent Models for Object Executiorsection Theory of Computer Science -
University of Amsterdam, 2012.

B.Diertens,Communicating Concurrent Functiorsgction Theory of Computer Science - \énsity
of Amsterdam, 2011.

B. Diertens, Concurient Models for Function Executiosgction Theory of Computer Science -
University of Amsterdam, 2011.

B.Diertens,On Object-Orientationsection Theory of Computer Science - nsity of Amsterdam,
2010.

Within former series (PRG) the following reports appeared.

[PRG0914]

[PRG0913]

[PRG0912]

[PRG0911]

[PRG0910]

[PRG0909]

[PRG0908]

[PRG0907]

[PRG0906]

[PRG0905]

[PRG0904]

[PRG0903]

[PRG0902]

[PRG0901]

J.A.Bemstra and C.A. Middellrg, Autosolvability of Halting Poblem Instances for Instruction
Sequencegfrogramming Research Group - Wabity of Amsterdam, 2009.

J.ABemgstra and C.A. Middellrg, Functional Units for Natural NumbsyProgramming Research
Group - Unversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Instruction Sequence Processing Cers, Programming
Research Group - Uversity of Amsterdam, 2009.

J.A. Begstra and C.A. Middellrg, Partial Komori Fields and Imperative Komori iélds,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Begstra and C.A. Middellrg, Indirect Jumps Immve Instruction SequenceeHormance,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemstra and C.A. Middellrg, Arithmetical Meadows,Programming Research Group -
University of Amsterdam, 2009.

B.Diertens, Softwae Engineering with Pocess Algbra: Modelling Client / Server Ahitecures,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Inversive Meadows and Divisive MeadowRrogramming
Research Group - Uversity of Amsterdam, 2009.

J.ABemstra and C.A. Middellrg, Instruction Sequence Notations with Probabilistic Instructions,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, A Protocol for Instruction Stream Bressing,Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, A Process Calculus with iRitary Comprehended €fms,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Transmission Protocols for Instruction 8ams,Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Meadow Enriched ACP Process Ahlgas, Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Begstra and C.A. Middellrg, Timed Tuplix Calculus and the Wesseling and van deg Ber
Equation,Programming Research Group - \dmsity of Amsterdam, 2009.

[PRG0814]

[PRG0813]

[PRG0812]

[PRGO811]

[PRG0810]

[PRG0809]

[PRG0808]

[PRG0807]

[PRG0806]

[PRG0805]

[PRG0804]

[PRG0803]

[PRG0802]

[PRG0801]

J.A.Bemstra and C.A. Middellrg, Instruction Sequences for the déuction of Pocesses,
Programming Research Group - Wity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, On the Expressiveness of Sings® Instruction Sequences,
Programming Research Group - Wity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Instruction Sequences and Non-uniform Complexity Theory
Programming Research Group - Wity of Amsterdam, 2008.

D.Staudt,A Case Study in SoftwarEngineering with PSF: A Domotics ApplicatidRrogramming
Research Group - Uversity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Thread Algbra for Poly-Threading,Programming Research
Group - Unversity of Amsterdam, 2008.

J.ABemgstra and C.A. Middellrg, Data Linkage Dynamics with Sheddingrogramming Research
Group - Unversity of Amsterdam, 2008.

B.Diertens,A Process Alghra Software Engineering Exmironment,Programming Research Group -
University of Amsterdam, 2008.

J.ABemstra, S. Nolst Trenite, and M.Baw der Zvaag, Tuplix Calculus Specifications ofirfancial
Transfer NetworksProgramming Research Group - Uity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Data Linkage Agebra, Data Linkge Dynamics, and Priority
Rewriting,Programming Research Group - Wity of Amsterdam, 2008.

J.ABemstra, S. Nolst Trenite, and M.B. van deraag,UvA Budget Allocatie ModeRrogramming
Research Group - Uversity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Thread Algbra for Sequential 8ly-Threading,Programming
Research Group - Uversity of Amsterdam, 2008.

J.A.Begstra and C.A. Middellrg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - Wity of Amsterdam, 2008.

A.Barros and THou, A Constructive ¥rsion of AIP Reisited, Programming Research Group -
University of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - Wity of Amsterdam, 2008.

The abee reports and more arealable through the website: www.science.uva.nl/research/prog/

Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

