
Univer sity of Amsterdam

Theor y of Computer Science

On Object-Orientation

B. Diertens

Report TCS1001 June 2010



B. Diertens

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

tel. +31 20 525.7593
e-mail: B.Diertens@uva.nl

Theory of Computer Science Electronic Report Series



On Object-Orientation

Bob Diertens

section Theory of Computer Science, Faculty of Science, University of Amsterdam

ABSTRACT

Although object-orientation has been around for several decades, its key concept
abstraction has not been exploited for proper application of object-orientation in other
phases of software development than the implementation phase.We mention some issues
that lead to a lot of confusion and obscurity with object-orientation and its application in
software development. We describe object-orientation as abstract as possible such that it
can be applied to all phases of software development.

Ke ywords:object-orientation, programming, software development

1. Introduction

The use of the concepts of object-orientation (OO) in programming predates the existance of programming
languages. Inthe 1960s the programming language Simula appears, which is considered the first language
supporting OO and developed into the language Simula 67 [7]. This language was used as a platform for
the development of the programming language Smalltalk [8] in the 1970s. In the 1980s C++ [13] was
introduced, bringing the concepts of Simula into the C programming language.From the 1990s object
oriented programming became a dominant style for implementing complex programs consisting of
interacting components.

Along side of object oriented programming (OOP), object orientation has been applied in design (OOD) of
software systems, and in analysis (OOA) of the requirements for a software system.Over the years,
methodologies for software construction have become more and more structured.These methodologies
were either data-oriented, function-oriented, or both although still seperated.With the rise of OO in
programming the need for OO in design, and later OO in analysis, came into existence. Asoftware system
described in terms of functions and/or data had to be mapped onto a description in terms of objects.Using
OO in earlier phases can smooth transitions from one phase to another.

A brief history of the object-oriented approach to software development is given in [5], together with a
survey of object-oriented methodologies. It mentions among others the work of Shlaer and Mellor [12],
Coad and Yourdon [6], Jackson [9], Booch [1] [2] [3], Jacobson [10], Wirfs-Brock et al. [14], and
Rumbaugh et al. [11].

Although a lot of work has been performed in the field of OO, there is still a lot of confusion and obscurity
in this world. Thisis partly due to the use of different terminology and the use of different semantics for
the same terms.Another aspect is that the fundamentals of OO are often explained in terms of features
provided by OOP languages.With as result that design on higher levels of abstraction is expressed on the
level of implementation.

With OO we can abstract from the implementation of objects, enabling us to concentrate on the behaviour
of objects and their relations with each other. With abstraction we can deal with the complexity of the
system. Butthis aspect of OO is seldom used.Instead, old methods are used and packaged in objects,
thereby increasing the complexity of the system.

In this paper we describe OO the way we see it and that can be applied to all phases of software
development. Inorder to apply OO in other phases of software development than implementation we have
to define OO without using features offered by OOP languages.We hav eto have an abstract model of OO
that can be applied to all these phases.



- 2 -

In the next section we briefly describe some issues with OO as currently used in software development
methodologies. We set out our thoughts on OO in section 3 and apply this to software development in
section 4.

2. Issues with Object-Orientation

We describe some issues concerning OO that lead to a lot of confusion and obscurity in this field. This list
is by no means complete, but is intended to pinpoint some of the problems due to the way OO is currently
applied by a lot of practitioners.

Features
When people are asked for the fundamentals of OO, they often reply with a list of features provided by
OOP languages instead of what OO is truly about.The features mentioned mostly are classification,
inheritance, polymorphism, encapsulation, and abstraction.For OO these features are irrelevant, apart from
abstraction but the term is wrongly used here.To describe OO in terms of features provided by OOP
languages that support OO leads to the conclusion that for a programming language to be OO, it has to
support these features. This circular reasoning is certainly not helpful for a good understanding of what
OO is truely about.

Emphasis on the features of OOP languages, such as classification, inheritance, and polymorphism, leads to
specification of data objects and distracts from the OO concepts of behaviour abstraction. Also on higher
levels of abstraction in design there is less need for these features, with as result that the design is directly
done on the level of programming. Itseems that the use of features provided by OOP languages has
become the goal.

Abstraction and Generalization
There is a lot of confusion over abstraction and generalization, or rather, they are interchanged.But
abstraction and generalization are definitely not the same.With abstraction some detail is left out that is
considered not important in a description on an higher level of abstraction. With generalization that detail
is not left out, but described in a general way on the same level of abstraction.

Consider the following example where we have a red, green, and blue object.We can describe these
objects in general in terms of an object with a particular color. With abstraction we describe these objects
as an object without the mentioning of a color at all.

Encapsulation and Information Hiding
Encapsulation and information hiding are often interchanged or used with the same meaning.
Encapsulation of an object prevents communication with that object in other ways than the defined ones
and does not hide how an object does things. Information hiding makes it impossible to see how an object
does things, but does not prevent communication with that object in certain ways.

Description
Objects are often described in terms of data and a set of functions.The Unified Modeling Language
(UML) [4] is advocated as a language for this in all phases of software development. With the description
of objects in terms of data and functions, UML hardly rises from the level of OOP languages. Although the
details of data and functions are left out, there is no abstraction from the implementation of objects.This
way of describing objects are thus useless on higher levels of abstraction in software design.Objects
should be described by their behaviour, instead of in terms of data and functions.

3. Object-Orientation

OO is a modelling paradigm for describing objects and their relationships. Objects and relations are
supposed to stand close to real world concepts. The real world is the world we are implementing, that is a
level of abstraction in the design or a requirements specification. The real world is a future world in which
the system under development takes part.

The real world is also an abstract world. It is of no concern how something works, only what it does.This
abstraction is key in OO. However, OO is often easily replaced with OOP. But an implementation in an
OOP language is no more than an example of this modelling at the lowest level of abstraction of the design.



- 3 -

Because of this replacement, OO is explained by describing what an particular OOP language has to offer.
To define a model of OO that can be applied in several phases of software development we have to define
this with as much abstraction as possible.We giv e a description of the fundamentals of OO, techniques to
support the fundamentals, and features based on the techniques. Note that only the fundamentals are
necessary for object-oriented modelling, some support can be nice, and features are mostly only used on the
lowest levels of abstraction.

3.1 Fundamentals

OO can be seen as a kind of technique of organizing a system in terms of objects and their relations.It is
supposed to stand closer to thereal world as opposed to techniques predating OO. Its characterist is the
distinction between the observable behaviour of objects and the implementation of the behaviours.

Objects
An object has the following characteristics.

state
for recording the history of an object upon which future behaviour can be based.

behaviour
the observable effects based on its state and the relations with other objects.

identity
as known by other objects, either by name or by reference.

Relations
Relations between objects are expressed by interactions in the form of message passing.

Abstraction
Manipulation of an object can only be done through its relations with other objects. Thereby hiding the
implementation of its behaviour and the recording of its state. It is only important what an object does, not
how an object does it.

3.2 Support

An object-oriented language for modelling systems on a particular level of abstraction has to support the
fundumentals of OO and possibly even enforce these fundamentals. Support can be provided in the
following forms.

Types
An object type is a container in which the state and the behaviour(s) for an object are defined.

Message Passing
The way messages are passed between objects can be supported in more than one form.

Encapsulation
Encapsulation prevents objects from relating to each other in other ways then the provided forms of
message passing.

Information Hiding
Hiding of information about an object can be done by deliberately making this information inaccessible.

3.3 Structures

Based on the techniques supporting OO structures can be formed. Such structures behave as objects
themselves, characterizing the concepts of OO.

Type Composition
The basic idea of composition is to build complex object types out of simpler ones. Besides that objects
can be built up from ways to define state and behaviour as provided by the modelling language, objects can
also be built up from other object types. The latter can be done in the following forms.



- 4 -

reference
An object type can reference an object of a particular object type.

inclusion
An object type can include another object type.

To obey the OO fundamentals of keeping behaviour and implementation of an object distinct, a modelling
language has to hide the composition of an object type. This can be achieved by making the elements of
the object type acquired through composition available either only from within the object type, or from
outside the object type but as it were elements of the object type itself.

Objects composed in this way are vertical related with the objects they are composed of.

Object Composition
Several inter-related objects form a cluster that when abstracted from the inter-relations acts as a single
object. Objectsthat take part in this composition are horizontal related with eachother.

Abstract Object Types
An abstract object type is an object type described in terms of objects representing elements of the abstract
object type for which the type(s) have to be filled in on a lower level of abstraction. Anabstract object type
can also be turned into a generic object type on a lower level of abstraction, with parameters for the object
types representing the elements.

4. Application of OO in Software Dev elopment

It is often said that OO stands closer to the real world as opposed to the techniques predating OO. The real
world is actually an abstract world that stands far from OO applied in a software system. If we want to
properly apply OO in the implementation of a software system we have to close the gap between real world
objects and objects in the implementation.Therefor it is logical to apply OO in the earlier phases of
software development.

Software development in the past moved from ad hoc methods to more structured methods. The structured
methods can be characterised as either data-oriented or function-oriented, but were usually a mixture of
both. Theobject-oriented paradigm abstracts from how something is achieved by an object to what it
achieves, and emphasises the interaction between objects.How something is achieved by an object can
thus be deferred until later in the development process.Unfortunately, this characteristic is less used.
Instead, a data oriented class hierarchy is dev eloped in an early phase of development, even in the analysis
phase.

In the following we describe some issues with the current application of OO in several phases of software
development and how OO our view can be used in these phases.

Analysis
OOA often results in designing the system. This is largely due to trying to define a class hierarchy for data.
With this, objects are represented as data and so the fundamentals of OO are not obeyed.

Actually, in analysis OO is of no use for describing the software system. Should OO be used for describing
what the software system has to do, we are actually designing the software system.However, OO can be
used for describing the interaction of the software system with the environment in which it will be
deployed. The software system itself is an object in this environment, or actually in this future
environment.

Design
In most cases, the design concentrates around the development of class hierarchies. Moreover, these class
hierarchies are expressed directly in an OOP language or in a language on a too low lev el of abstraction.
Instead it should focus on abstraction in order to deal with the complexity of the system. This can be
achieved by dev eloping abstract models of the system, each a refinement of the other. OO is extremely
usefull in this, since it enables abstraction from internal behaviour and implementation.This also makes
the study of different refinements for a particular object possible.



- 5 -

Analysis & Design
Analysis and design can be overlapping phases because some design decision reveal a need for further
analysis or analysis depend on how certain parts of the system can be implemented. But most of all, design
experiments can give information on incomplete or vague requirements.

OO supports this overlapping of phases because abstraction makes it possible to delay design decisions
concerning the internal working of objects.Abstraction also allows for experimenting on different levels of
abstraction of design.

Programming
An object-oriented design is easier to map onto an object-oriented implementation than a design that is not
object-oriented. Anobject-oriented design also increases the reusability of code.

There is no particular programming language needed to obey the fundamentals of OO when programming.
However, it can be convenient to program in an object-oriented style in a language that supports OO.
Currently, in the use of OOP languages there is a high stress on developing class hierarchies to make reuse
of code possible. It is not the use of classes that leads to reuse, but abstraction and thus a thorough design
that leads to reuse.

Maintenance
Application of OO in all phases of software development makes maintenance of the software easier. It is
easier to see at which level of abstraction certain design decisions have been made. Also, it is easier to see
at which level changes have to be incorporated into the design and which parts of the software are affected
by these changes.

5. Conclusions

After studying the available literature on OO and its application in software development we concluded that
there is a lot of confusion and obscurity in this world. We hav edescribed some issues with OO leading to
this. We also concluded that abstraction, the key concept of OO, is seldom used in dealing with the
complexity of software systems.

In order to apply OO in all phases of software development we have described the fundamentals of OO and
ways to support these fundamentals, with as much abstraction as possible.Furthermore, we described how
to apply our view on OO in software development.

We hope that it contributes to a thorough understanding of OO and how it must be applied in software
development. We intend to use it as a base in the development of support for modelling software systems at
different level of abstraction, including implementation models preserving the parallelism objects have by
nature.

References

[1] G. Booch,Software Engineering with Ada,Benjamin/Cummings, 1983.

[2] G. Booch, ‘‘Object-Oriented Development,’’ IEEE Transactions on Software Engineering, vol. 12, no.
2, pp. 211-221, 1986.

[3] G. Booch,Object-Oriented Design with Applications,Benjamin/Cummings, 1991.

[4] G. Booch, J. Rumbaugh, and I. Jacobson,The Unified Modeling Language User Guide, Addison-
Wesley, 1999.

[5] L.F. Capretz, ‘‘A B rief History of the Object-Oriented Approach,’’ ACM Software Engineering Notes,
vol. 28, no. 2, March 2003.

[6] P. Coad and E. Yourdon,Object-Oriented Analysis,Prentice-Hall, 1990.



- 6 -

[7] O.J. Dahl, B. Myhrhaug, and K. Nygaard, Simula 67, Common Base Language, Norwegian
Computing Center, Oslo, 1967.

[8] A. Goldberg and D. Robson,Smalltalk-80, The Language and its Implementation,Addison-Wesley,
1983.

[9] M.A. Jackson,System Development,Prentice-Hall, 1983.

[10] I. Jacobson, ‘‘Object Oriented Development in an Industrial Environment,’’ ACM SIGPLAN Notices,
vol. 22, no. 12, pp. 183-191, 1987.

[11] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson,Object-Oriented Modelling and
Design,Prentice-Hall, 1990.

[12] S. Shlaer and S.J. Mellor, Object-Oriented Systems Analysis: Modelling the World in Data,Prentice-
Hall, 1988.

[13] B. Stroustrup,The C++ Programming Language,Addison-Wesley, 1986.

[14] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented Software, Prentice-Hall,
1990.



Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

(none)

Within former series (PRG) the following reports appeared.

[PRG0914] J.A.Bergstra and C.A. Middelburg, Autosolvability of Halting Problem Instances for Instruction
Sequences,Programming Research Group - University of Amsterdam, 2009.

[PRG0913] J.A.Bergstra and C.A. Middelburg, Functional Units for Natural Numbers, Programming Research
Group - University of Amsterdam, 2009.

[PRG0912] J.A.Bergstra and C.A. Middelburg, Instruction Sequence Processing Operators, Programming
Research Group - University of Amsterdam, 2009.

[PRG0911] J.A. Bergstra and C.A. Middelburg, Partial Komori Fields and Imperative Komori Fields,
Programming Research Group - University of Amsterdam, 2009.

[PRG0910] J.A.Bergstra and C.A. Middelburg, Indirect Jumps Improve Instruction Sequence Performance,
Programming Research Group - University of Amsterdam, 2009.

[PRG0909] J.A. Bergstra and C.A. Middelburg, Arithmetical Meadows,Programming Research Group -
University of Amsterdam, 2009.

[PRG0908] B.Diertens,Software Engineering with Process Algebra: Modelling Client / Server Architecures,
Programming Research Group - University of Amsterdam, 2009.

[PRG0907] J.A.Bergstra and C.A. Middelburg, Inversive Meadows and Divisive Meadows,Programming
Research Group - University of Amsterdam, 2009.

[PRG0906] J.A.Bergstra and C.A. Middelburg, Instruction Sequence Notations with Probabilistic Instructions,
Programming Research Group - University of Amsterdam, 2009.

[PRG0905] J.A.Bergstra and C.A. Middelburg, A Protocol for Instruction Stream Processing,Programming
Research Group - University of Amsterdam, 2009.

[PRG0904] J.A. Bergstra and C.A. Middelburg, A Process Calculus with Finitary Comprehended Terms,
Programming Research Group - University of Amsterdam, 2009.

[PRG0903] J.A.Bergstra and C.A. Middelburg, Tr ansmission Protocols for Instruction Streams,Programming
Research Group - University of Amsterdam, 2009.

[PRG0902] J.A. Bergstra and C.A. Middelburg, Meadow Enriched ACP Process Algebras, Programming
Research Group - University of Amsterdam, 2009.

[PRG0901] J.A.Bergstra and C.A. Middelburg, Timed Tuplix Calculus and the Wesseling and van den Berg
Equation,Programming Research Group - University of Amsterdam, 2009.

[PRG0814] J.A. Bergstra and C.A. Middelburg, Instruction Sequences for the Production of Processes,
Programming Research Group - University of Amsterdam, 2008.

[PRG0813] J.A.Bergstra and C.A. Middelburg, On the Expressiveness of Single-Pass Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0812] J.A.Bergstra and C.A. Middelburg, Instruction Sequences and Non-uniform Complexity Theory,
Programming Research Group - University of Amsterdam, 2008.

[PRG0811] D.Staudt,A Case Study in Software Engineering with PSF: A Domotics Application,Programming
Research Group - University of Amsterdam, 2008.

[PRG0810] J.A.Bergstra and C.A. Middelburg, Thread Algebra for Poly-Threading,Programming Research
Group - University of Amsterdam, 2008.



[PRG0809] J.A.Bergstra and C.A. Middelburg, Data Linkage Dynamics with Shedding, Programming Research
Group - University of Amsterdam, 2008.

[PRG0808] B.Diertens,A Process Algebra Software Engineering Environment,Programming Research Group -
University of Amsterdam, 2008.

[PRG0807] J.A.Bergstra, S. Nolst Trenite, and M.B. van der Zwaag,Tuplix Calculus Specifications of Financial
Tr ansfer Networks,Programming Research Group - University of Amsterdam, 2008.

[PRG0806] J.A.Bergstra and C.A. Middelburg, Data Linkage Algebra, Data Linkage Dynamics, and Priority
Rewriting,Programming Research Group - University of Amsterdam, 2008.

[PRG0805] J.A.Bergstra, S. Nolst Trenite, and M.B. van der Zwaag,UvA Budget Allocatie Model,Programming
Research Group - University of Amsterdam, 2008.

[PRG0804] J.A.Bergstra and C.A. Middelburg, Thread Algebra for Sequential Poly-Threading,Programming
Research Group - University of Amsterdam, 2008.

[PRG0803] J.A. Bergstra and C.A. Middelburg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0802] A.Barros and T. Hou, A Constructive Version of AIP Revisited, Programming Research Group -
University of Amsterdam, 2008.

[PRG0801] J.A.Bergstra and C.A. Middelburg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - University of Amsterdam, 2008.

[PRG0713] J.A.Bergstra, A. Ponse, and M.B. van der Zwaag,Tuplix Calculus,Programming Research Group -
University of Amsterdam, 2007.

[PRG0712] J.A.Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, Towards a Formalization of Budgets,
Programming Research Group - University of Amsterdam, 2007.

[PRG0711] J.A.Bergstra and C.A. Middelburg, Program Algebra with a Jump-Shift Instruction,Programming
Research Group - University of Amsterdam, 2007.

[PRG0710] J.A.Bergstra and C.A. Middelburg, Instruction Sequences with Dynamically Instantiated Instructions,
Programming Research Group - University of Amsterdam, 2007.

[PRG0709] J.A.Bergstra and C.A. Middelburg, Instruction Sequences with Indirect Jumps, Programming
Research Group - University of Amsterdam, 2007.

[PRG0708] B.Diertens,Software (Re-)Engineering with PSF III: an IDE for PSF, Programming Research Group
- University of Amsterdam, 2007.

[PRG0707] J.A.Bergstra and C.A. Middelburg, An Interface Group for Process Components,Programming
Research Group - University of Amsterdam, 2007.

[PRG0706] J.A.Bergstra, Y. Hirschfeld, and J.V. Tucker, Skew Meadows,Programming Research Group -
University of Amsterdam, 2007.

[PRG0705] J.A.Bergstra, Y. Hirschfeld, and J.V. Tucker,Meadows,Programming Research Group - University of
Amsterdam, 2007.

[PRG0704] J.A.Bergstra and C.A. Middelburg, Machine Structure Oriented Control Code Logic (Extended
Version), Programming Research Group - University of Amsterdam, 2007.

[PRG0703] J.A.Bergstra and C.A. Middelburg, On the Operating Unit Size of Load/Store Arc hitectures,
Programming Research Group - University of Amsterdam, 2007.

[PRG0702] J.A.Bergstra and A. Ponse,Interface Groups and Financial Transfer Architectures,Programming
Research Group - University of Amsterdam, 2007.

[PRG0701] J.A.Bergstra, I. Bethke, and M. Burgess,A Process Algebra Based Framework for Promise Theory,
Programming Research Group - University of Amsterdam, 2007.

[PRG0610] J.A. Bergstra and C.A. Middelburg, Parallel Processes with Implicit Computational Capital,
Programming Research Group - University of Amsterdam, 2006.



[PRG0609] B. Diertens, Software (Re-)Engineering with PSF II: from architecture to implementation,
Programming Research Group - University of Amsterdam, 2006.

[PRG0608] A. Ponse and M.B. van der Zwaag, Risk Assessment for One-Counter Threads, Programming
Research Group - University of Amsterdam, 2006.

[PRG0607] J.A. Bergstra and C.A. Middelburg, Synchronous Cooperation for Explicit Multi-Threading,
Programming Research Group - University of Amsterdam, 2006.

[PRG0606] J.A. Bergstra and M. Burgess, Local and Global Trust Based on the Concept of Promises,
Programming Research Group - University of Amsterdam, 2006.

[PRG0605] J.A.Bergstra and J.V. Tucker,Division Safe Calculation in Totalised Fields, Programming Research
Group - University of Amsterdam, 2006.

[PRG0604] J.A.Bergstra and A. Ponse,Projection Semantics for Rigid Loops,Programming Research Group -
University of Amsterdam, 2006.

[PRG0603] J.A.Bergstra and I. Bethke, Predictable and Reliable Program Code: Virtual Machine-based
Projection Semantics (submitted for inclusion in the Handbook of Network and Systems
Administration),Programming Research Group - University of Amsterdam, 2006.

[PRG0602] J.A.Bergstra and A. Ponse,Program Algebra with Repeat Instruction,Programming Research Group
- University of Amsterdam, 2006.

[PRG0601] J.A.Bergstra and A. Ponse,Interface Groups for Analytic Execution Architectures,Programming
Research Group - University of Amsterdam, 2006.

[PRG0505] B.Diertens,Software (Re-)Engineering with PSF, Programming Research Group - University of
Amsterdam, 2005.

[PRG0504] P.H. Rodenburg, Piecewise Initial Algebra Semantics,Programming Research Group - University of
Amsterdam, 2005.

[PRG0503] T.D. Vu, Metric Denotational Semantics for BPPA, Programming Research Group - University of
Amsterdam, 2005.

[PRG0502] J.A.Bergstra, I. Bethke, and A. Ponse,Decision Problems for Pushdown Threads,Programming
Research Group - University of Amsterdam, 2005.

[PRG0501] J.A.Bergstra and A. Ponse,A Bypass of Cohen’s Impossibility Result,Programming Research Group -
University of Amsterdam, 2005.

[PRG0405] J.A.Bergstra and I. Bethke,An Upper Bound for the Equational Specification of Finite State Services,
Programming Research Group - University of Amsterdam, 2004.

[PRG0404] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Strategic Interleaving, Programming
Research Group - University of Amsterdam, 2004.

[PRG0403] B.Diertens,A Compiler-projection from PGLEc.MSPio to Parrot, Programming Research Group -
University of Amsterdam, 2004.

[PRG0402] J.A.Bergstra and I. Bethke, Linear Projective Program Syntax, Programming Research Group -
University of Amsterdam, 2004.

[PRG0401] B. Diertens, Molecular Scripting Primitives,Programming Research Group - University of
Amsterdam, 2004.

[PRG0302] B.Diertens,A Toolset for PGA,Programming Research Group - University of Amsterdam, 2003.

[PRG0301] J.A.Bergstra and P. Walters,Projection Semantics for Multi-File Programs,Programming Research
Group - University of Amsterdam, 2003.

[PRG0201] I. Bethke and P. Walters, Molecule-oriented Java Programs for Cyclic Sequences,Programming
Research Group - University of Amsterdam, 2002.

The above reports and more are available through the website: www.science.uva.nl/research/prog/



Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

www.science.uva.nl/research/prog/


