University of Amsterdam
Theory of Computer Science

From Functions to Object-Orientation
by Abstraction

B. Diertens

Report TCS1202 September 2012

B. Diertens

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

tel. +31 20 525.7593
e-mail: B.Diertens@uva.nl

Theory of Computer Science Electronic Report Series

From Functionsto Object-Orientation by Abstraction
Bob Diertens

section Theory of Computer Science, Faculty of Sciencejetity of Amsterdam

ABSTRACT

In previous work we deoped a frameork of computational models for function and
object eecution. Themodels on an higherve of abstraction in this franwork allow
for concurrent gecution of functions and object&Ve how that the computational model
for object execution complies with the fundamentals of object-orientation.

Keyords: programming, computational modelxeeution model, machine model,
sequential xecution, concurreng object-orientation

1. Introduction

Mostly, an wsers view on functions and objects stem from their use in programming languadtféeugh

the use of functions and objects ipkined with the programming languages, a computational model for
them is not gien. Thesemodels are implicit to the compilers of the programming languages and the
machines the compiled programs axeceited upon. In understanding the semantics of functions and
objects and the relation between functions and objectsl&dge of the computational models for them is
essential.

Ever since object-orientation ag introduced in programming languages theree haeen efforts in
transforming programs built up from functions into object-oriented progratisthese efforts hae in
common that thelack an explicit descriptions and computational models for functions and objects.

In our vien the eecution of a function can be seen as tkecation of an object. It is first instantiated from
its definition, then xecuted, and then desyred. Herethe instantiation and destruction are implicit, in
contrast with the>ecution of an object where these ampleeit. With a function, there is no controver

its lifetime. An object has a state, and this state can be manipulated/diynion methods of the object
(making requests to the object). This state is implicit with the objectxasid enly during the lifetime of
the object. During seral executions of a function a state can be preserved by explicitly storing it in
memory.

The execution of a program built up from functions can be seen as#eaiteon of an object. The functions
are the methods of the object, and all tagables as the state of the objeatvariable actually is itself an
object. It is instantiated, manipulated bydking certain operations on it, and destroyed.

We mnclude that the program, its functions, and its variables are all objects. The methods of an object are
in essence functions and are thus objects too. The state of an object can be seen as the variables of that
object and are thus objects as wello in essence there is not much difference between elements of
function-oriented and object-oriented programs. The differences are determined by the computational
models for them.

In previous work we described a framak of computational models that alNofor the concurrent
execution of functions ([1].We extended this framgork with communication between functions in [2h

[3] we applied this frameork to object &ecution, resulting in a frameork of computational models that
allow for the concurrentxecution of objects. The sequentiadeeution of functions and objects is just a
possible implementation of an abstract computational model that allows for concuesution. This
work clearly supports our conclusion thaegthing can be considered an object.

Although everything can be considered an object, this does not mean we can considered it complying with
the object-orientation paradignfor this it has to fulfil the fundamentals of object-orientation that we

described in previous work [4]There we defined a model for object-orientation with as much abstraction
as possible so that it can be applied wesd phases of software d#opment. Inthis article we she that,
through the abstractions weveanmade to establish the framerk of computational models, we comply
with the fundamentals of object-orientation.

In section 2 we describe our previous work on computational models for function and xéjatiba. We
summarize our vig on doject-orientation in section 3. And in section 4 wevghbat the computational
models comply with the fundamentals of object-orientation.

2. Computational models

In this section we ge a overview of previous work on computational models for functioreeution [1],
communicating concurrent functions [2], and computational models for okeettn [3].

2.1 Modeldor function execution

In [1] we developed a framwork of computational models at differentvéts of abstraction for the
concurrent eecution of functions. The delopment of the framgork started with the traditional
sequential xecution model for functions from which a sequential computational model was obtained by
abstracting from the details of function call implementation. Further abstraction fronayhe function is
scheduled forxecution led to an abstract computational model that allows for the concuxeeatien of
functions (Figure 1).

abstract
computational
model .
Ao /
% ,77'%"77
Qe Nty
W /0/7
sequential concurrent
computational computational
model model
Q Q
3 3
22 g2
LA [LASE
= =
sequential concurrent
machine machine
model model

Figure 1. Framevork of computational models

It showed that with abstraction and relaxing constraints a modektdoutén of functions can be obtained
in which function scheduling plays a¥ mle. This model has as a possible implementation inline
scheduling, the original stack-based functiomcation model the deslopment of the frameork started
with. Butmore important, this model alis for the concurrentxecutions of functions, and therefore it can
be used as model for the implementation of concurrent amtwr heframenvork of computational models
at different leels of abstraction can be used for furthevaligpment of concurrent computational models
that deal with the problems inherent with concuryenc

2.2 Communicatiobetween functions

Concurrent eecution of code allows for communication between the parts of code thaxeametesl
concurrently The communication can be done either through models using shared memory or by models
using message passingdlith message passing models communication is done by exchanging messages and
shared memory communication is done by reading from and writing to memory that can be accessed by at

least all parties in the communication. In [2] wed@xended the abstract computational model from our
framawvork of computational models for the concurremecaition of functions with communication
between the concurrent functioniSor this, we classified the communications between concurrent functions

in direct and indirect and in unidirectional and bidirectiorfadr the different kinds of communication we
identified problems that can occur with these communications and we presented solutions for these
problems. Thesolutions are based on encapsulating the area in which the problem occurs together with a
mechanism that sods the problem. The encapsulation makes it possible to abstract from the
innerworkings. Theresulting mechanism can then easily be replaced with something else with the same
behaviour.

We cefined the basic locking mechanism that we use in our solutions (Figure 2). This mechanism itself is
based on the locking mechanism commonly used in software, but through encapsulation and abstraction
this is completely concealed.

lock read

lock
read

M\ . / write

Figure 2. Indirect communication with encapsulated location and locking mechanism

For unidirectional indirect communication we defined the basic communication mechanism (Figure 3) that
encapsulates the basic locking mechanism.

read

unlock

Figure 3. Indirect communication with encapsulated locking mechanism

This basic communication mechanism is constrained into the status based communication that implements
unidirectional indirect communication (Figure 4lhe constraints are based on the states of the mechanism
that indicate whether a read or a write is possible.

check-status read

lock

pS ¥

read
S
/- N\
(
\

/
unlock,/™~———_write

Figure4. Unidirectional indirect communication with encapsulated status flag

Bidirectional indirect communication consisting ofatwnidirectional indirect communications that share

the location for storing the messages in both directions can be implemented using a similar status based
communication. Buthen the solutions is a bit more complEcause there are more possible stahés.

only is it necessary to indicate whether a read or a write is possible, but also by whichvpb#iylim the
communication.

Furthermore, we discussed some special cases of communicBtiege cases can be implemented using
one of the defined mechanisms, or similar implementations with the sameaolbiehdepending on the
constraints that h@ o be eaforced on the communicationg\ particular intriguing case is undirected
communication what on awolevd of abstraction is known as shared memory communicafidns can be
implemented with the basic communication mechanism or the basic locking mechanism when wantrol o
the locking mechanism itself is required.

When we abstract from the inneosking of the mechanisms, these are just concurrent functions among all
the other functions.The form of communication with these mechanisms is unidirectional direct
communication. Save can conclude that, through our mechanisms, unidirectional indirect communication
is built up from unidirectional direct communications.

2.3 Computationammodels for objects

The traditional sequentialxecution model for objects is based on the traditional sequendaluon
model for functions. In this model it seems that the objects arexeotited, but the methods of the
objects, and in a similar manner as functions aeewted. V¢ oould therefor use the same framuek of
computational models for the methods of objects as the oretoped for functions (Figure 1)This
framework then allows for the concurrenteeutions of methods.

We @an extend the frammeork so that it allows for the concurrenteeution of objects.For this we hae

see that the scheduler for the methods has t@ magintext switch to the object a method belongs to.

this framevork the contgt switch is done inline with the scheduling of a method, similar to the inline
scheduling of functions in the sequential computational model for functidpparently the contst

switch is the scheduling of the object. Separating the scheduling of objects from the scheduling of methods
gives us a sheduler for objects where each object takes care of the scheduling of its methods.

With this, we abstracted from Wwabjects are scheduled’he result is a computational model that\afo
for the concurrentecution of objects.In this model, each object decidesshio schedule its method<Of

course, the scheduling of methods can be inline and so limiting conguteenbjects only From this
model we can implement the abstract computational model that allows for the concxecetive of

functions or methods, but we can also implement a model that allows for the concuecernior of

objects in which each object decideswtio schedule its methods.

What has been a call of a method for a particular object in the sequretiati@n model has wobecome
a request to that objectHow the object handles the request is not important, and so we can abstract from
this.

3. On object-orientation

In [4] we described our we on dbject-orientation (OO) in software design of which we repeat here the
main part of this paper.

OO0 is a modelling paradigm for describing objects and their relationships. Objects and relations are
supposed to stand close to real world concepts. The real world is the world we are implementing, that is a
level of abstraction in the design or a requirements specification. The real world is a fotladenawvhich

the system under ddopment takes part.

The real world is also an abstraanid. Itis of no concern he something works, only what it doe3his
abstraction is &y in OO. However, OO is dten easily replaced with object-oriented programming (OOP).
But an implementation in an OOP language is no more thaanpée of this modelling at thevest
level of abstraction of the design.

Because of this replacement, OO is explained by describing what an particular OOP languagéddras to of

To define a model of OO that can be applied ivesad phases of softare deelopment we hee o define

this with as much abstraction as possiblée gve a description of the fundamentals of OO, techniques to
support the fundamentals, and features based on the techniques. Note that only the fundamentals are
necessary for object-oriented modelling, some support can be nice, and features are mostly only used on the
lowest levels of abstraction.

3.1 Fundamentals

OO can be seen as a kind of technique géraring a system in terms of objects and their relations. It is
supposed to stand closer to tieal world as opposed to techniques predating O®.characterist is the
distinction between the observable behaviour of objects and the implementation of the behaviours.

Objects
An object has the following characteristics.

State
for recording the history of an object upon which future behaviour can be based.

behaviour

the observable effects based on its state and the relations with other objects.
identity

as known by other objects, either by name or by reference.

Relations
Relations between objects are expressed by interactions in the form of message passing.

Abstraction

Manipulation of an object can only be done through its relations with other objects. Thereby hiding the
implementation of its behaviour and the recording of its state. It is only important what an object does, not
how an dbject does it.

3.2 Support

An object-oriented language for modelling systems on a particMerdgabstraction has to support the
fundumentals of OO and possiblyea enforce these fundamentalSupport can be provided in the
following forms.

Types
An object type is a container in which the state and the behaviour(s) for an object are defined.

M essage Passing
The way messages are passed between objects can be supported in more than one form.

Encapsulation
Encapsulation prents objects from relating to each other in other ways then the provided forms of
message passing.

Information Hiding
Hiding of information about an object can be done by deliberately making this information inaccessible.

3.3 Structues

Based on the techniques supporting OO structures can be formed. Such structuresabehgects
themselves, characterizing the concepts of OO.

Type Composition

The basic idea of composition is to build conxpiibject types out of simpler ones. Besides that objects
can be built up from ways to define state and behaviour a&lpdoby the modelling language, objects can
also be built up from other object types. The latter can be done in the following forms.

reference
An object type can reference an object of a particular object type.

inclusion
An object type can include another object type.

To dbey the OO fundamentals okkping behaviour and implementation of an object distinct, a modelling
language has to hide the composition of an object type. This can beeddbyemaking the elements of
the object type acquired through compositimailable either only from within the object type, or from
outside the object type but as it were elements of the object type itself.

Objects composed in this way are vertical related with the objegtartheomposed of.

Object Composition
Several inter-related objects form a cluster that when abstracted from the inter-relations acts as a single
object. Objectshat tale part in this composition are horizontal related with eachother.

Abstract Object Types

An abstract object type is an object type described in terms of objects representing elements of the abstract
object type for which the type(s)Ve&t be filed in on a lower leel of abstraction. Arabstract object type

can also be turned into a generic object type on a lowdrdéabstraction, with parameters for the object

types representing the elements.

4. Compliance with fundamentals of object-orientation

In this section we relate the computational models from section 2 with the fundamentals of object-
orientation described in section 3.We dow how we can comply with these fundamentals, thereby
linking our framevork of computational models with the object-orientation paradigm.

Objects

The framavork of computational models for functiorkeeution and object xecution showed that, by
abstracting from the ways of scheduling, functions can be considered olbjeatever, in order to mak a

shift to the paradigm of object-orientation these objects must $omne characteristics as well. Firstyhe
have © haveto an identity by which theare known to other objects. Instances of functions are known by
their identity obtained on creation of the instanddis identity can be passed on to other instances of
functions. Second|ythey haveto have a $ate, although this state may be emple instance of a function
can keep a state with the use of locatliables. Itis also possible that an instance of another function is
used to kep a state. And thirdlyhey must hae an obsenable behaiour. Their behaviour is obseable

by the effects thehaveon their emironment based on their state and the relations with other obj&fts.
these three characteristic an instance of a function can be considered an object in the modelling paradigm of
object-orientation.

Relations

In section 2.2 we described communication mechanisms for concurrent functions tadhesgdwoblems
inherent with concurreyovhen communicating through shared memdriiese mechanisms are functions
themseles and thus objects. By restricting communication only through these mechanisms, objects can
only interact with each other by passing messagies. passing of messages between objects describes the
relations between the objects.

Abstraction

The behwiour of a group of objects that is related to objects outside of the group only through one of its
members can be observed as the behaviour of that one object. What is going on inside this group is not
obsenable to objects outside of this grouBecause of this, the internal behaviour of this group can be
abstracted from. So, by restricting communications between instances of functions through the
mechanisms that are instances of functions themselv is possible to hide the implementation of its
behaviour and the recording of its state.

5. Conclusions

We dowved hav to get from the sequentialxecution of functions to object-orientation by abstraction.
First, we abstracted from the way function calls are implementad led to an abstract computational
model that allows for the concurrenteeutions of functions We extended this model with communication
between the concurrent functiongor this, we abstracted from the communication through shared
memory Communication between functions became message passing with mechanisms that are just
concurrent functions among all the other functioe gplied our model to objectxecution by
abstracting from the way the methods of the objects are scheduled. For this, we separated the scheduling of
the objects from the scheduling of the methods of the objddts. result is a computational model that
allows for the concurrentxecution of objects in which each object decidew ho schedule its methods.

We dhowed that this computation model for objereeution that allows for concurrepcomplies with the
fundamentals of object-orientation.

References

[1] B. Diertens,Concurent Models for Function Executiosection Theory of Computer Science -
University of Amsterdam, 2011.

[2] B. Diertens,Communicating Concurrent Functiorsgction Theory of Computer Science - \énsity
of Amsterdam, 2011.

[3] B. Diertens, Concurent Models for Object Executiorsection Theory of Computer Science -
University of Amsterdam, 2012.

[4] B. Diertens,On Object-Orientationsection Theory of Computer Science - Wnsity of Amsterdam,
2010.

Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

[TCS1201]

[TCS1102]

[TCS1101]

[TCS1001]

B. Diertens, Concureent Models for Object Executiorsection Theory of Computer Science -
University of Amsterdam, 2012.

B.Diertens,Communicating Concurrent Functiorsgction Theory of Computer Science - \énsity
of Amsterdam, 2011.

B. Diertens, Concurient Models for Function Executiosgction Theory of Computer Science -
University of Amsterdam, 2011.

B.Diertens,On Object-Orientationsection Theory of Computer Science - nsity of Amsterdam,
2010.

Within former series (PRG) the following reports appeared.

[PRG0914]

[PRG0913]

[PRG0912]

[PRG0911]

[PRG0910]

[PRG0909]

[PRG0908]

[PRG0907]

[PRG0906]

[PRG0905]

[PRG0904]

[PRG0903]

[PRG0902]

[PRG0901]

[PRG0814]

J.A.Bemgstra and C.A. Middellrg, Autosolvability of Halting Problem Instances for Instruction
Sequencegfrogramming Research Group - Wabity of Amsterdam, 2009.

J.ABemgstra and C.A. Middellrg, Functional Units for Natual Numbes, Programming Research
Group - Unversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Instruction Sequence Processing Cers, Programming
Research Group - Uversity of Amsterdam, 2009.

J.A. Begstra and C.A. Middellrg, Partial Komori Fields and Imperative d¢tmori Helds,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Begstra and C.A. Middellrg, Indirect Jumps Immve Instruction SequenceeHormance,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemstra and C.A. Middellrg, Arithmetical Meadows,Programming Research Group -
University of Amsterdam, 2009.

B.Diertens, Softwae Engineering with Process Adppra: Modelling Client / Server Ahitecures,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Inversive Meadows and Divisive MeadowRrogramming
Research Group - Uversity of Amsterdam, 2009.

J.ABemstra and C.A. Middellrg, Instruction Sequence Notations with Probabilistic Instructions,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, A Protocol for Instruction Stream Bressing,Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, A Process Calculus with Finitary Comprehendedrris,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Transmission Protocols for Instruction 8ams,Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Meadow Enriched ACP Process Ahlgas, Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Begstra and C.A. Middellrg, Timed Tuplix Calculus and the Wesseling and van deg Ber
Equation,Programming Research Group - ity of Amsterdam, 2009.

J.A.Bemstra and C.A. Middellrg, Instruction Sequences for the Production ofod&sses,
Programming Research Group - Wity of Amsterdam, 2008.

[PRG0813]

[PRG0812]

[PRG0811]

[PRG0810]

[PRG0809]

[PRG0808]

[PRG0807]

[PRG0806]

[PRG0805]

[PRG0804]

[PRG0803]

[PRG0802]

[PRG0801]

J.A.Bemgstra and C.A. Middellrg, On the Expressiveness of Single-Pass Instruction Sequences,
Programming Research Group - Wity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Instruction Sequences and Non-uniform Complexity Theory
Programming Research Group - Wity of Amsterdam, 2008.

D.Staudt,A Case Study in SoftwarEngineering with PSF: A Domotics ApplicatidRrogramming
Research Group - Uversity of Amsterdam, 2008.

J.A.Bemstra and C.A. Middellrg, Thread Algbra for Poly-Threading, Programming Research
Group - Unversity of Amsterdam, 2008.

J.ABemgstra and C.A. Middellrg, Data Linkage Dynamics with Shedding’rogramming Research
Group - Unversity of Amsterdam, 2008.

B.Diertens,A Process Alghra Software Engineering Exmironment,Programming Research Group -
University of Amsterdam, 2008.

J.ABemstra, S. Nolst Trenite, and M.B. van deraag, Tuplix Calculus Specifications ofirfancial
Transfer NetworksProgramming Research Group - Uity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Data Linkage Agebra, Data Link@ge Dynamics, and Priority
Rewriting,Programming Research Group - Wity of Amsterdam, 2008.

J.ABemstra, S. Nolst Trenite, and M.B. van deraag,UvA Budget Allocatie ModeRrogramming
Research Group - Uversity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Thread Algbra for Sequential 8ly-Threading,Programming
Research Group - Uversity of Amsterdam, 2008.

J.A.Begstra and C.A. Middellrg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - Wity of Amsterdam, 2008.

A.Barros and THou, A Constructive ¥rsion of AIP Reisited, Programming Research Group -
University of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - Wity of Amsterdam, 2008.

The abee reports and more arealable through the website: www.science.uva.nl/research/prog/

Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

