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ABSTRACT

We cerive an abstract computational model from a sequential computational model that is
generally used for functiorxecution. Thisabstract computational model allows for the
concurrent gecution of functions.We dscuss concurrent models for functiaokeeution

as implementations from the abstract computational modil.gve an example of a
particular concurrent function construct that can be implemented on a concurrent
machine model using multi-threading. The result is a freone of computational
models at different lels of abstraction that can be used in furthevelbpment of
concurrent computational models that deal with the problems inherent with congurrenc

Kewords: programming languages, computational mod&kcetion model, machine
model, sequentialxecution, concurrency

1. Introduction

To execute a program written in a particular programming language, it is compilecketiat@ble code for

a particular machine. The machine is actually a machine model represenyisigaptinardware, operation
system, etc, or possibly a virtual machinghe compilation is done according to axeaition model
specific for the machine model. Anxeeution model is an implementation of a computational model
which gves the essential rules for performing computatiofifie computational model must at least be
adequate forxressing the operational semantics of the programming languageveAnew of this all is
given in FHgure 1. For long the machine modelas based on sequentiateeution of instructions.
Programming languages were based on sequemtgdution of instructions as well, as were the
computational models and theeeution models.

With the introduction of support for concurrgrio machine models, whether or not based on hardw
capabilities, concurregcbecame wailable to be incorporated in program3here are seral forms in
which support can begn for the use of concurrepc One of these forms is by using an add-on library
that implements a set of primiés kuild on top of the concurrepacapabilities provided by the machine
model. Atypical example of this is multi-threading [4]A problem with the use of such libraries is that
they may vary on different platform making the programs less portabhés problem can be solved by
using a standard such as Posix [11], or Pthre@dsnore important problem is that the programming
language is still based on a computational model for sequexd@lten of instructions, and compilation is
still based on a model for sequentiaéaution of instructions.Compilers may generate efficient code that
is correct for sequentiakecution, but incorrent for concurrenxeeution. Thiswas dready shown in [6]
(1995) and aajin later in [5] (2005) and is caused by communications between threads through shared
memory The approach alve results in the writing of a programves if it clearly has independent parts
that can bexecuted concurrentybased on a sequentiateeution model to which carefully concurrgnis
added, instead of onto a model that directly allows for concursexcution transparently to the user
Furthermore, one has teép control ver the concurrentecution in order to woid problems as race
conditions, deadlocks, consistgnof data, etc. So there is no transpasenchatsoger concerning
concurreng, making it very hard to write reliable software.

Another form to support concurrgnis to extend existing programming languages with constructions that
allow for some form of concurrepc These constructions are implemented on top of tkistimg

1. A computational model is also called an abstract machine model, although the terms can be considered different elsewhere.
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computational andxecution models using the same add-on libraries mentioned edrtierproblems with
compilers generating code for sequentiadcaition are hardly dealt with. Although this approach has some
adwantages wer the use of add-on libraries, it is uncleamhexecution takes place and whether it caneha
different (unforeseen) results on different machine models.

In both [6] and [5] it is stated that that concurrenwist be addressed at the language specificatieh le
and in compiler design. There are of course alsopregramming languages (or redesigned existing ones)
which support concurregchat come with computational models angaaition models which sotvsome

of the problems, if not all, of concurrgncuch as Jea, C#, and Ada. But it is quite trigkto avoid
problems with memory models for such a language as is shown in [16] and [15)dandkain [1] and [2]

for a C++ standard.

In this article we focus on computational arxéaeition models and lea aut the problems with generating
correct code for concurrenxeeution. We show that, just as the sequentialeeution model is one possible
implementation of the sequential computational model, the latter just is one possible implementation of an
abstract computational model that allows for concurreatigion of instructions.So instead of adding
concurreng to the sequentialx@cution model one should implement a concurresetation model from
the abstract computational mod&uch an implementation should also keep concuyraadansparent as
possible to the user in order to meakwiting concurrent software easieM/e dtain an abstract
computational model allowing concurremxeeution of instructions from the sequentiabeution model via
the sequential computational model by making the right abstractiiret. abstract computational model
can be used as base fopkring possible computational models allowing concurresetution. From
these computational models an implementation can be made for concuweentiom based on the
capabilities of the machines.

Concurreng is gpplied at the instruction Vel in the form of concurrentxecution of instructions in loop
constructs. lis also applied at the functionvks, as is the case with multi-threading. Here, we focus on
the concurrentxecution of functions.A computational model for a programming language with functions
should describe ho these functions W& t be eecuted. Inthis article we set out to deop
computational models for programming languages with concurkentiion of functiong. We gart with

2. Often, the terms synchronous and asynchronresugon of functions are used instead of sequential and concureenttion
of functions.



deriving a sequential computational model from a sequent@iudion model in section 2. In section 3 we
abstract from the sequential computational model to obtain an abstract computational model for function
execution with scheduling that allows for concurrenteaition of functions. We explore a possible
implementation for the abstract computational model still allowing concurrentitéon of functions in
section 4.

2. Sequential Computational M odel

A program written in a programming languages is translated to code for a particular machine in order to be
executed. Ingeneral, this translation to machine code is based upon a model for sequentitibe of
instructions. & refer to program algebra [3] for information on instruction sequendesequence of
instructions can be generalized through parameterization forming a function, making it possible to abstract
from the implementation of the function. Calling a function from another instruction sequence is an
essential element of most programming languages. Therefore, a model for the seqxentiaineof
instructions must hee a nechanism for implementing function calls. Here, we describe such a function
call model up to a certaind of detail followed by a more generalized form of this model.

2.1 Sequentig@Function Execution Model

A function call can be described as a changeafugion of instructions to thexecution of instructions of
the called function, and where the arguments of the function call are waildéla to the called function.
After the execution of instructions of the called function is finished, the result is mailalde at the point
of the function call, and thexecution of instructions prior to the change is continued.

A function call is implemented in the machine model using someestion. e describe here a scheme
that makes use of a stackhis scheme is based on a calling sequence for the C programming language as
described in [12§,and the generated assembly code of some C compilers.

1. Thearguments for the function to be called are pushed onto the stack.

2. Theaddress of the instruction whergeeution has to be continued after the function call (return
address) is pushed onto the stack.

3. Controlis passed to the called function by setting the program counter to the start of the called
function. Aguments of the function call areaflable through referencing in the stack.

1. Thecontents of registers that are used inside the function zee ca he stack.

Stackspace is allocated for local variables of the function.

Theactual body of the function ixecuted.

Thereturn value is stored somewhere on the stack so that it can be obtained by the caller.
Stackspace is freed and register values are restored.

Thereturn address is popped of the stack.

N o o M w DN

Controlis given back to the caller of the function by setting the program counter to the
return address.

4. Thereturn value is taken from the stack.

5. All the \alues that had been pushed onto the stack avepopped from the stack (the stack is
restored to its state before the function call) amation of instructions continues.

The use of a stack in the alsoxheme for storing the values makes the reeersalls of functions
possible. Butt is not alvays necessary to use the stack for storing a particular value, for instance the return
value can be sad in a cedicated rgister The scheme shows that there is no special mechanibved

3. Other cowentions are possible too. More information can be found on http://en.wikipegaildfCalling_corvention and
http://en.wikipedia.org/wiki/Call_stack.



that takes care of the function calhstead, the instructions for handling the function call are put inline
with the other instructions.

2.2 GeneridModel of Sequential Function Execution

In the scheme described abpthe data on the stack is usually accessed through disterecalledstack

pointer. The part of the stack that contains the data for a particular function call is calée same and

holds the arguments for the function, the return address, and the local variables of the function.
Alternatively, such a frame may be accessed through a special register fcaitezl pointeipointing to the
position of the frame on the stack, to alléor manipulation of the stack pointer duringeeution of the
function. Astack frame consist actually of dvwparts, a part that is build up by the caller and a part that is
build up by the function.

We @an describe this more general without the use of a stack.
1. Thearguments for the function and the return address are put in a frame.
2. Theframe is saed in a dace that is @ailable to the function.
3. Anenvironment for the function is set up.
4. Controlis passed to the called function.

1. Thefunction builds up its wn frame for storing local variables and saving contents of
registers used inside the function.

Arguments are taken from the frame.
Theactual body of the function isecuted.
Thecalled function seées the return value in the frame build up by the caller.

Thefunction disposes its own frame.

o g M w DN

Thereturn address is taken from the frame and controlviendiack to the caller of the
function.

5. Theenvironment of the function is taken down.
6. Thereturn value is taken from the frame
7. Theframe is disposed off.

Although we called it a stack frame, the actual use of a stack is not mentioned in the schemdtabo

frame can be communicated to the function by pushing it onto the stack as a whole, buivetieraatiso
possible, such as communicating only the location of the frame through the stack or using a dedicated
register for this.

2.3 Abstact Sequential Function Call

We wse the abee generic model for functionxecution to obtain an abstract model that hides the details of
how a function call is implemented. From the cakeviewpoint in abstraction the call of the function can
be seen as making the argumentlable to the function. If we maka smilar abstraction on the function
side we get the following scheme.

1. Callermakes arguments and return addresgable.
2. Anenvironment for the function is set up.
3. Controlis passed to the function.

1. Functioninitializes.

2. Functiongets arguments.



3. Functionexecutes its body.
4. Functionmakes return valuevailable.
5. Functioncleans up.
6. Controlis given back.
4. Ervironment is taken down.
5. Callergets return value.

The abstract model ¢gn here is the sequential computational model we are lookindtfalbstracts from
all possible details of implementation and focusses on the sequential computation of function calls.

3. Abstract Computational M odel for Function Execution

The sequential computational model for functiorecaition that we obtained in the previous section
describes a model can be seen as one possible sequential implementation of a concurrent computational
model. Inthis section we describe Wwoa ancurrent computational model can be obtained from the
sequential computational model by abstracting from the details wf ehdunction is scheduled for
execution.

3.1 Abstact Function Call

In abstraction, from the callerViewpoint the call of the function can be seen as the sendingyaants
to the function and the receiving of the retuatue. Ifwe male a smilar abstraction on the function side
we get the following scheme.

1. Callersends arguments to function.
1. Functiorreceves aguments.
2. Functionexecutes its body.
3. Functionsends return value to caller.
2. Callerreceves return value and continugeeution.

The scheme alve des not allev for recursie function calls. It also assumes there is a function present

for receiving the arguments and return addragsthe function first has to come inteigence. Irorder to

solve this a mechanism is needed that creates an instance of the function when it is called, corresponding to
the setup of an environment for the function in the sequential computational model.

3.2 Functioninstance Controller

In the preious section we recognized the need for a mechanism that creates instances of functions. Such a
mechanism also has to @kare of the return values from these instances and the destruction of the
instances afterdecution. Belav we how a £heme in which this mechanism is called the controller.

1. Callersends function-name and arguments to controller.
1. Controllerreceves function-name and arguments.
2. Controllercreates an instance of the function.
3. Controllersends arguments to function.
1. Functiorreceves aguments.
2. Functionexecutes its body.

3. Functionsends return value to controller.



4. Controllerreceves return value.
5. Controllerdisposes the instance of the function.
6. Controllersends return value to caller.

2. Callerreceves return value and continuegeeution.

The abstract viewpoint for the caller and the function are still tharentw the controller acts as
intermediate. Ifs also possible that on instantiation a function is supplied with therants, making the
sending of arguments by the controller and the receiving of them by the function reduftiauscheme
presented here is more general from thevpint of the function, in that it is not necessarilly the controller
supplying the function with guments. Wh this scheme it is also possible to consider the sending and
receiving of the arguments as part of the instantiation of the function.

We dbtained a scheme in which the controller operates in concwyrneitb sequential instruction
execution. Thisgives the possibility to separate the concerns of the communication betweerothedtw
their internal operation. Abstracting from details of the internal working esnake model more
comprehensie and at the same time it results in a model that allows for other implementations as well.

3.3 Sbeduling of Functions

In the abstract model for functiorxeeution we use a controller that acts as intermediate for the
communication with the instances of functions. In this section, we relax some constraints in this model to
obtain a model in which the role of the controller becomes the scheduling of functions.

We @n relax the constraints that a function has to wait for the value returned by the called function and that
the controller immediately has to &lkction on a call of a functionExecution of instructions might as

well continue until a certain point where the retuatue is needed. The controller may wait with creating

an instance of a function until some criterion is met, such asv#iatility of resources, the moment the
return value is needed, etc. This is typically the concept of a scheduler.

The tasks of a scheduler consists of ngngi function call requests, controlling functioreeution, and
sending return alues back to the callers of the functions. Controlling functietigion consists of the
following steps.

1. Schedulesets up an environment and makes the argumeditalde in this environment.
2. Thefunction is eecuted in the environment.
3. Theenvironment is taken down.

In this scheme there may be more than one function waitingxéougon and thg are not necessarilly
executed in the order in which there called. To deliver the right return values it is necessary to identify
the calls and the instances. This can be done byiding instances of functions with identifiers which
they haveto send along with their messages.

3.4 Concurent Execution

With the scheme presented abanncurrent gecution of function instances is possible. Since it is not
necessary to wait for the returalve of a function, other instructions can keceited concurrently with the
execution of the function. At the same time other function calls canxbeuted as well, resulting in
massve @ncurrent recution of functions. For parallel execution to happen, more than one sequential
instruction e&ecutor has to bewailable. Thescheduler has to use these sequential instruckieoutors as
resources fonecution of functions.

4. Concurrent Modelsfor Function Execution

We @an implement a concurrent computational model from the abstract computational model that resembles
the operational semantics of a programming language supporting a particular form of congectgiutne

of functions. From the concurrent computational model a concurnestugion model can be implemented

for a certain concurrent machine model, as depicted in Figure 2. The figesgugt an abstract we
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Figure 2. Framavork of computational models

There are of course more concurrent computational models possible as implementation from the abstract
computational model, each with one or more concurrgaetution models for one or more concurrent
machine models. This is also the case for sequential computational mbdelsermore, there are more

levels of abstraction possible for the computational model as well as for the machine model.

In the fram&vork described abee we deal with the gecution of functions on differentels of abstraction.
Each lower lgel is a refinement of the &l above, until reaching the target machine model. In the
concurrent computational model we alseéd®@ deal with the problems caused by the concurreatigion

of functions, such as problems with shared membuVith the sequential computational model this is not
necessary as these problems dissappear due the inline scheduling of functions.

In the following section we briefly sketch the concurrent models for a particular concurrent function
execution construct in a programming language.

4.1 Concurent Function Execution

We @n implement concurrent functions with constructs that separatevtteation of the function from
the receiving of the return value from the function. In between thacdtion of the function and the
receving of the return value the caller can do something else in concymeétit the eecution of the
function. Aprogramming language may support this with the following construction.

fid = invoke(f(...))

= wait(fid)

Here,i nvoke returns an identifier which can be usedway t to wait for the function with this identifier
to finish after which it returns the return value of the functi@rsequential form of this can then be written
asr = wait(invoke(f(...)),orevenchortenedtos = f(...).

In a computational model both thewvoke() andwait () can be considered separate requests to the
scheduler On an i nvoke() the scheduler reacts with sending back an identifier and taking care of the
execution of the function. On aai t () the scheduler checks if the function with theegiidentifier has
finished. Ifit has, the scheduler sends the return value back. Otherwise the scheduler hasaiee tak



sending the returnalue back after the function finishes. In the mean time the caller waits for the return
value.

A program containing these constructs can be compilederutable code for a particular machine model
that supports concurremtezution, provided that there exists aeaution model for it. If a machine model
supports multi-threading,xecution of concurrent functions can be mapped onto existing libraries of
functions implementing threads. Sequential function calls can still be implemented usirgcatioe
model for sequentialxecution of functions.

The result is that we lifted the functionality of multi-threading libraries to the & the programming
languages and pushed the implementation of the libraries to the machine model. This increases
transparengc and makes code more portable across different machihés.also possible for concurrent
functions to be implemented using different forms of concuyremovided by machine modelsThe
adwantage of this approach is that we can deal with othmsions separately on a lowewdke of
abstraction. &r instance, we can further refine the computational model by adding communication
between functions in the form of message passing or through shared memory.

5. Related Work

In mary cases concurregds added to existing programming languages byjaliog add-on libraries or by
adding constructs supporting concurgndhe computational model in these casewdver is gill based

on a sequential computational modé&yven entirely ne concurrent programming languages are often
based on a sequential computational motfesome cases a clear distinction is made between synchronous
and asynchronousxecution of functions, what amounts to sequential and concurrestiution of
functions. Althoughthis distinction is made, there is hardlyyamentioning of a computational model
dealing with concurrenc It mostly comes den to building on top of a machine model thatx$eaded
with the functionality of an add-on libraryso, concurreng is dealt with on a too v levd of abstraction.
The framevork we presented in this article is in contrast with the work mentioneckahs it ceals with
concurreng on a hgher level of abstraction. W& have not seen an other work that tries to model
concurreng at an ligher level of abstraction.

We havenot found ag mentioning of using different scheduling mechanism for tteewion of functions.
Although different scheduling mechanisms are used, & not characterized as sucBecause of this,
there is no proper understanding of the impact of usirfgrdift scheduling mechanisms and of their
interaction when used interngid. Ourframewvork can be used to study the use of different scheduling
machanism and the consequenceyg thay hase m the execution of functions.

There are man different machine architecture supporting paralbedcation. Supportinga particular
concurrent programming language on a wide range of these architectures is impractible. At the same time,
mary programs are customized to aclgeligher performance on a particular architecture, making them
less portable.A solution to this is a machine mofethat can be implemented on myadifferent
architectures. Exampled such machine models are the Parallel Random Access Machine (PRAM) model
[9], the Bulk-Synchronous Parallel (BSP) model [17], and the LogP modeB[i]there are manothers

and \ariants. Comparisorsnd analysis of some models can be found in [18], [14], and [13]. The

work on machine models fits perfectly on our fravoek, since it allows us to focus on concurrgmn a

higher level of abstraction instead of on details of specific machines. Furthermore, it increases both
portability and scalability of the programs using conculyenc

6. Conclusions

In this article we devied an dstract computational model for theeeution of functions.We darted with

the traditional sequentialxecution model for function »ecution from which we obtained a sequential
computational model by abstracting from the details of function call implementaBgnfurther
abstraction of he a function is scheduled foxecution, we obtained an abstract computational model that

4. Such machine models are often called parallel computation models, this context we prefer to call them (abstract) machine
models.



allows for the concurrentxecution of functions.

We have shavn that with abstraction and relaxing constraints a modelXesu¢ion of functions can be
obtained in which function scheduling playsey kole. Thismodel has as a possible implementation inline
scheduling, the original stack-based functiotcation model we started withMoreover, this model
allows for concurrentacution of instructions, and therefore it is suitable as model for implementation of
concurrent software.

Furthermore, we discussed concurrent models for funcketugon as implementations from the abstract
computational model and weage an example of a particular concurrent function construct in a
programming language that could be implemented on a concurrent machine model using multi-threading.
This showed that we can lift the functionality of multi-threading libraries to tret & the programming
languages and with that push the implementation of the libraries to the machine model.

The overall result of computational models at differentde of abstraction can be used as a fraork for

further deelopment of concurrent computational modeilsat deal with the problems inherent with
concurreng. The main adantage of this is that we can properly handle these problems on thevébf le
abstraction. Thdéramewvork shavs that it should not be decided what parts of a sequential system can be
done concurrent]ybut what parts of a concurrent system can or should be done sequentially.
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