University of Amsterdam
Theory of Computer Science

Communicating Concurrent Functions

B. Diertens

Report TCS1102 November 2011

B. Diertens

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

tel. +31 20 525.7593
e-mail: B.Diertens@uva.nl

Theory of Computer Science Electronic Report Series

Communicating Concurrent Functions
Bob Diertens

section Theory of Computer Science, Faculty of Scienceetitly of Amsterdam

ABSTRACT

In this article we extend the framerk of execution of concurrent functions on fiifent
abstract leels from previous wrk with communication between the concurrent
functions. V¢ dassify the communications and identify problems that can occur with
these communicationsWe present solutions for the problems based on encapsulation
and abstraction to obtain correct babars. Theresult is that communication on anMo

level of abstraction in the form of shared memory and message passing is dealt with on
an higher led of abstraction.

Kewords: communicating functions, computational model, concurrency

1. Introduction

In [1] we dereloped a frameork of computational models at differentvéts of abstraction for the
concurrent eecution of functions. The delopment of the framgork started with the traditional
sequential xecution model for functions from which a sequential computational model was obtained by
abstracting from the details of function call implementation. Further abstraction fronayhe function is
scheduled forxecution led to an abstract computational model that allows for the concuxeeatien of
functions (Figure 1).

abstract
computational
model .
a0 /
«\e“\za\o 07'0/@’77
) Nty
\((\Q 600/7
sequential concurrent
computational computational
model model
Q Q
3 3
2|2 2|2
o (LAY
=} =}
sequential concurrent
machine machine
model model

Figurel. Framavork of computational models

It showed that with abstraction and relaxing constraints a modektdoutén of functions can be obtained
in which function scheduling plays @ mle. This model has as a possible implementation inline
scheduling, the original stack-based functicecation model the deslopment of the frameork started
with. Butmore important, this model all for the concurrentxecutions of functions, and therefore it can
be used as model for the implementation of concurrent adtwT heframenork of computational models
at different leels of abstraction can be used for furthevali@ment of concurrent computational models
that deal with the problems inherent with concuryenc

Concurrent eecution of code allows for communication between the parts of code thaxematesl
concurrently The communication can be done either through models using shared memory or by models
using message passingl/ith message passing models communication is done by exchanging messages and
shared memory communication is done by reading from and writing to memory that can be accessed by at
least all parties in the communication. In this paper we extend the abstract model for congerteione

of functions with communication between concurrent functions.

We dassify communications between concurrent functions in direct and indirect, and in unidirectional and
bidirectional. Inthe folloving we describe the different forms of communications and identify the
problems that can occur with the communicationé&e describe solutions for dealing with these problems

as abstract as possible as we are dealing with communications on a highef &bstraction than it is
usually the caseThe reason for dealing with communications on a higH l&f abstraction is that we are

only concerned with the essentials of the communication and not with the implementation Heithfisl
implementations should belethe same as their abstract counterparts when abstracting from the inner
details. Thesémplementations should also peat other concurrent functions from interfering with the
inner details.Further we describe some special cases of communication awcttney relate to the forms

of communications and the solutions already described.

2. Formsof Communication

Communications between concurrent functions can either be direct or indightdirect communication

one function sends a message and another functioneetes message. On thes& of abstraction we are
working, the combination of the sending of the message and the receiving of the message between
concurrent functions can be seen as a single indivisible action.

With indirect communication one function writes a message to a dedicated location and another function
reads the message from that location. Indirect communicatioersety can not be seen as an wslble

action as parts of the indirect communication may interfere with eachatledist some problems that can

occur with indirect communication.

- If the write and read actions are divisible then these actions can interfere with each other.
« Itis possible that a memessage is written before the old message is read.

- If the location the messages are written to is accessible by other concurrent functions, interference
from these functions is possible as well.

As opposed to unidirectional communications, bidirectional communication can occur between concurrent
functions. Bidirectional communication between tw functions consists of tw unidirectional
communications. Bidirectionalirect communication can lead to a deadlock when both function want to
either write or read a message. Such a problem can be solved by using indirect communication with at least
one of the unidirectional communications.

With bidirectional indirect communication interference between tleeunidirectional communications is
possible when the same location for storing the messages is used. Messageve@aritierobefore thg

are read. If that is not allowed, separate locations for storing the messages should be used dor the tw
unidirectional communicationgOf course when it is known that this isveethe case sharing the location

is an option, bit one that is prone to errors by later alterations. If it is allowed, it means that messages do
not have 1 be ead. Buthen write actions from both sides can interfere with each other.

3. Solutionsto Problemsin Communications

The main problem with indirect communication is the interference between the read and write actions of
the communication partners. Therefore, we first present a basic locking mechanism that guarantees
exclusive acess to the location used for storing the messtédeten gve lutions to the problems with
unidirectional and bidirectional indirect communication based on this mechanism.

3.1 Basid_ocking Mechanism

To avoid problems with using indirect communication between concurrent functions a mechanism is
needed that pvents simultanous access to the location used for storing the meséagessibility for this

is the use of a locking mechanism that operates in concymvéticthe communicating functions and that

has tw actions associated with it, a lock action and an unlock actfolock action gies exclusive acess

to a particular location, and an unlock action releases the exchsiss (Figure 2).

lock
read

write
unlock

Figure 2. Indirect communication with locking mechanism

A read or a write action may only occur after a lock action and must be followed by an unlock Heison.
locking mechanism is commonly used in software, where it is implemented vatketmaphores using
Dekkers dgorithm described in [2].

Although this mechanism mayornk fine in a well disciplined environment, there still are problems with

this mechanism since it does notymm access to the location for storing the messages without using the
mechanism. Asolution to this is to use a locking mechanism that encapsulates the locatien.
encapsulation can be established by using a location that is only locally accessible instead of a location that
is globally accessible (Figure 3).

lock read

Figure 3. Indirect communication with encapsulated location and locking mechanism

With this mechanism, a read or a write action can only gleice when first a lock action has been done by
the function that wants to read or writ8o for writing a message into the location the sequence of actions
lock - write - unlock and for reading a message from the location the sequence lock - read - wealdzk ha
be performed.

3.2 Unidirectional Indirect Communication

In this section we describe the implementation of a mechanism for unidirectional indirect communication
based on the basic locking mechanism from the previous sedfiendart with a mechanism that
implements the basic communication actions, which wtenel to a mechanism that fully implements
unidirectional indirect communication.

3.2.1 Basic Communication Mechanism

When using the basic locking mechanism writing a message consists of the sequence of actions lock - write
- unlock, and reading a message of the sequence lock - read - uRtock.the point of vier of the writer

and reader of the message these sequences can each be incorporated in a singllnsieadnof
implementing such actions on the side of the writer and readeran implement a mechanisme that
provides these actions (Figure 4). That mechanism can at the same time encapsulate the basic locking
mechanism to prent access to it directly.

read

unlock

Figure4. Indirect communication with encapsulated locking mechanism

When we abstract from the inneokking of this mechanism, it is just another concurrent function with
associated read and write actions. The form of communication with this function is unidirectional direct
communication. Thusve can conclude that unidirectional indirect communication is built up fram tw
unidirectional direct communications, one between the writer and the mechanism and one between the
mechanism and the reader.

3.2.2 Status Based Communication

With unidirectional indirect communications only a read may be done when a message first has been
written. Andwriting of the n&t message may only be done when the previous message has beéihesad.
basic communication mechanism from the previous section does vethese constraintsTo enforce

these constraints, we VY& keep track of the status of the basic communication mechanism and only a
write or a read based on the current status.

We ald a status flag with associated actions set and get in order to see if a message can be written or that a
message has to be reddle encapsulate the status flag and the basic communication mechaniswetd pre
interference by wrapping them in another mechanigfa. an then abstract from the innerworking of this
mechanism. W ae left with a mechanism that can only do a read action when a message has been written
and only a write action when there has been no write yet or the message has be@erpadlide the
mechanism with an action for checking the status from outside the mechanism.

check-status read

lock read
read

> X
/ N\
(

)
< wri
unlock/™~—— write

Figure5. Unidirectional indirect communication with encapsulated status flag

3.3 Bidirectional Indirect Communication

When bidriectional indirect communication consist of tmidirectional indirect communications there are

no additional problems and we selithem as described alm® When bidirectional indirect communication

is built using only one location for storing the messages in both directions the same problems arise as with
unidirectional indirect communicationThere is only one additional problem, and that is the possibility of
overwriting a message before it can be read due to interference of the communications i the tw
directions.

The solution to this problem is similar to the solution describedeabaot it is more compbesince nav the
two directions of communication kea © be fken into accountWe haveto alter the possible number of
states to makaure that a message can only be written when there is no message waiting to be read and that

a message can only be read by the one side it is intended for.

4. Special Cases

In this section we discuss soem special cases of communicationsvatitehonechanism from the pieus
sections can be used in these cases.

4.1 LastMessage

It can be the case that the reeenf the messages is not interested in all messages, but only the most recent
one. Wth unidirectional indirect communication we can relax on the constraint that a message has to be
read before another write of a message cae pice. Therecever can then ignore messages and the
sender does not & o wait for a message to be read before writing the next Bepending on whether

the involved parties want the check on the status of the communication mechanism, an implementation can
either use the status based communication mechanim from section 3.2.2 or fall back to the basic
communication mechanism from section 3.2.1.

A similar thing can be done for bidirectional indirect communication with sharing of the location for the
messages in both directions. But then wgehts make aure that it is aliays possible to read the last
message by holding on to the constraint that a message can only be written by a side if there is no message
waiting to be read by this side. So a status is still needed and thuisweebhese the status based
communication mechanism.

4.2 Undiected Communication

If we dispose of all constraints with bidirectional indirect communication with sharing of the storage
location for messages in both directions we get a form of communication that can be considered as
undirected. Allparties iwvolved can write and read from the location ay @&ime. In this case the
communication is not with eachotheryamore, but with the storage location. This is what awal&vd of
abstraction typically is meant by shared memdtycan be implemented with the basic communication
mechanism.

In using undirected communication it can be required to generatev anessage based on the latest
awailable messageTo make are the n& message is based on the latest message and that there has not
been written a rve message in the meantime, it must be possible to lock the location during the process.
sequence of actions has to be lock - read - generate - write - uSlodhk.this case, an implementation has

to fall back to the basic locking mechanism from section 3.1.

5. Conclusions

We haveextended the abstract computational model from our fnaorleof computational models for the
concurrent gecution of functions with communication between the concurrent functiés.this, we
classified the communications between concurrent functions in direct and indirect and in unidirectional and
bidirectional. er the different kinds of communication we identified problems that can occur with these
communications and we presented solutions for these problEnessolutions are based on encapsulating

the area in which the problem occurs together with a mechanism that solves the prdbiem.
encapsulation mals it possible to abstract from the innerkings. Theresulting mechanism can then
easily be replaced with something else with the same behaviour.

We cefined the basic locking mechanism that we use in our solutions. This mechanism itself is based on
the locking mechanism commonly used in saftey but through encapsulation and abstraction this is
completely concealed.

For unidirectional indirect communication we defined the basic communication mechanism that
encapsulates the basic locking mechanidihis basic communication mechanism is constrained into the
status based communication that implements unidirectional indirect communication. The constraints are
based on the states of the mechanism that indicate whether a read or a write is possible.

Bidirectional indirect communication consisting ofotwnidirectional indirect communications that share

the location for storing the messages in both directions can be implemented using a similar status based
communication. Buthen the solutions is a bit more comphlEcause there are more possible stahés.

only is it necessary to indicate whether a read or a write is possible, but also by whichvpb#iylim the
communication.

Furthermore, we discussed some special cases of communicBtiege cases can be implemented using
one of the defined mechanisms, or similar implementations with the sameaolbiehdepending on the
constraints that h@ o be eaforced on the communicationg\ particular intriguing case is undirected
communication whatat awolevd of abstraction is meant by shared memory communicatfidns can be
implemented with the basic communication mechanism or the basic locking locking mechanism when
control over the locking mechanism itself is required.

When we abstract from the inneworking of the mechanisms, these are just other concurrent functions
among the other functions. The form of communication with these mechanisms is unidirectional direct
communication. Save can conclude that, through our mechanisms, unidirectional indirect communication
is built up from unidirectional direct communications.

References

[1] B. Diertens,Concurent Models for Function Executiosection Theory of Computer Science -
University of Amsterdam, 2011.

[2] E.W. Dijkstra, Cooperating Sequential Process@s;hnological Unversity Eindhaen, 1965.

Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

[TCS1101]

[TCS1001]

B. Diertens, Concurient Models for Function Executiosgction Theory of Computer Science -
University of Amsterdam, 2011.

B.Diertens,On Object-Orientationsection Theory of Computer Science - nsity of Amsterdam,
2010.

Within former series (PRG) the following reports appeared.

[PRG0914]

[PRG0913]

[PRG0912]

[PRG0911]

[PRG0910]

[PRG0909]

[PRG0908]

[PRG0907]

[PRG0906]

[PRG0905]

[PRG0904]

[PRG0903]

[PRG0902]

[PRG0901]

[PRG0814]

[PRG0813]

[PRG0812]

J.A.Bemgstra and C.A. Middellrg, Autosolvability of Halting Problem Instances for Instruction
Sequencefrogramming Research Group - Wabity of Amsterdam, 2009.

J.ABemgstra and C.A. Middellrg, Functional Units for Natual Numbes, Programming Research
Group - Unversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Instruction Sequence Processing Cers, Programming
Research Group - Uversity of Amsterdam, 2009.

J.A. Begstra and C.A. Middellrg, Partial Komori Fields and Imperative d¢tmori Helds,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Begstra and C.A. Middellrg, Indirect Jumps Immve Instruction SequenceeHormance,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemstra and C.A. Middellrg, Arithmetical Meadows,Programming Research Group -
University of Amsterdam, 2009.

B.Diertens, Softwae Engineering with Process Adipra: Modelling Client / Server Ahitecures,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Inversive Meadows and Divisive MeadowRrogramming
Research Group - Uversity of Amsterdam, 2009.

J.ABemstra and C.A. Middellrg, Instruction Sequence Notations with Probabilistic Instructions,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemstra and C.A. Middellrg, A Protocol for Instruction Stream Bcessing,Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, A Process Calculus with Finitary Comprehendedrris,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Transmission Protocols for Instruction 8ams,Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Meadow Enriched ACP Process Ahlgas, Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Begstra and C.A. Middellrg, Timed Tuplix Calculus and the Wesseling and van deg Ber
Equation,Programming Research Group - ity of Amsterdam, 2009.

J.A.Bemstra and C.A. Middellrg, Instruction Sequences for the Production ofod&sses,
Programming Research Group - Wity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, On the Expressiveness of Single-Pass Instruction Sequences,
Programming Research Group - Wity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Instruction Sequences and Non-uniform Complexity Theory
Programming Research Group - Wity of Amsterdam, 2008.

[PRGO0811]

[PRG0810]

[PRG0809]

[PRG0808]

[PRG0807]

[PRG0806]

[PRG0805]

[PRG0804]

[PRG0803]

[PRG0802]

[PRG0801]

D.Staudt,A Case Study in SoftwarEngineering with PSF: A Domotics ApplicatidRrogramming
Research Group - Uversity of Amsterdam, 2008.

J.A.Bemstra and C.A. Middellrg, Thread Algbra for Poly-Threading,Programming Research
Group - Unversity of Amsterdam, 2008.

J.ABemgstra and C.A. Middellrg, Data Linkage Dynamics with Shedding’rogramming Research
Group - Unversity of Amsterdam, 2008.

B.Diertens,A Process Alghra Software Engineering Exmironment,Programming Research Group -
University of Amsterdam, 2008.

J.ABemstra, S. Nolst Trenite, and M.B. van deraag, Tuplix Calculus Specifications ofirfancial
Transfer NetworksProgramming Research Group - Uity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Data Linkage Agebra, Data Linkge Dynamics, and Priority
Rewriting,Programming Research Group - Wity of Amsterdam, 2008.

J.ABemstra, S. Nolst Trenite, and M.B. van deraag,UvA Budget Allocatie ModeRrogramming
Research Group - Uversity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Thread Algbra for Sequential 8ly-Threading,Programming
Research Group - Uversity of Amsterdam, 2008.

J.A.Begstra and C.A. Middellrg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - Wity of Amsterdam, 2008.

A.Barros and THou, A Constructive ¥rsion of AIP Reisited, Programming Research Group -
University of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - Wity of Amsterdam, 2008.

The abee reports and more arealable through the website: www.science.uva.nl/research/prog/

Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

