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ABSTRACT

In previous work we developed a framework of computational models for the concurrent
execution of functions on different levels of abstraction.It shows that the traditional
sequential execution of function is just a possible implementation of an abstract
computational model that allows for the concurrent execution of functions.We use this
framework as base for the development of abstract computational models that allow for
the concurrent execution of objects.

Ke ywords: programming languages, computational model, execution model, machine
model, sequential execution, concurrency, object-orientation

1. Introduction

To execute a program written in a particular programming language, it is compiled into executable code for
a particular machine. The machine is actually a machine model representing physical hardware, operation
system, etc, or possibly a virtual machine.The compilation is done according to an execution model
specific for the machine model. An execution model is an implementation of a computational model1

which gives the essential rules for performing computations.The computational model must at least be
adequate for expressing the operational semantics of the programming language. An overview of this all is
given in Figure 1. For long the machine model was based on sequential execution of instructions.
Programming languages were based on sequential execution of instructions as well, as were the
computational models and the execution models.
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Figure 1. Overview of program execution related affairs

1. A computational model is also called an abstract machine model, although the terms can be considered different elsewhere.
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In previous work [6] we developed a framework of computational models for the concurrent execution of
functions. Thisframework can be used for the development of concurrent computational models that deal
with the problems inherent with concurrency. It also shows that it should not be decided which parts of a
sequential system can be done concurrently, but what parts of a concurrent system can or should be done
sequentially. In this article we set out to do the same for the concurrent execution of objects. Models for
object execution make use of models for function execution. Theinvocation of a method for a particular
function is implemented as the sequential execution of a function.Concurrency of objects is added in the
same way as concurrency is added to functions. Either this is done using an add-on library, such as multi-
threading [3], or through extension of the programming languages with constructs for concurrency.

These extensions, however, are implemented on top of existing computational and execution models using
the same add-on libraries. The problem with adding concurrency in this way is that it is still based on a
computational model for sequential execution of instructions, and compilation is still based on a model for
sequential execution of instructions.Compilers may generate efficient code that is correct for sequential
execution, but incorrect for concurrent execution. Thiswas already shown in [5] (1995) and again later in
[4] (2005) and is caused by communications between threads through shared memory. In both [5] and [4] it
is stated that concurrency must be addressed at the language specification level and in compiler design.

There are of course also new programming languages (or redesigned existing ones) which support
concurrency that come with computational models and execution models which solve some of the
problems, if not all, of concurrency, such as Java, C#, and Ada.But it is quite tricky to avoid problems with
memory models for such a language as is shown in [8] and [7] for Java, and in [1] and [2] for a C++
standard.

In section 2 we summarize our previous work on concurrent models for function execution. We extend this
work with concurrent models for object execution in section 3.

2. Computational models for functions

In [6] we developed a framework of computational models at different levels of abstraction for the
concurrent execution of functions. The development of the framework started with the traditional
sequential execution model for functions from which a sequential computational model was obtained by
abstracting from the details of function call implementation.Further abstraction from the way a function is
scheduled for execution led to an abstract computational model that allows for the concurrent execution of
functions (Figure 2).
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Figure 2. Framework of computational models
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This approach shows that with abstraction and relaxing constraints, a model for execution of functions can
be obtained in which function scheduling plays a key role. Thismodel has as a possible implementation
inline scheduling, the original stack-based function execution model the development of the framework
started with. But more important, this model allows for the concurrent execution of functions, and
therefore it can be used as a model for the implementation of concurrent software. Theframework of
computational models at different levels of abstraction can be used for further development of concurrent
computational models that deal with the problems inherent with concurrency.

3. Computational models for objects

The traditional sequential execution model for objects is based on the traditional sequential execution
model for functions.In this model it seems that the objects are not executed, but the methods of the objects
are executed, and in a similar manner as functions.We could therefore use the same framework of
computational models for the methods of objects as the one developed for functions (Figure 2).This
framework then allows for the concurrent executions of methods.

We can extend the framework so that it allows for the concurrent execution of objects.For this we have to
see that the scheduler for the methods has to make a  context switch to the object a method belongs to.In
this framework the context switch is done inline with the scheduling of a method, similar to the inline
scheduling of functions in the sequential computational model for functions.Apparently, the context
switch is the scheduling of the object. Separating the scheduling of objects from the scheduling of methods
gives us a scheduler for objects where each object takes care of the scheduling of its methods.

With this, we abstracted from how objects are scheduled.The result is a computational model that allows
for the concurrent execution of objects.In this model, each object decides how to schedule its methods.Of
course, the scheduling of methods can be inline and thus limiting concurrency to objects only. From this
model we can implement the abstract computational model that allows for the concurrent execution of
functions or methods, but we can also implement a model that allows for the concurrent execution of
objects in which each object decides how to schedule its methods.

What has been a call of a method for a particular object in the sequential execution model has now become
a request to that object.How the object handles the request is not important, and so we can abstract from
this.

4. Conclusions

In this article we extended the framework of computational models for function execution into a framework
of computational models for object execution. Thisframework allows for the concurrent execution of
objects where each object controls the scheduling of its own methods. This framework can be used as
model for the implementation of software where the software may be object-oriented or function-oriented.
The type of scheduling in the implementation of the system or part of the system at hand can be chosen
such that there can be made full use of the capabilities of the underlying machine model.The main
advantage is that the problems inherent with concurrency can be dealt with at the right level of abstraction.
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