University of Amsterdam
Theory of Computer Science

Concurrent Models for Object Execution

B. Diertens

Report TCS1201 August 2012

B. Diertens

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

tel. +31 20 525.7593
e-mail: B.Diertens@uva.nl

Theory of Computer Science Electronic Report Series

Concurrent Modelsfor Object Execution
Bob Diertens

section Theory of Computer Science, Faculty of Sciencejetity of Amsterdam

ABSTRACT

In previous verk we deeloped a frameork of computational models for the concurrent
execution of functions on different Vels of abstraction.It shows that the traditional
sequential xecution of function is just a possible implementation of an abstract
computational model that allows for the concurrewcation of functions.We wse this
framevork as base for the ddopment of abstract computational models thatvallor

the concurrenty&cution of objects.

Kewords: programming languages, computational mod&kcetion model, machine
model, sequentialxecution, concurreng object-orientation

1. Introduction

To execute a program written in a particular programming language, it is compilecketiat@ble code for

a particular machine. The machine is actually a machine model represenyisigaptinardware, operation
system, etc, or possibly a virtual machinehe compilation is done according to axeaition model
specific for the machine model. Anxeeution model is an implementation of a computational rmodel
which gves the essential rules for performing computatiofifie computational model must at least be
adequate forxoressing the operational semantics of the programming languageveAnew of this all is
given in FHgure 1. For long the machine modelas based on sequentiateeution of instructions.
Programming languages were based on sequemtidution of instructions as well, as were the
computational models and theeeution models.

programming

language Operal‘iona/
synfa)(Semantics
computational
program - ========~ model
l 2
compiler --—--—-—--- 3 8
o5
@l
l S
machine
executable - -----—--- rodel

Figure 1. Overview of program &ecution related diirs

1. A computational model is also called an abstract machine model, although the terms can be considered different elsewhere.

In previous work [6] we desloped a frameork of computational models for the concurreréaition of
functions. Thisframewvork can be used for the widopment of concurrent computational models that deal
with the problems inherent with concurrgndt also shavs that it should not be decided which parts of a
sequential system can be done concurrghtiyywhat parts of a concurrent system can or should be done
sequentially In this article we set out to do the same for the concursectugon of objects. Models for
object execution male wise of models for functionxecution. Theinvocation of a method for a particular
function is implemented as the sequentiacation of a function.Concurreng of objects is added in the
same way as concurrgnis added to functions. Either this is done using an add-on lipsach as multi-
threading [3], or through extension of the programming languages with constructs for coycurrenc

These extensions, Wwaver, are implemented on top of existing computational axat@tion models using

the same add-on libraries. The problem with adding concyriienthis way is that it is still based on a
computational model for sequentiadeeution of instructions, and compilation is still based on a model for
sequential xecution of instructions.Compilers may generate efficient code that is correct for sequential
execution, but incorrect for concurrerteeution. Thiswas dready shown in [5] (1995) and again later in
[4] (2005) and is caused by communications between threads through shared.merbatty [5] and [4] it

is stated that concurrepmust be addressed at the language specificatiehded in compiler design.

There are of course alsoweprogramming languages (or redesigned existing ones) which support
concurreng that come with computational models ankkeaaition models which soés osme of the
problems, if not all, of concurrepcsuch as Jea, C#, and Ada.But it is quite tricly to avoid problems with
memory models for such a language as is shown in [8] and [7] ¥ey && in [1] and [2] for a C++
standard.

In section 2 we summarize our previous work on concurrent models for funetmutien. We extend this
work with concurrent models for objecteeution in section 3.

2. Computational modelsfor functions

In [6] we developed a framwork of computational models at differentvés of abstraction for the
concurrent recution of functions. The delopment of the frameork started with the traditional
sequential xecution model for functions from which a sequential computational model was obtained by
abstracting from the details of function call implementatiBarther abstraction from the way a function is
scheduled foryecution led to an abstract computational model thatvallfor the concurrentxecution of
functions (Figure 2).

abstract
computational
model .
BPRAY /
me‘\\a\\o /7)'0/@’77
e Nty
\‘(\9 Q170/7
sequential concurrent
computational computational
model model
2 2
3 3
g2 2|2
LAY [LARSE
=} =}
sequential concurrent
machine machine
model model

Figure2. Framavork of computational models

This approach shows that with abstraction and relaxing constraints, a modescfaian of functions can
be obtained in which function scheduling playseg lole. Thismodel has as a possible implementation
inline scheduling, the original stack-based functigecetion model the delopment of the frameork
started with. But more important, this model allows for the concurreetugion of functions, and
therefore it can be used as a model for the implementation of concurrerdrsofthheframevork of
computational models at differentvébs of abstraction can be used for furthevallgoment of concurrent
computational models that deal with the problems inherent with concurrenc

3. Computational modelsfor objects

The traditional sequentialxecution model for objects is based on the traditional sequentalion
model for functions.In this model it seems that the objects are retw@ed, but the methods of the objects
are eecuted, and in a similar manner as functioMe w@uld therefore use the same framek of
computational models for the methods of objects as the oretoded for functions (Figure 2)This
frameawork then allows for the concurrerteeutions of methods.

We @an extend the frammork so that it allows for the concurrenteeution of objects.For this we hae

see that the scheduler for the methods has t@ magkntext switch to the object a method belongs to.

this framevork the contgt switch is done inline with the scheduling of a method, similar to the inline
scheduling of functions in the sequential computational model for functidpparently the contet

switch is the scheduling of the object. Separating the scheduling of objects from the scheduling of methods
gives us a sheduler for objects where each object takes care of the scheduling of its methods.

With this, we abstracted from Wwabjects are scheduledihe result is a computational model that\alo
for the concurrentxecution of objects.In this model, each object decidessnio schedule its methodgOf

course, the scheduling of methods can be inline and thus limiting congutoedajects only From this
model we can implement the abstract computational model that allows for the concxecetioe of
functions or methods, but we can also implement a model that allows for the concxeperior of
objects in which each object decideswtio schedule its methods.

What has been a call of a method for a particular object in the sequgetiatien model has wobecome
a request to that objectHdow the object handles the request is not important, and so we can abstract from
this.

4. Conclusions

In this article we extended the frawmrk of computational models for functiomeeution into a frameork

of computational models for objeckeeution. Thisframewvork allows for the concurrentxecution of

objects where each object controls the scheduling of its own methods. Thisvfranoan be used as

model for the implementation of software where the saftwmay be object-oriented or function-oriented.

The type of scheduling in the implementation of the system or part of the system at hand can be chosen
such that there can be made full use of the capabilities of the underlying machine froelehain
advantage is that the problems inherent with concuyreant be dealt with at the rightid of abstraction.

References

[1] A. Alexandrescu, H.J. Boehm, K. Heyn®. Lea, and B. PugiMemory Model for C++2004.

[2] A. Alexandrescu, H.J. Boehm, K. Hegné. Hutchings, D. Lea, and B. Pugklemory Model for
C++: Issues 2005.

[3] A.D. Birrell, “An Introduction to Programming with Thredds,eport 35, Digital Equipment
Corporation - Systems Research Centre, 1989.

[4] H.J.Boehm, “Threads Cannot Be Implemented As a LihfaACM SIGPLAN Noticesvol. 40, no. 6,
pp. 261-268, 2005.

[5] PA. Buhr, “Are Safe Concurregd.ibraries Possible”?,Communications of theGM, vol. 38, no. 2,
pp. 117-120, 1995.

[6] B. Diertens,Concurent Models for Function Executiosection Theory of Computer Science -
University of Amsterdam, 2011.

[71 J.Manson, WPugh, and S. Adve, “The ¥a Memory Model, SIGPLAN Noticesvol. 40, no. 1, pp.
378-391, ACM, 2005.

[8] W. Pugh, “The Ja&a Memory Model is fatally flwed; Concurency: Practice and Experienceol.
12, no. 6, pp. 445-455, 2000.

Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

[TCS1102]

[TCS1101]

[TCS1001]

B.Diertens,Communicating Concurrent Functiorsgction Theory of Computer Science - \énsity
of Amsterdam, 2011.

B. Diertens, Concurient Models for Function Executiosgction Theory of Computer Science -
University of Amsterdam, 2011.

B.Diertens,On Object-Orientationsection Theory of Computer Science - nsity of Amsterdam,
2010.

Within former series (PRG) the following reports appeared.

[PRG0914]

[PRG0913]

[PRG0912]

[PRG0911]

[PRG0910]

[PRG0909]

[PRG0908]

[PRG0907]

[PRG0906]

[PRG0905]

[PRG0904]

[PRG0903]

[PRG0902]

[PRG0901]

[PRG0814]

[PRG0813]

J.A.Bemstra and C.A. Middellrg, Autosolvability of Halting Poblem Instances for Instruction
Sequencegfrogramming Research Group - Wabity of Amsterdam, 2009.

J.ABemgstra and C.A. Middellrg, Functional Units for Natural NumbsyProgramming Research
Group - Unversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Instruction Sequence Processing Cers, Programming
Research Group - Uversity of Amsterdam, 2009.

J.A. Begstra and C.A. Middellrg, Partial Komori Fields and Imperative Komori iélds,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Begstra and C.A. Middellrg, Indirect Jumps Immve Instruction SequenceeHormance,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemstra and C.A. Middellrg, Arithmetical Meadows,Programming Research Group -
University of Amsterdam, 2009.

B.Diertens, Softwae Engineering with Pocess Algbra: Modelling Client / Server Ahitecures,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Inversive Meadows and Divisive MeadowRrogramming
Research Group - Uversity of Amsterdam, 2009.

J.ABemstra and C.A. Middellrg, Instruction Sequence Notations with Probabilistic Instructions,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemstra and C.A. Middellrg, A Protocol for Instruction Stream Bcessing,Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, A Process Calculus with iRitary Comprehended €fms,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Transmission Protocols for Instruction 8ams,Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Meadow Enriched ACP Process Ahlgas, Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Begstra and C.A. Middellrg, Timed Tuplix Calculus and the Wesseling and van deg Ber
Equation,Programming Research Group - \dmsity of Amsterdam, 2009.

J.A.Bemstra and C.A. Middellrg, Instruction Sequences for the déuction of Pocesses,
Programming Research Group - Wity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, On the Expressiveness of Singis® Instruction Sequences,
Programming Research Group - Wity of Amsterdam, 2008.

[PRG0812]

[PRG0811]

[PRG0810]

[PRG0809]

[PRG0808]

[PRG0807]

[PRG0806]

[PRG0805]

[PRG0804]

[PRG0803]

[PRG0802]

[PRG0801]

J.A.Bemgstra and C.A. Middellrg, Instruction Sequences and Non-uniform Complexity Theory
Programming Research Group - Wity of Amsterdam, 2008.

D.Staudt,A Case Study in SoftwarEngineering with PSF: A Domotics ApplicatidRrogramming
Research Group - Uversity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Thread Algbra for Poly-Threading, Programming Research
Group - Unversity of Amsterdam, 2008.

J.ABemgstra and C.A. Middellrg, Data Linkage Dynamics with Shedding’rogramming Research
Group - Unversity of Amsterdam, 2008.

B.Diertens,A Process Alghra Software Engineering Exmironment,Programming Research Group -
University of Amsterdam, 2008.

J.ABemstra, S. Nolst Trenite, and M.Baw der Zvaag, Tuplix Calculus Specifications ofirfancial
Transfer NetworksProgramming Research Group - Uasity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Data Linkage Agebra, Data Linkge Dynamics, and Priority
Rewriting,Programming Research Group - Wity of Amsterdam, 2008.

J.ABemstra, S. Nolst Trenite, and M.B. van deraag,UvA Budget Allocatie ModeRrogramming
Research Group - Uversity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Thread Algbra for Sequential 8ly-Threading,Programming
Research Group - Uversity of Amsterdam, 2008.

J.A.Begstra and C.A. Middellrg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - Wity of Amsterdam, 2008.

A.Barros and THou, A Constructive ¥rsion of AIP Reisited, Programming Research Group -
University of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - Wity of Amsterdam, 2008.

The abee reports and more arealable through the website: www.science.uva.nl/research/prog/

Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

