University of Amsterdam
Theory of Computer Science

On Object-Orientation

B. Diertens

Report TCS1001 June 2010

B. Diertens

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

tel. +31 20 525.7593
e-mail: B.Diertens@uva.nl

Theory of Computer Science Electronic Report Series

On Object-Orientation
Bob Diertens

section Theory of Computer Science, Faculty of Sciencejetity of Amsterdam

ABSTRACT

Although object-orientation has been around foves# decades, its dy cncept
abstraction has not been exploited for proper application of object-orientation in other
phases of software ddopment than the implementation pha¥ge mention some issues

that lead to a lot of confusion and obscurity with object-orientation and its application in
software deelopment. V¢ describe object-orientation as abstract as possible such that it
can be applied to all phases of softwaresigpment.

Keywords: object-orientation, programming, softwaresdepment

1. Introduction

The use of the concepts of object-orientation (OO) in programming predatedsthae of programming
languages. Ithe 1960s the programming language Simula appears, which is considered the first language
supporting OO and deloped into the language Simula 67 [7]. This language was used as a platform for
the deeelopment of the programming language Smalltalk [8] in the 1970s. In the 1980s C++ 443] w
introduced, bringing the concepts of Simula into the C programming langlagm the 1990s object
oriented programming became a dominant style for implementing cenmobgrams consisting of
interacting components.

Along side of object oriented programming (OOP), object orientation has been applied in design (OOD) of
software systems, and in analysis (OOA) of the requirements for aaseftsystem.Over the years,
methodologies for software constructiorvéaecome more and more structurethese methodologies

were either data-oriented, function-oriented, or both although still seperdtitd. the rise of OO in
programming the need for OO in design, and later OO in analysis, camegigtémee. Asoftware system
described in terms of functions and/or data had to be mapped onto a description in terms oflddijegts.

OO in earlier phases can smooth transitions from one phase to another.

A brief history of the object-oriented approach to softwaregldpment is gien in [5], together with a
suney d object-oriented methodologies. It mentions among others the work of Shlaer and Mellor [12],
Coad and Yourdon [6], Jackson [9], Booch [1] [2] [3], Jacobson [10QifsMBrock et al. [14], and
Rumbaugh et al. [11].

Although a lot of work has been performed in the field of OO, there is still a lot of confusion and obscurity
in this world. Thisis partly due to the use of different terminology and the use of different semantics for
the same termsAnother aspect is that the fundamentals of OO are often explained in terms of features
provided by OOP languagedVith as result that design on higherds of abstraction is expressed on the
level of implementation.

With OO we can abstract from the implementation of objects, enabling us to concentrate onviberbeha
of objects and their relations with each othAfth abstraction we can deal with the complexity of the
system. Buthis aspect of OO is seldom uselhstead, old methods are used and packaged in objects,
thereby increasing the complexity of the system.

In this paper we describe OO the way we see it and that can be applied to all phasesaoé softw
development. Inorder to apply OO in other phases of softwaregd@ment than implementation weuea

to define OO without using featuresesed by OOP language¥Ve haveto have an abstract model of OO

that can be applied to all these phases.

In the next section we briefly describe some issues with OO as currently used aresafti@lopment
methodologies. W st out our thoughts on OO in section 3 and apply this to softwastogment in
section 4.

2. Issueswith Object-Orientation

We describe some issues concerning OO that lead to a lot of confusion and obscurity in this field. This list
is by no means complete, but is intended to pinpoint some of the problems due to the way OO is currently
applied by a lot of practitioners.

Features

When people are asked for the fundamentals of OQ@, dften reply with a list of features provided by

OOP languages instead of what OO is truly abcdthe features mentioned mostly are classification,
inheritance, polymorphism, encapsulation, and abstrackonOO these features are irrghmt, apart from
abstraction but the term is wrongly used hefe. describe OO in terms of features provided by OOP
languages that support OO leads to the conclusion that for a programming language to be OO, it has to
support these features. This circular reasoning is certainly not helpful for a good understanding of what
OO is truely about.

Emphasis on the features of OOP languages, such as classification, inheritance, and polymorphism, leads to
specification of data objects and distracts from the OO concepts of behaviour abstraction. Also on higher
levels of abstraction in design there is less need for these features, with as result that the design is directly
done on the lel of programming. Itseems that the use of features provided by OOP languages has
become the goal.

Abstraction and Generalization

There is a lot of confusionver abstraction and generalization, or rathévey are interchanged.But
abstraction and generalization are definitely not the saffith abstraction some detail is left out that is
considered not important in a description on an highe&t &f abstraction. Vith generalization that detail
is not left out, but described in a general way on the saraeofeabstraction.

Consider the following example where wevéaa ed, green, and blue objectWe @an describe these
objects in general in terms of an object with a particular codth abstraction we describe these objects
as an object without the mentioning of a color at all.

Encapsulation and Information Hiding

Encapsulation and information hiding are often interchanged or used with the same meaning.
Encapsulation of an object pemts communication with that object in otheays than the defined ones

and does not hide tan dject does things. Information hiding makes it impossible to seeahobject

does things, but does not peat communication with that object in certain ways.

Description

Objects are often described in terms of data and a set of funcfldves.Unified Modeling Language
(UML) [4] is advocated as a language for this in all phases of adtdeelopment. Wth the description
of objects in terms of data and functions, UML hardly rises from tletd€ OOP languages. Although the
details of data and functions are left out, there is no abstraction from the implementation of dljiscts.
way of describing objects are thus useless on highesideof abstraction in software desig®bjects
should be described by their behavijdostead of in terms of data and functions.

3. Object-Orientation

OO is a modelling paradigm for describing objects and their relationships. Objects and relations are
supposed to stand close to real world concepts. The real world is the world we are implementing, that is a
level of abstraction in the design or a requirements specification. The real world is a fotladénmwvhich

the system under ddopment takes part.

The real world is also an abstraadnid. Itis of no concern he something works, only what it doeJhis
abstraction is &y in OO. However, OO is dten easily replaced with OOMBut an implementation in an
OOP language is no more than an example of this modelling at the lovekst Ebstraction of the design.

Because of this replacement, OO is explained by describing what an particular OOP languagéddras to of

To define a model of OO that can be applied ivesd phases of software Wopment we hee o define

this with as much abstraction as possiblée gve a description of the fundamentals of OO, techniques to
support the fundamentals, and features based on the techniques. Note that only the fundamentals are
necessary for object-oriented modelling, some support can be nice, and features are mostly only used on the
lowest levels of abstraction.

3.1 Fundamentals

OO can be seen as a kind of technique géroring a system in terms of objects and their relatidhss
supposed to stand closer to tieal world as opposed to techniques predating OO. Its characterist is the
distinction between the observable behaviour of objects and the implementation of the behaviours.

Objects
An object has the following characteristics.

State
for recording the history of an object upon which future behaviour can be based.

behaviour

the observable effects based on its state and the relations with other objects.
identity

as known by other objects, either by name or by reference.

Relations
Relations between objects are expressed by interactions in the form of message passing.

Abstraction

Manipulation of an object can only be done through its relations with other objects. Thereby hiding the
implementation of its belk#&ur and the recording of its state. It is only important what an object does, not
how an dvject does it.

3.2 Support

An object-oriented language for modelling systems on a particMerdgabstraction has to support the
fundumentals of OO and possiblyea enforce these fundamentals. Support can be provided in the
following forms.

Types
An object type is a container in which the state and the behaviour(s) for an object are defined.

M essage Passing
The way messages are passed between objects can be supported in more than one form.

Encapsulation
Encapsulation prents objects from relating to each other in other ways then the provided forms of
message passing.

Information Hiding
Hiding of information about an object can be done by deliberately making this information inaccessible.

3.3 Structues

Based on the techniques supporting OO structures can be formed. Such structuresabehgects
themselves, characterizing the concepts of OO.

Type Composition

The basic idea of composition is taild complex object types out of simpler ones. Besides that objects
can be built up from ays to define state and behaviour as provided by the modelling language, objects can
also be built up from other object types. The latter can be done in the following forms.

reference
An object type can reference an object of a particular object type.

inclusion
An object type can include another object type.

To dbey the OO fundamentals of keeping beloar and implementation of an object distinct, a modelling
language has to hide the composition of an object type. This can beeddbyemaking the elements of
the object type acquired through compositimailable either only from within the object type, or from
outside the object type but as it were elements of the object type itself.

Objects composed in this way are vertical related with the objegtartheomposed of.

Object Composition
Several inter-related objects form a cluster that when abstracted from the inter-relations acts as a single
object. Objectshat tale part in this composition are horizontal related with eachother.

Abstract Object Types

An abstract object type is an object type described in terms of objects representing elements of the abstract
object type for which the type(s)Ve&t be filed in on a lower leel of abstraction. Arabstract object type

can also be turned into a generic object type on a lowdrdéabstraction, with parameters for the object

types representing the elements.

4. Application of OO in Software Development

It is often said that OO stands closer to the real world as opposed to the techniques predating OO. The real
world is actually an abstractosld that stands far from OO applied in a software system. If we want to
properly apply OO in the implementation of a s@ftessystem we ka o dose the gap between reabsd

objects and objects in the implementatiofherefor it is logical to apply OO in the earlier phases of
software deelopment.

Software deelopment in the past nved from ad hoc methods to more structured methods. The structured
methods can be characterised as either data-oriented or function-oriented, but were usually a mixture of
both. Theobject-oriented paradigm abstracts fronwhamething is achieed by an dject to what it
achieves, and emphasises the interaction between objétda: something is achieed by an dject can

thus be deferred until later in thevél®pment processUnfortunately this characteristic is less used.
Instead, a data oriented class hiergrishdevdoped in an early phase ofvédopment, gen in the analysis

phase.

In the folloving we describe some issues with the current application of OGvérakphases of softare
development and hw OO aur view can be used in these phases.

Analysis
OOA often results in designing the system. This igddy due to trying to define a class hiergrébr data.
With this, objects are represented as data and so the fundamentals of OO are not obeyed.

Actually, in analysis OO is of no use for describing the safvsystem. Should OO be used for describing
what the softwre system has to do, we are actually designing the software systemaver, OO can be
used for describing the interaction of the software system with thieoement in which it will be
deplojed. The software system itself is an object in thisvieanment, or actually in this future
environment.

Design

In most cases, the design concentrates around Helopiment of class hierarchies. Moven these class
hierarchies arexpressed directly in an OOP language or in a language on avidevd of abstraction.
Instead it should focus on abstraction in order to deal with the cwityptd the system. This can be
achieved by devdoping abstract models of the system, each a refinement of the @@eis extremely
usefull in this, since it enables abstraction from internal behaviour and implementetisnalso maks
the study of different refinements for a particular object possible.

Analysis& Design

Analysis and design can be&edapping phases because some design decisi@alra need for further
analysis or analysis depend omheertain parts of the system can be implemented. But most of all, design
experiments can ge information on incomplete or vague requirements.

OO supports thiswerlapping of phases because abstraction makes it possible to delay design decisions
concerning the internal working of object&bstraction also allows for experimenting on differentle of
abstraction of design.

Programming
An object-oriented design is easier to map onto an object-oriented implementation than a design that is not
object-oriented. Ambject-oriented design also increases the reusability of code.

There is no particular programming language needed tptbbegfundamentals of OO when programming.
However, it can be cowmenient to program in an object-oriented style in a language that supports OO.
Currently in the use of OOP languages there is a high stressvetopieg class hierarchies to makeuse

of code possible. It is not the use of classes that leads to reuse, but abstraction and thus a thorough design
that leads to reuse.

Maintenance

Application of OO in all phases of softne deelopment makes maintenance of the software eaHies
easier to see at whichvig of abstraction certain design decisionvdééeen made. Also, it is easier to see
at which level changes hae be ncorporated into the design and which parts of the sofare décted

by these changes.

5. Conclusions

After studying the wailable literature on OO and its application in softwarestgment we concluded that
there is a lot of confusion and obscurity in thisrld. We havedescribed some issues with OO leading to
this. We dso concluded that abstraction, theykoncept of OO, is seldom used in dealing with the
complexity of software systems.

In order to apply OO in all phases of softwaredtgpmment we hee cescribed the fundamentals of OO and
ways to support these fundamentals, with as much abstraction as poBsititeermore, we describedwo
to apply our viev on OO in ®ftware deelopment.

We ltope that it contributes to a thorough understanding of OO anwdithmust be applied in softave
development. V¢ intend to use it as a base in theaiflgpment of support for modelling software systems at
different level of abstraction, including implementation models preserving the parallelism objeetdyha
nature.

References

[1] G.Booch,Softwae Engineering with AdaBenjamin/Cummings, 1983.

[2] G.Booch, “Object-Oriented Deslopment; |IEEE Transactions on SoftwarEngineering vol. 12, no.
2, pp. 211-221, 1986.

[3] G.Booch,Object-Oriented Design with ApplicatiorBenjamin/Cummings, 1991.

[4] G. Booch, J. Rumbaugh, and I. Jacobsdhe Unified Modeling Langgae User Guide Addison-
Wesley, 1999.

[5] L.F. Capretz, ‘A Brief History of the Object-Oriented ApproatlACM Software Engineering Notes
vol. 28, no. 2, March 2003.

[6] P.Coad and E. YourdorQbject-Oriented Analysifrentice-Hall, 1990.

[7] ©O.J. Dahl, B. Myhrhaug, and K. Nygard, Simula 67, Common Base Langea Norwegian
Computing Center, Oslo, 1967.

[8] A. Goldbeg and D. RobsonSmalltalk-80, The Langge and its ImplementatiorAddison-Wesley,
1983.

[9] M.A. JacksonSystem Developmefftrentice-Hall, 1983.

[10] I. Jacobson, “Object Oriented B&dopment in an Industrial Bartonment; ACM SGPLAN Notices
vol. 22, no. 12, pp. 183-191, 1987.

[11] J. Rumbaugh, M. Blaha, WPremerlani, FEddy, and W. LorensonObject-Oriented Modelling and
Design,Prentice-Hall, 1990.

[12] S.Shlaer and S.J. MellpObject-Oriented Systems Analysis: Modelling the World in CRtentice-
Hall, 1988.

[13] B. Stroustrup;The C++ Pogramming Languge,Addison-Wesley, 1986.

[14] R. Wirfs-Brock, B. Wikerson, and L. \iéner, Designing Object-Oriented SoftvearPrentice-Hall,
1990.

Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

(none)

Within former series (PRG) the following reports appeared.

[PRG0914]

[PRG0913]

[PRG0912]

[PRG0911]

[PRG0910]

[PRG0909]

[PRG0908]

[PRG0907]

[PRG0906]

[PRG0905]

[PRG0904]

[PRG0903]

[PRG0902]

[PRG0901]

[PRG0814]

[PRG0813]

[PRG0812]

[PRGO811]

[PRG0810]

J.A.Bemgstra and C.A. Middellrg, Autosolvability of Halting Problem Instances for Instruction
Sequencefrogramming Research Group - Wabity of Amsterdam, 2009.

J.ABemgstra and C.A. Middellrg, Functional Units for Natual Numbes, Programming Research
Group - Unversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Instruction Sequence Processing Cers, Programming
Research Group - Uversity of Amsterdam, 2009.

J.A. Begstra and C.A. Middellrg, Partial Komori Fields and Imperative d¢tmori Helds,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bergstra and C.A. Middellrg, Indirect Jumps Immve Instruction SequenceeHormance,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemstra and C.A. Middellrg, Arithmetical Meadows,Programming Research Group -
University of Amsterdam, 2009.

B.Diertens, Softwae Engineering with Process Adipra: Modelling Client / Server Ahitecures,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Inversive Meadows and Divisive MeadowRrogramming
Research Group - Uversity of Amsterdam, 2009.

J.ABemstra and C.A. Middellrg, Instruction Sequence Notations with Probabilistic Instructions,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, A Protocol for Instruction Stream Bressing,Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, A Process Calculus with Finitary Comprehendedrris,
Programming Research Group - Wity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Transmission Protocols for Instruction 8ams,Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Bemgstra and C.A. Middellrg, Meadow Enriched ACP Process Ahlgas, Programming
Research Group - Uversity of Amsterdam, 2009.

J.A.Begstra and C.A. Middellrg, Timed Tuplix Calculus and the Wesseling and van deg Ber
Equation,Programming Research Group - ity of Amsterdam, 2009.

J.A.Bemstra and C.A. Middellrg, Instruction Sequences for the Production ofod&sses,
Programming Research Group - Wity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, On the Expressiveness of Single-Pass Instruction Sequences,
Programming Research Group - Wity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Instruction Sequences and Non-uniform Complexity Theory
Programming Research Group - Wity of Amsterdam, 2008.

D.Staudt,A Case Study in SoftwarEngineering with PSF: A Domotics ApplicatidRrogramming
Research Group - Uversity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Thread Algbra for Poly-Threading, Programming Research
Group - Unversity of Amsterdam, 2008.

[PRG0809]

[PRG0808]

[PRG0807]

[PRG0806]

[PRG0805]

[PRG0804]

[PRG0803]

[PRG0802]

[PRG0801]

[PRG0713]

[PRG0712]

[PRGO711]

[PRG0710]

[PRG0709]

[PRG0708]

[PRG0O707]

[PRG0706]

[PRGO705]

[PRG0704]

[PRG0703]

[PRG0702]

[PRG0701]

[PRG0610]

J.ABemgstra and C.A. Middellrg, Data Linkage Dynamics with Shedding’rogramming Research
Group - Unversity of Amsterdam, 2008.

B.Diertens,A Process Alghra Software Engineering Exmironment,Programming Research Group -
University of Amsterdam, 2008.

J.ABemstra, S. Nolst Trenite, and M.B. van deraag, Tuplix Calculus Specifications ofirfancial
Transfer NetworksProgramming Research Group - Uasity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Data Linkage Agebra, Data Linkge Dynamics, and Priority
Rewriting,Programming Research Group - Wity of Amsterdam, 2008.

J.ABemstra, S. Nolst Trenite, and M.B. van deraag,UvA Budget Allocatie ModeRrogramming
Research Group - Uversity of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Thread Algbra for Sequential 8ly-Threading,Programming
Research Group - Uversity of Amsterdam, 2008.

J.A.Begstra and C.A. Middellrg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - Wity of Amsterdam, 2008.

A.Barros and THou, A Constructive ¥rsion of AIP Reisited, Programming Research Group -
University of Amsterdam, 2008.

J.A.Bemgstra and C.A. Middellrg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - Wity of Amsterdam, 2008.

J.ABemgstra, A. Ponse, and M.B. van der @g, Tuplix Calculus,Programming Research Group -
University of Amsterdam, 2007.

J.A.Bemstra, S. Nolst Trenite, and M.B. van der aag, Towards a Formalization of Budys,
Programming Research Group - Wity of Amsterdam, 2007.

J.ABemstra and C.A. Middellrg, Program Algebra with a Jump-Shift InstructionProgramming
Research Group - Uversity of Amsterdam, 2007.

J.ABemgstra and C.A. Middellrg, Instruction Sequences with Dynamically Instantiated Instructions,
Programming Research Group - Wity of Amsterdam, 2007.

J.A.Bemgstra and C.A. Middellrg, Instruction Sequences with Indirectindps, Programming
Research Group - Uversity of Amsterdam, 2007.

B.Diertens,Softwae (Re-)Engineering with PSF 1ll: an IDE for PSFrogramming Research Group
- University of Amsterdam, 2007.

J.A.Bemgstra and C.A. Middellrg, An Interface Group for Process ComponerRspgramming
Research Group - Uversity of Amsterdam, 2007.

J.A.Bemgstra, Y Hirschfeld, and J.VTucker, Slew Meadows,Programming Research Group -
University of Amsterdam, 2007.

J.ABegstra, Y Hirschfeld, and J.VTucker,MeadowsProgramming Research Group - Uity of
Amsterdam, 2007.

J.A.Bemgstra and C.A. Middellrg, Machine Structue Oriented Control Code Logic (Extended
Vesion), Programming Research Group - Uity of Amsterdam, 2007.

J.A.Bemgstra and C.A. Middellrg, On the Operating Unit Size of Load/StoArchitectures,
Programming Research Group - Wity of Amsterdam, 2007.

J.A.Bemgstra and A. Ponsénterface Groups and ifancial Tansfer Achitectures,Programming
Research Group - Uversity of Amsterdam, 2007.

J.ABemgstra, |. Bethk, and M. Bugess,A Process Algbra Based Famework for Promise Theory
Programming Research Group - Wity of Amsterdam, 2007.

J.A.Bemgstra and C.A. Middellrg, Parallel Processes with Implicit Computational Capital,
Programming Research Group - Wity of Amsterdam, 2006.

[PRG0609]

[PRG0608]

[PRG0607]

[PRG0606]

[PRG0605]

[PRG0604]

[PRG0603]

[PRG0602]

[PRG0601]

[PRGO505]

[PRG0504]

[PRG0503]

[PRG0502]

[PRG0501]

[PRG0405]

[PRG0404]

[PRG0403]

[PRG0402]

[PRG0401]

[PRG0302]
[PRG0301]

[PRG0201]

B. Diertens, Softwae (Re-)Engineering with PSF |l: from elitecture to implementation,
Programming Research Group - Wity of Amsterdam, 2006.

A.Ponse and M.B. van der a&ag, Risk Assessment for One-Counter €Hus, Programming
Research Group - Uversity of Amsterdam, 2006.

J.A.Bemgstra and C.A. Middellrg, Synchonous Cooperation for Explicit Multi-Thading,
Programming Research Group - Wity of Amsterdam, 2006.

J.A.Bemgstra and M. Buess, Local and Global Trust Based on the Concept obnises,
Programming Research Group - Wity of Amsterdam, 2006.

J.ABemgstra and J.VTucker,Division Safe Calculation in Totalisedeffds, Programming Research
Group - Unversity of Amsterdam, 2006.

J.ABemgstra and A. Ponsé&rojection Semantics for Rigid Loog3togramming Research Group -
University of Amsterdam, 2006.

J.A.Bemgstra and |. Bethk Predictable and Reliable Bgram Code: Virtual Madine-based
Projection Semantics (submitted for inclusion in the Handbook of Network and Systems
Administration),Programming Research Group - Wity of Amsterdam, 2006.

J.ABemstra and A. Pons@rogram Agebra with Repeat InstructiorProgramming Research Group
- University of Amsterdam, 2006.

J.A.Bemgstra and A. Ponsdnterface Goups for Analytic Execution éhitectures, Programming
Research Group - Uversity of Amsterdam, 2006.

B.Diertens, Softwae (Re-)Engineering with PSHProgramming Research Group - Uabity of
Amsterdam, 2005.

M. Rodenhbrg, Piecavise Initial Algebra Semantics Programming Research Group - Wabity of
Amsterdam, 2005.

TD. Vu, Metric Denotational Semantics for BRPProgramming Research Group - ity of
Amsterdam, 2005.

J.A.Bemgstra, |. Bethke, and A. PonsBgcision Problems for Pushdown €ads, Programming
Research Group - Uversity of Amsterdam, 2005.

J.ABemgstra and A. Pons@, Bypass of Coher’'Impossibility ResulProgramming Research Group -
University of Amsterdam, 2005.

J.ABegstra and |. Bethd An Upper Bound for the Equational Specification of Finite State Services,
Programming Research Group - Wity of Amsterdam, 2004.

J.A.Bemgstra and C.A. Middellrg, Thread Algbra for Strategic Interleaving Programming
Research Group - Uversity of Amsterdam, 2004.

B.Diertens,A Compiler-pojection from PGLEc.MSPio toaRot, Programming Research Group -
University of Amsterdam, 2004.

J.A.Bemstra and |. Bethk Linear Projective Pogram Sy/ntax, Programming Research Group -
University of Amsterdam, 2004.

B. Diertens, Molecular Scripting Primitives,Programming Research Group - Umbity of
Amsterdam, 2004.

BDiertens A Toolset for PGAProgramming Research Group - \dmsity of Amsterdam, 2003.

J.ABemgstra and PWalters,Projection Semantics for Multi-File Bgrams, Programming Research
Group - Unversity of Amsterdam, 2003.

|.Bethke and P Walters, Molecule-oriented Java Bgrams for Cyclic SequenceBrogramming
Research Group - Uversity of Amsterdam, 2002.

The abee reports and more arealable through the website: www.science.uva.nl/research/prog/

Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

