
Software Engineering
with

Process Algebra

Bob Diertens

. . .

. . .

Software Engineering with Process Algebra

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom

ten overstaan van een door het college voor promoties

ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel

op donderdag 29 oktober 2009, te 12.00 uur

door

Bob Diertens

geboren te Rotterdam

promotor: prof. dr. J.A. Bergstra

co-promotor: dr. A. Ponse

faculteit: Natuurwetenschappen, Wiskunde en Informatica

Copyright © 2009, B. Diertens

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means, without prior written permission of

the author.

with help from friends

Contents

I Introduction 1

1. Aims and Scope ... 3

1.1 Research Questions ... 3

1.2 Why using Process Algebra? ... 4

1.3 Validation of Process Algebra Specifications .. 5

1.4 Outline of this Thesis .. 5

2. PSF ... 7

2.1 Modules ... 7

2.2 Overloading ... 12

2.3 Imports and Exports .. 12

2.3.1 Renamings 13

2.4 Parameters ... 13

2.5 Example ... 14

3. The PSF Toolkit .. 17

3.1 Compiler .. 18

3.2 PSF Libraries ... 19

3.3 Simulator ... 19

3.3.1 Basic Simulation 20

3.3.2 Features 20

3.3.3 Simulator Pre-Processor 21

3.3.4 Sum-ports 22

3.4 Term Rewriter .. 23

4. ToolBus .. 25

4.1 Example ... 26

II Animation of Process Algebra Specifications 29

5. Simulation and Animation ... 31

5.1 Simulation-Animation Platform .. 31

5.2 Structure of an Animation ... 32

5.3 Building an Animation .. 33

5.3.1 Passive Animation 34

5.3.2 Active Animation 36

5.4 Visual Attractive Animation .. 38

i

Contents

5.4.1 Moving Items 39

5.4.2 Queues 41

5.4.3 Information Panel 43

6. Generation of Animations ... 47

6.1 Generation of a Process Graph .. 48

6.2 Generation of an Animation .. 50

6.2.1 Generating the Action Function 54

6.2.2 Generating the Choose Function 55

6.3 Complexities and Features .. 56

6.3.1 Merge 56

6.3.2 Combination of Processes 57

6.3.3 Heuristics 58

6.4 Remarks ... 59

7. Related Work .. 61

7.1 State-Based .. 61

7.2 Data-Flow-Based ... 62

7.3 Framework ... 62

7.4 Animation Generation ... 63

III Software Engineering with PSF 65

8. Re-engineering the PSF Compiler .. 67

8.1 Specification of the Compiler .. 68

8.2 PSF ToolBus Library ... 69

8.2.1 Data 69

8.2.2 Connecting Tools to the ToolBus 72

8.2.3 ToolBus Instantiation 76

8.3 Example ... 77

8.3.1 Specification of the Tools 78

8.3.2 Specification of the ToolBus Processes 79

8.3.3 Specification of the ToolBus Application 81

8.3.4 Example as ToolBus Application 82

8.4 The Compiler as ToolBus Application .. 83

8.4.1 Implementation of the Compiler as ToolBus Application 86

8.5 Software Architecture .. 87

8.5.1 Abstraction 88

8.5.2 Architecture of the Compiler 88

8.6 Parallel Compiler ... 92

8.6.1 Architecture 93

8.6.2 Specification of the Parallel Compiler 95

8.6.3 Implementation of the Parallel Compiler 95

9. Software Architecture with PSF ... 99

9.1 PSF Architecture Library .. 99

ii

Contents

9.2 Example ... 101

9.3 From Architecture to ToolBus Application Design 103

9.3.1 Horizontal Implementation 103

9.3.2 Vertical Implementation 103

9.3.3 Example 104

10. A New PSF Simulator .. 107

10.1 Requirements ... 108

10.1.1 Functional Requirements 108

10.1.2 Non-functional Requirements 109

10.2 Architecture Specification ... 109

10.2.1 A Simple Simulator 109

10.2.2 Functions 113

10.2.3 Tracing 114

10.2.4 Random 116

10.2.5 Breakpoints 117

10.3 System Specification ... 119

10.3.1 Refining 119

10.3.2 Constraining 121

10.3.3 The ToolBus Application 123

10.3.4 Further Specification of the Kernel Tool 123

10.4 Implementation .. 125

10.4.1 Kernel 126

10.4.2 Other Tools 127

10.4.3 ToolBus Script 127

10.4.4 Simulator 127

10.5 Aggregation of GUIs ... 127

10.6 Extension with History Mechanism .. 128

10.6.1 Architecture Specification 128

10.6.2 ToolBus Application Specification 130

10.6.3 Implementation 132

10.7 Coupling to Animation .. 132

10.8 Features Not Implemented .. 133

10.9 Comparison of Implementations ... 133

11. An IDE for PSF ... 135

11.1 Requirements for the IDE ... 135

11.2 Architecture Specification of the IDE ... 136

11.2.1 Scenario: one module specification 136

11.2.2 Scenario: multiple module specification 139

11.2.3 Scenario: partial compilation 140

11.2.4 Scenario: import modules from a library 142

11.2.5 Scenario: simulation 142

11.2.6 Scenario: simulation and animation 143

11.3 System Specification of the IDE ... 144

iii

Contents

11.3.1 Action Refinement 144

11.3.2 Constraining 147

11.3.3 The ToolBus Application 150

11.4 Implementation of the IDE .. 151

11.4.1 Implementation of the Tools 152

11.4.2 ToolBus Script 153

11.4.3 Aggregated GUI 153

12. A Process Algebra Software Engineering Workbench 155

12.1 Computer-Aided Software Engineering .. 155

12.2 The PSF-ToolBus Software Engineering Environment 156

12.3 A Generalized PSF Software Engineering Workbench 157

12.4 A Process Algebra Software Engineering Workbench 158

12.5 Forming an Environment ... 159

12.6 Comments .. 159

13. Related Work .. 161

13.1 Architecture Description ... 161

13.2 Refinement .. 162

13.3 Formal Methods .. 162

13.4 Workbenches and Environments ... 162

IV Evaluation 165

14. Conclusions ... 167

14.1 PSF in the Field of Software Engineering ... 168

14.2 Support for Validation of Specifications ... 168

14.3 Software Engineering .. 169

14.4 Usage ... 169

15. Industrial Application of Software Engineering with Process Algebra 171

15.1 Design .. 171

15.2 Consistency of Design and Implementation .. 171

15.3 Training ... 172

15.4 Tools .. 172

16. Further Work .. 173

16.1 Animation .. 173

16.2 PSF ToolBus Library ... 173

16.3 System Models .. 174

16.4 Workbench Tools ... 174

16.5 Visual Specification Language .. 174

Bibliography ... 177

iv

Contents

A. PSF Specifications .. 183

A.1 Alternating Bit Protocol .. 183

A.2 Factory ... 186

A.3 Scheduled Factory ... 188

Summary .. 193

Samenvatting .. 197

v

Figures

Figure 1-1. Relation between specifications and application 6

Figure 3-1. PSF-Toolkit .. 17

Figure 3-2. Translation from PSF to TIL ... 18

Figure 4-1. Model of tool and ToolBus interconnection .. 25

Figure 4-2. Screendump of the example as ToolBus application with

viewer .. 27

Figure 5-1. Screendump of animation window .. 33

Figure 5-2. Alternating bit protocol: passive animation ... 37

Figure 5-3. Alternating bit protocol: active animation ... 38

Figure 5-4. Factory ... 39

Figure 5-5. Factory: passive animation .. 41

Figure 5-6. Factory with queues: active animation .. 43

Figure 5-7. Factory with info-panel: active animation ... 45

Figure 6-1. Alternating Bit Protocol .. 52

Figure 6-2. Alternating Bit Protocol (adjusted) ... 54

Figure 6-3. Factory ... 57

Figure 6-4. Scheduled factory .. 58

Figure 6-5. Scheduled factory with combined processes ... 59

Figure 7-1. Example of a state machine ... 61

Figure 7-2. Example of a Message Sequence Chart ... 62

Figure 8-1. Re-engineering process ... 68

Figure 8-2. Generated animation of the compiler .. 70

Figure 8-3. Import graph of the specification of the compiler 71

vi

Figures

Figure 8-4. Model of tool and ToolBus interconnection .. 72

Figure 8-5. Import graph of the ToolBus library .. 77

Figure 8-6. Animation of the ToolBus specification example 82

Figure 8-7. Generated animation of the compiler as ToolBus

application ... 84

Figure 8-8. Import graph of the specification of the compiler as

ToolBus application ... 87

Figure 8-9. Animation of the architecture .. 92

Figure 8-10. Animation of the architecture .. 94

Figure 8-11. Generated animation of the parallel compiler as ToolBus

application ... 96

Figure 8-12. Import graph of the specification of the parallel

compiler ... 97

Figure 9-1. Animation of an example architecture ... 103

Figure 9-2. Implementation relations ... 104

Figure 10-1. Development process for the simulator ... 107

Figure 10-2. Architecture of a simple simulator .. 113

Figure 10-3. Architecture with functions ... 114

Figure 10-4. Architecture with tracing ... 115

Figure 10-5. Architecture with breakpoints ... 119

Figure 10-6. System design of the simulator .. 126

Figure 10-7. Aggregation of gui’s and window manager

interaction .. 128

Figure 10-8. Aggregation of gui’s .. 129

Figure 10-9. Aggregation of gui’s with history .. 132

Figure 11-1. Animation of architecture for single module

specifications ... 139

Figure 11-2. Animation of architecture for multi module

specifications ... 140

Figure 11-3. Animation of architecture with simulator .. 143

vii

Figures

Figure 11-4. Animation of the IDE as ToolBus application 151

Figure 11-5. Aggregation of gui’s .. 154

Figure 12-1. The Architecture Workbench ... 156

Figure 12-2. The ToolBus Workbench ... 157

Figure 12-3. The PSF-ToolBus SE Environment ... 158

Figure 12-4. The PSF SE Workbench .. 159

viii

Tables

Table 4-1. ToolBus communications .. 26

Table 6-1. Communication heuristics ... 59

Table 8-1. ToolBus and PSF ToolBus Library primitives .. 74

Table 8-2. Performance of the compilers ... 87

Table 8-3. Performance of the parallel compiler .. 98

Table 10-1. Lines of code for the implementations .. 134

ix

Part I

Introduction

Chapter 1

Aims and Scope

Making a small piece of software is relatively easy for a person having some programming

skills. For constructing a larger piece of software also the skill is needed to divide it into

small pieces that cooperate together to perform the task of the larger piece. Dividing the

larger pieces into smaller pieces is called design. In this design phase, it is not necessary to

think about how the small pieces can be implemented. So design abstracts from the

implementation of the small pieces. The larger pieces of software need several design

decisions to divide them into smaller pieces. In order to not make all these design decisions

at once, several levels of design are necessary. Designing large software systems can thus

be done step by step, where each step consists of some design decisions that have to be

made at a certain level of design and that can not be pushed to a lower design level. With

ev ery step there can be feedback to the higher levels, which can lead to improvements or

changes in the higher level designs.

Usually, testing of software systems starts with the testing of the small pieces followed by

the testing of the larger pieces and finally by the testing of the whole system. If the design

contains errors or has some shortcomings, this only becomes clear at the later stages of the

testing. It would be better if the design can be tested to detect errors at an early stage. If

the design is put down in writing it can only be tested by inspection. If the design is

specified in a formalism it can be tested with the use of tools, and with the right tools some

properties can even be verified.

1.1 Research Questions

This thesis describes the project of using process algebra as a formalism in software

engineering and software re-engineering. We aim at making process algebra specifications

of software design at various abstract levels. Tools that work on process algebra

specifications should make it possible to test these specifications.

As specification language we use the process algebra based language Process Specification

Formalism (PSF) developed at the University of Amsterdam, for which a toolkit is freely

3

Aims and Scope 1

available. Furthermore, we make use of the ToolBus as target for the coordination of

software components. The ToolBus is a coordination architecture developed at the

University of Amsterdam and CWI. It utilizes a scripting language based on process

algebra to describe the communication between software tools.

Our work is motivated by applications of process algebra in software and software

engineering. In software the ToolBus is used for coordination of components using scripts

based on process algebra. These scripts for the ToolBus can get quite large and complex

for larger software systems and the ToolBus provides limited possibilities for debugging the

scripts. If we specify the ToolBus scripts in PSF with abstractions for the tools coordinated

by the ToolBus, we can validate the specifications of the scripts with the use of the PSF

Toolkit. It is interesting that the idea for the ToolBus originates from [65] that gives a PSF

specification describing the interaction of the components for a distributed editor consisting

of a user-interface, text editor, and structure editor. This specification uncovered several

communication problems and potential deadlocks in the implementation. The size and

complexity of this specification led to the idea for a ToolBus providing a built-in

communication protocol. In software engineering process algebra is applied on the level of

the architecture. There exist several Architecture Description Languages (ADLs), some of

which are based on a form of process algebra. Using PSF for the specification of software

architecture makes it possible to use the tools available for PSF to validate the

specifications of the architecture.

Our goal is to find out how useful PSF is in the field of software engineering and if the PSF

Toolkit is adequate to support validation of the specifications. We can make a specification

of the behaviour of a software system on a certain abstract level. By applying algebraic

laws for abstraction we must be able to obtain a specification of the system on a higher

abstract level and with enough abstraction we should get a specification of the architecture

of the system. We want to support the specification of software on various abstract levels of

design, making it possible to use the same formalism and tools available for this formalism

on different levels of design. Furthermore, we want to support the process of developing a

lower level specification of design (implementation) from a higher level specification.

It is not our intention to change the software engineering process, nor do we advocate such

a change. We only want to find out if process algebra can be of any help in the software

engineering process, or even improve some parts of this process. We do not describe

software engineering processes here, instead we refer to [56] for an overview. It is also not

our goal to verify our specifications or to verify some properties of the specifications. In

this context verification is the process of proving a product correct and validation is the

process of testing that a product functions properly.

1.2 Why using Process Algebra?

To answer the question of the usefulness of PSF in the field of software engineering we first

have to make clear why we use process algebra as a formalism in the design of software

systems. Process algebra in the style of the Algebra of Communicating Processes (ACP)

was designed to describe and analyse the behaviour of processes in concurrency, which

communicate with each other. It is mostly used in the setting of communication protocols.

4

1.2 Why using Process Algebra?

The exchange of information between objects, whether in architecture, implementation, or

at some intermediate level, is usually prescribed by some protocol. The exchange on the

implementation level can be done in many forms, such as a function call with possible

return values, remote procedure call, invocation (message to a mechanism that can invoke a

particular object), etc. On the higher levels we abstract from the form of communication,

but on all levels we have components that interact. Process algebra is suitable for the

specification of these components and the interaction between them, and can thus be used

for the specification of the design at the various levels.

1.3 Validation of Process Algebra Specifications

Using process algebra in software design is only useful if we can validate the specifications.

Validation can be done by inspection but for larger specifications this is not sufficient. At

least some tools are needed for syntactic and semantic analysis. In order to validate the

behaviour of a specification a simulator is needed. The PSF Toolkit described in Chapter 3

contains a compiler and a simulator. Although the simulator is perfectly capable of

simulating the behaviour of (compiled) specifications, for complex specifications it can be

difficult to keep track of what is going on. Visualization of the current state and of

transitions between states is necessary or at least very useful for a better understanding.

Adding animation facilities to the simulator can make the validation of (complex)

specifications easier, and thus can be useful in the software engineering process.

1.4 Outline of this Thesis

In the remainder of Part I of this thesis we give an introduction to the various elements we

use in our work. We start with an introduction to the process algebra based language PSF,

followed by a description of the PSF Toolkit. Next, we give an introduction to the ToolBus

that we use as coordination architecture for the software design described in this thesis.

In Part II we present a platform for coupling animation to the simulator from the PSF

Toolkit. This platform makes it possible to animate actions executed by the simulator from

the PSF Toolkit. The simulation can either be controlled through the simulator or through

the animation. We show how to use this platform by describing how to make animations

for two small specifications. We also describe how animations can be generated from PSF

specifications. The generation of an animation from a specification keeps the animation

consistent with the specification and therefore it is useful in the development process of the

specification.

In Part III we apply PSF in the software engineering process. As test cases, we

(re-)engineer tools from the PSF Toolkit. This is convenient since we are familiar with the

software and at the same time the (re-)engineering can improve the Toolkit. First, we re-

engineer the compiler from the PSF Toolkit. We present a PSF library to support the

specification of ToolBus applications. We transform an existing specification for the

compiler into a ToolBus application specification using the PSF ToolBus library. From the

ToolBus application specification we make an implementation of the compiler as ToolBus

application. A specification of the architecture of the re-engineered compiler is extracted

from its specification. The relation between the specifications and application is depicted in

5

Aims and Scope 1

Figure 1-1. The specification of the architecture is used as starting point for developing a

parallel compiler.

architecture specification

ToolBus application specification

ToolBus application

abstraction

implementation

Figure 1-1. Relation between specifications and application

Next, we present a PSF library for specifying software architecture. We introduce

implementation techniques for refinement and constraining, which can be used to refine

architecture specifications into ToolBus application specifications. We make a new

implementation of the simulator from the PSF Toolkit, starting with an architecture

specification for the simulator using the PSF Architecture library. From the ToolBus

application specification we develop an implementation of the simulator as a ToolBus

application. With the technology thus obtained we engineer a new tool, namely an

integrated development environment (IDE) for PSF. An IDE is a software application that

provides the facilities for the development of specifications. In the final chapter of this part

we describe our software development process more formally by presenting it in a

Computer-Aided Software Engineering (CASE) setting. We present a software engineering

environment based on the development of architecture specifications and ToolBus

application specifications. Generalization of a part of this environment leads to a process

algebra software engineering workbench.

We evaluate our work in Part IV, starting with conclusions on our work, followed by our

thoughts on how to promote software engineering with process algebra to industry. We end

with some thoughts on further work.

6

Chapter 2

PSF

PSF has been designed as the base for a set of tools to support ACP (Algebra of

Communicating Processes) [4]. ACP is an axiom based mathematical theory for

concurrency. An ACP specification starts from a set of objects called atomic actions,

atoms, or steps. Process expressions are built up from atomic actions by means of

operators. The most important operators are sequential composition, alternative

composition, parallel composition, communication, encapsulation, and abstraction. Infinite

processes are specified by one or more recursive equations. The syntax of the processes in

PSF is very close to the informal syntax normally used in denoting ACP-expressions. The

part of PSF that deals with the description of data is based on ASF (Algebraic Specification

Formalism) [5]. PSF is mainly used in the specification of communication protocols, but it

also used in the specification of, e.g. traffic control, bank account, and model factories.

Publications on this usage can be found through the PSF website [16].

A description of PSF can be found in the PhD thesis of Sjouke Mauw [37]. For an

extensive description and its use in the specification of some communication protocols we

refer to [38]. In this chapter we give an informal description of PSF. A small example of a

specification in PSF is given in the last section of this chapter. A larger example can be

found in Appendix A.1. That example specifies the Alternating Bit Protocol, a simple

communication protocol often used as a test case.

2.1 Modules

PSF has two types of modules, data and process modules. The structure of data modules is

borrowed from ASF, and process modules have a similar structure. A module consist of

sections that have a predefined order. Below we giv e the structure for both types of

modules. We use italics to indicate identifiers to be filled in, and . . . for a list of elements.

The order of the sections is relevant. Each section starts with a keyword followed by the

elements of that section. If a section does not have any elements, the associated keyword

can be omitted.

7

PSF 2

data module Module
begin

sorts
. . .

functions
. . .

variables
. . .

equations
. . .

end Module

process module Module
begin

atoms
. . .

processes
. . .

sets
. . .

communications
. . .

variables
. . .

definitions
. . .

end Module

In the following we give a description for each section.

Sorts

Sorts are to be declared as a comma separated list, as below

S,
DATA

Functions

Function declarations have a list of types for the arguments separated by a ’#’, and a result

type indicated with ’->’ (pretty printed as →).

f : → S
f : DATA → S
f : S # DATA → S

Functions can also be declared as infix- or prefix-operators. The name of an operator

consists either of one or more operator symbols or of a normal function name enclosed in

’.’. The places for the arguments of the operator are indicated in the declaration with a ’_’.

& : B # B → B
@*$: B # B → B
.and. : B # B → B
!_ : B → B
.not._ : B → B

These operators can be used as shown below.

x & y
x @*$ y
x .and. y
! x
.not. y

Variables

Depending on the type of the module, the variable section lists the variables used either in

the equations or in the process definitions. The type of variables is indicated with ’->’.

x : → S

8

2.1 Modules

Equations

The definition of a function is given by means of equations. An equation is interpreted as a

rule for a term rewrite system, in which the left hand side is rewritten to the right hand side.

In the example below we giv e equations for the boolean and function.

[and1] and(false, false) = false
[and2] and(false, true) = false
[and3] and(true, false) = false
[and4] and(true, true) = true

Tags ([x]) on the left side of the equations are for documentation purposes only.

It is possible to use variables in an equation that are declared in the variables section. The

variables get a value from the matching of terms with the left hand side in the rewrite

process. These values are then substituted in the right hand side.

[and1] and(false, x) = false
[and2] and(true, x) = x

Equations can have conditions which have to be fulfilled before such equations can be

applied. A condition is indicated with the keyword when followed by a comma separated

list of equations.

[and1] and(x, y) = false when x = false
[and2] and(x, y) = false when y = false
[and3] and(true, true) = true

Atoms

Atom declarations have a list of types for the arguments separated by a ’#’.

a
a : S
a : DATA # S

Processes

Process declarations have a list of types for the arguments separated by a ’#’.

P
P : S
P : DATA # S

Sets

A sets section consists of sub-sections, each indicating the type of the sets declared in this

sub-section.

of atoms
H = set-expression

of S
D = set-expression
E = set-expression

A set expression can be one of the following constructions in which S and T denote set

expressions.

9

PSF 2

sort S

indicating all elements of the sort S

set S

indicating all elements of the set S

enumeration {e1, e2, . . . , en}

An enumeration can contain placeholders.

H = {a(x), b(y) | x in S, y in DATA}

union S + T

intersection S .. T

difference S \ T

Communications

A communication consist of two communication partners separated by a ’|’ and the

resulting action of that communication. Communication declarations can contain

placeholders, in which case a communication can only take place if the communication

partners have the same value for each placeholder. The values for the placeholders are

substituted in the resulting communication action.

a | b = c
a(x) | b(x) = c(x) for x in S
a(x) | b(y) = c(x, y) for x in S, y in S

Definitions

Process definitions consist of a process on the left hand side and its definitions on the right

hand side. The process can have terms as arguments in which variables, defined in the

variables section, may occur.

P = process-expression
P(x) = process-expression
P(f(b), b(y)) = process-expression

Upon execution of a process, the process will be matched with the left hand side of the

process definitions. The process will be replaced by an alternative composition of all the

definitions for which the left hand side matches. If there is no matching process definition,

a deadlock results. In the matching of the process, values for the variables will be

determined, which will be substituted in the right hand side of the definition.

In the following we list possible constructions for process expressions and describe their

behaviour.

atomic action a

Execution of the atomic action a.

internal step skip

Execution of an internal step not visible to the environment. In ACP based

extensions it is known as τ .

10

2.1 Modules

deadlock delta

A deadlock cannot be executed.

process P

The process P will be replaced by an alternative composition of all the process

definitions of which the left hand side matches with P.

sequential composition x .. y

Process expression x is executed and upon termination followed by the execution

of process expression y.

alternative composition x + y

A non-deterministic choice between process expressions x and y is made.

Choosing a deadlock is forbidden.

parallel composition x y

The process expressions x and y are executed in parallel in which possible

communications can take place.

generalized alternative composition sum(v in S, x)

An abbreviation of the alternative composition of, for every value of v in the sort

or set S, the process expression x in which v is replaced by the value.

generalized parallel composition merge(v in S, x)

An abbreviation of the parallel composition of, for every value of v in the sort or

set S, the process expression x in which v is replaced by the value.

encapsulation encaps(H , x)

Can only execute actions from process expression x that are not an element of set

H .

hiding hide(I , x)

Let the executed actions from process expression x behave as the internal step

skip.

conditional expression [t = u] → x

If the terms t and u are equal, the conditional expression evaluates to the process

expression x, and to deadlock otherwise.

In addition to the above described process constructions, PSF also has the following

constructions, that are described in [17] and [18].

interruption interrupt(x, y)

The executions of process expression x can be interrupted by process expression

y at any time. After the execution of process expression y has finished, the

execution of process expression x resumes.

disruption disrupt(x, y)

The execution of process expression x can be interrupted by process expression y

at any time. After the execution of process expression y has finished, instead of

continueing the execution of process expression x, the execution of the whole

process expression is finished.

11

PSF 2

priority prio(S1 > . . . > Sn, x)

Gives priority of actions in process expression x that appear in set Si over actions

that appear in set S j for j > i. This means that when there is a choice between

actions only the actions with the highest priority and the actions without a priority

can be chosen. With the priority operator, the use of the keyword atoms is

extended to not only denote the set type atoms, but also to denote the set of all

atomic actions. The process expression prio(S, x) is an abbreviation of

prio(S > atoms, x).

iteration x ∗ y

Chooses between process expressions x and y. If x is chosen, upon termination

of the execution of x the iteration is repeated. If y is chosen, upon termination of

the execution of y the iteration finishes.

nesting x # y

Chooses between process expressions x and y. If x is chosen, upon termination

of the execution of x the nesting is repeated. If y is chosen, upon termination of

the execution of y, x is executed the number of times x has been chosen.

Parentheses may be used to group process expressions.

2.2 Overloading

The names of functions, atoms, and processes, can be overloaded. This means that the

same name can be used to denote different functions, atoms, or processes. Overloaded

functions must have unique input types, consisting of the types for the arguments. The

same also applies for atoms and processes, which at the same time must be distinguishable

from each other.

2.3 Imports and Exports

All objects defined in a module are only visible within that module. To make objects

specified in one module visible in other modules, PSF uses an import/export mechanism.

Every module can have an export and an import section. The layout for these sections of

data and process modules is given below.

data module Module
begin

exports
begin

sorts
. . .

functions
. . .

end
imports

. . .
. . .

process module Module
begin

exports
begin

atoms
. . .

processes
. . .

sets
. . .

end
imports

. . .
. . .

All objects defined in an export section of a module are made visible to modules that import

12

2.3 Imports and Exports

this module. Objects imported by a module are also exported by this module, and thus are

visible in other modules that import this module.

The imports section consists of a comma separated list of module names. A data module

can only import data modules, and a process module can import both data and process

modules.

2.3.1 Renamings

Upon import of a module, visible objects in this module can be renamed. A renaming

construct specifies a list of pairs consisting of an old visible name and a new visible name.

It has the following layout.

imports
Module {

renamed by [
a → b,
. . .

]
}

If a renaming is applied to an overloaded name, all instances of this name will be renamed.

2.4 Parameters

A parameters section must appear as the first section in a module and has the following

layout.

parameters
Parameter
begin

sorts
. . .

functions
. . .

atoms
. . .

processes
. . .

sets
. . .

end
. . .

Upon import of a module with parameters, a parameter can be bound to a module while all

objects listed in the parameter are bound to actual objects from this module. Unbound

parameters are inherited by the importing module and become parameters of this module.

A parameter binding has the following layout.

imports
Module1 {

Parameter bound by [
a → b,
. . .

] to Module2
}

13

PSF 2

2.5 Example

As an example of a specification in PSF we specify a system consisting of the processes P

and Q that communicate with each other. Process P can either send a ’message’ to process

Q and then wait for an acknowledgement from Q, or it can send a ’quit’ after which the

system stops.

We start with specifying a data module containing the definitions for the different data to be

send between the processes P and Q.

data module Data
begin

exports
begin

sorts
DATA

functions
message : → DATA
ack : → DATA
quit : → DATA

end
end Data

We continue with a process module that specifies the system consisting of the processes P

and Q. This module imports the data module.

process module System
begin

imports
Data

atoms
snd : DATA
rec : DATA
comm : DATA

processes
P, Q
System

sets
of atoms

H = { snd(x), rec(x) | x in DATA }
communications

snd(x) | rec(x) = comm(x) for x in DATA
definitions

P = snd(message) . rec(ack) . P + snd(quit)
Q = rec(message) . snd(ack) . Q + rec(quit)
System = encaps(H, P || Q)

end System

The process System merges the processes P and Q and enforces the communication

between them by encapsulating this merge. The encapsulation prevents the execution of the

actions in set H, which now can only be executed as part of the communication action.

14

2.5 Example

15

Chapter 3

The PSF Toolkit

PSF is accompanied by a toolkit consisting of several tools and libraries that form a

specification environment for PSF. The tools operate around the Tool Interface Language

(TIL) [39] as shown in Figure 3-1. There are several advantages in the use of an

intermediate language. The most important one is that the tools do not have to parse and

type check the PSF code, but use a simple parser to read the intermediate language.

Another advantage is that languages similar to PSF can be compiled to the intermediate

language and make use of large parts of the tools.

An overview of the PSF Toolkit is given in [62], and a more detailed description of the tools

is given in the PhD thesis of Gert Veltink [63]. In this chapter we describe briefly some of

the tools in the PSF Toolkit.

PSF

compiler

TIL

libraries

simulator

term-rewriter

. . .

simpp

TIL

Figure 3-1. PSF-Toolkit

17

The PSF Toolkit 3

3.1 Compiler

The PSF compiler translates a group of PSF modules to a specification in the Tool Interface

Language (TIL) that is suitable for tools to operate upon. The translation process from PSF

to TIL is described in [64]. Here, we give a brief description of this process.

The compilation takes place in several phases. First each PSF module is parsed and

converted to an MTIL (modular TIL) module. Then each MTIL module is normalized into

an ITIL (intermediate TIL) module. In this normalization step all imports are resolved by

combining the MTIL module with the ITIL modules corresponding to the imported

modules. The resulting ITIL module no longer depends on any imports. The main ITIL

module is then flattened to a specification in TIL. An overview of these steps is shown in

Figure 3-2.

parser

PSF

MTIL library

normalizer

ITIL

flattener

TIL

Figure 3-2. Translation from PSF to TIL

The implementation of the PSF compiler is built up from several independent components,

controlled by a driver. The compiler driver consists of the following phases.

1. collecting modules

The modules are collected from the files given to the compiler, and missing

imported modules are searched for in the libraries.

18

3.1 Compiler

2. sorting modules

The modules are sorted according to their import relation.

3. splitting files

Files scanned in phase 1 that contain more than one module are split into files

containing one module each.

4. parsing (from PSF to MTIL)

All modules that are out of date, that is the destination file does not exist, or the

source file (with extension .psf) is newer than the destination file (with extension

.mtil), are parsed.

5. normalizing (from MTIL to ITIL)

All modules that are out of date, that is the destination file does not exist, or the

source file (with extension .mtil) is newer than the destination file (with extension

.itil) or one of its imported modules (ITIL) is newer, are normalized.

6. flattening (from ITIL to TIL)

The main module is translated from ITIL to TIL.

7. converting sorts to sets

The simulator preprocessor is invoked for converting sorts to sets so that the

simulator can handle them.

8. checking TRS

The term rewrite system checker is invoked.

3.2 PSF Libraries

The PSF Toolkit provides some libraries containing frequently used data types. Using

libraries has several advantages. The main advantage is that specifications can be built using

existing modules. Also, specifications get a certain uniformity if they are based on the

same set of basic modules.

A PSF library consists of a set of ITIL-modules possibly depending on each other and on

other libraries. The compiler resolves imports from libraries by means of a search path

consisting of one or more directories.

In [38] a small standard library is used to support the communication protocols specified in

it. A library with more data types is proposed in [68]. Both libraries are in the PSF Toolkit,

but only to support older specifications, since there is a third library described in [40] that is

a revised version of the second. This revised version has a much faster term rewriting

system for some of the data types, and contains some additions.

3.3 Simulator

The simulator lets a user interactively simulate a process from a specification in TIL-code.

We describe briefly how the simulator operates and some of the features.

19

The PSF Toolkit 3

3.3.1 Basic Simulation

Simulation starts with selecting a start process for which a process-tree is build. Each

process in the tree keeps track of the code it has to execute. This code is split up in the

current operator or atom to be executed (head) and the remaining code (tail).

From the process-tree a list of atoms that can be executed at the current state called the

action-list is calculated, including possible communications between the atoms. Choosing

an atom from the action-list results in the execution of this atom after which the atom is

removed from the code to be executed in the process-tree, and the process-tree is updated.

3.3.2 Features

Basic simulation is sufficient for testing of small specifications, but for larger specifications

more control over the simulation is needed. In the following we describe some features

implemented in the simulator that make testing of large specifications easier.

Random

In random mode, the simulator runs continuously selecting atoms at random from the list of

possible atoms to be executed.

Breakpoints

Breakpoints can be set on atoms in order to stop random simulation. The simulator can

handle breakpoints in three different ways.

on execution (the default)

Whenever an atom is executed on which a breakpoint is set, the random mode is

turned off.

stop when one

If one or more of the atoms in the action-list have a breakpoint set on them, the

random mode is turned off.

stop when all

When all of the atoms in the action-list have breakpoints set on them, the random

mode is turned off. When random mode is on, atoms with breakpoints on them

are not chosen. This makes it possible to synchronize the simulation of

processes.

Tracing

Atoms can be selected to be traced. Upon execution of an atom that is selected for tracing,

the atom will be displayed.

Process Status

The process-tree can be viewed in the following form. For each process the process id

20

3.3 Simulator

(PID), the process id of the parent (PPID), the status of the process (STATUS), the flags of

the process (FLAGS), the priority (PRIO), and the head that is currently simulated (HEAD),

are given.

If a process has children, STATUS indicates this with an S (sleeping) and the number of

children. FLAGS can contain the following flags:

D indicates that the process resulted in a deadlock.

I the process is idle, due to an interrupt, disrupt, ∗, or # operator.

P the process can act as a port (a sum operator used to receive a value from

another process).

E indicates that the atom in the head is encapsulated.

H indicates that the atom in the head is hidden.

C a communication is possible with another atom.

The process status also gives a list of possible communications. For each of the

communications the process id of the two processes involved (PID), the flags of the

communication (FLAGS), the priority (PRIO), and the resulting communication (COMM)

are given. FLAGS can contain an E (encapsulated) or H (hidden).

For example, if we simulate the process definition P = encaps(H , (a b) (c d)) with

H = {a, b} and communication a b = cab we get the following process status.

PID PPID STATUS FLAGS PRIO HEAD
0 S 1 <+>
1 0 S 2 <||>
2 1 S 2 <||>
3 1 S 2 <||>
4 2 E C 0 a
5 2 E C 0 b
6 3 0 c
7 3 0 d

PID PID FLAGS PRIO COMM
4 5 0 cab

The alternative in the head of process 0 is caused by the possibility in PSF (and TIL) to

define more than one process definition with the same left hand side, in which case they

have to be interpreted as alternatives.

History

The simulator is equipped with a history mechanism that makes it possible to undo and redo

actions. In addition to single steps through history, it is also possible to mark a state by

giving it a name and later go back to a marked state by selecting a state from a list of

names.

3.3.3 Simulator Pre-Processor

The simulator can only expand sum and merge expressions over sets consisting solely of an

enumeration of constant elements. In the other cases, the simulator is not capable of

21

The PSF Toolkit 3

calculating the elements of the sort or set, of which the number of elements can even be

infinite. For this purpose, a pre-processor has been built that tries to convert sorts and sets

to sets consisting of only an enumeration.

A sort can be converted to an enumerated set when all function definitions with this sort as

return-type have no arguments (i.e. are constants). If a function takes arguments then the

sort can only be converted if the sorts of the arguments can be converted. In that case, the

set contains elements build up from this function with all the possible combinations of

values for the arguments.

A set can be converted to an enumerated set when it depends on enumerated sets and on

sorts which can be converted to enumerated sets. Furthermore, a set can be converted when

it depends on sets and sorts that can be converted to enumerated sets. For the intersection

set operator (..) it is only necessary that one of the operands can be converted to an

enumerated set, since values can be tested on being an element of a set. For the difference

set operator (\) only the left operand needs to be convertible.

For the sorts that cannot be converted a finite projection of the initial algebra can be

calculated, by enumerating normal forms. Calculation of an initial algebra is done in

segments. The first segment consists of constant functions. Following segments are

computed by filling the arguments of the non-constant functions with values from earlier

segments. Results are normalized and added to the new segment. The calculation goes on

until no elements are formed in the new segment, or until a given maximum number of

elements of a sort is exceeded.

3.3.4 Sum-ports

Often, the sum is used to receive a value from another process. In some of these cases, a

term for the variable of the sum can be computed. Consider the process definitions for P

and Q, and the set definition for H

P = send(b)
Q = sum(x in X, receive(x) . action(x))
H = { send(x), receive(x) | x in X }

From examining the expression encaps(H , P Q), it can be seen that we only need to

expand the sum for the value b of variable x.

The simulator is capable of computing the right values if the following conditions are

fulfilled.

• The first atom of the sum has to be easy to find, i.e. the expression of the sum consists

only of either an atom or a sequence of which the left-most operand is an atom. Or

the expression of the sum is a sum or a sequence of which the left-most operand is a

sum.

In case it is a sum, this condition must be fulfilled for this sum also.

• The atom must have the variables of the sum s as its arguments, and the variables may

not appear in other arguments of the atom.

22

3.3 Simulator

• The atom has to be encapsulated. For that, the encapsulation and hide sets (that are

involved) have to consist only of an enumeration of atoms with only variables

(placeholders) as arguments.

• The communication partner must have the same variables (placeholders) of the

atom’s arguments, which are variables of the sum s, somewhere in one of the

arguments in the specified communication.

3.4 Term Rewriter

For testing the equations in a specification, the PSF Toolkit has been provided with a term-

rewriter called ’trs’. This term-rewriter rewrites the terms given by the user according to

the equations found in the TIL-code using the rightmost-innermost strategy. The kernel of

the term-rewriter is also part of the kernel of the simulator. Upon request, a trace of the

rewrite steps is given. Below we show an interactive session with the term-rewriter.

% trs Booleans.til
--> or(true,true)
or(true, true) = true
--> eq(or(true,false),not(true))
eq(or(true, false), not(true)) = false
--> >trace on
Trace on
--> eq(or(true,false),not(true))
eq(or(true, false), not(true)) =

not(true)
-> false
or(true, false)
-> true
eq(true, false)
-> false

false
-->
%

The first equation found with matching left hand side is used for rewriting a term. This

makes term rewriting dependent on the order of the equations given to the term-rewriter. A

confluent specification is not order dependent, however it is a common error to incorporate

order dependencies in specifications. For that reason the term-rewriter has an option for

handling the equations in reversed order.

23

Chapter 4

ToolBus

The ToolBus coordination architecture [6] is a software application architecture developed

at CWI (Amsterdam) and the University of Amsterdam. It utilizes a scripting language

based on process algebra to describe the communication between software tools. A

ToolBus script describes a number of processes that can communicate with each other and

with various tools existing outside the ToolBus. The role of the ToolBus when executing

the script is to coordinate the various tools in order to perform some complex task. A

language-dependent adapter that translates between the internal ToolBus data format and

the data format used by the individual tools makes it possible to write every tool in the

language best suited for the task(s) it has to perform.

ToolBus

PT1

Adapter

Tool 1

PT2

Tool 2

Adapter

Figure 4-1. Model of tool and ToolBus interconnection

We giv e a minimal description of the ToolBus, just enough for our purposes. We refer to the

user guide distributed with the ToolBus software package for a complete description. In

25

ToolBus 4

Figure 4-1 two possible ways of connecting tools to the ToolBus are displayed. One way is

to use a separate adapter and the other to have a built-in adapter. Communications between

ToolBus processes can be done using the primitives snd-msg and rec-msg. A ToolBus

process can communicate with a tool using the primitives snd-do and snd-eval. With

the latter the tool has to send back a value which the ToolBus process can receive with the

primitive rec-value. A tool can send an event to a ToolBus process that is to be

received with the primitive rec-event, to be acknowledged by the ToolBus process using

the primitive snd-ack-event. An overview of possible communications inside the

ToolBus and with the tools is given in Table 4-1, here <function> represents the

function to be called by the adapter of the tool.

Table 4-1. ToolBus communications

ToolBus process ToolBus process

snd-msg(Term, ...) rec-msg(Term, ...)

ToolBus process Tool

snd-do(ToolID, <function>(arg, ...)) <function>

snd-eval(ToolID, <function>(arg, ...)) <function>

snd-ack-event(ToolID, Term) <rec-ack-event>

Tool ToolBus process

snd-value(Term) rec-value(ToolID, Term)

snd-event(Term, ...) rec-event(ToolID, Term, ...)

4.1 Example

As an example of the use of the ToolBus, we specify an application carried out in the form

as shown in Figure 4-1. In this example, Tool1 can either send a ’message’ to Tool2 and

then wait for an acknowledgement from Tool2, or it can send a ’quit’ after which the

application will shutdown.

The implementation consists of three Tcl/Tk1 [50] programs (Tool1, its adapter, and Tool2),

and a ToolBus script. A screendump of this application at work together with the viewer of

the ToolBus is shown in Figure 4-2. With the viewer it is possible to step through the

execution of the ToolBus script and view the variables of the individual processes inside the

ToolBus. The ToolBus script is shown below. The execute actions in the ToolBus script

correspond to the starting of the adapter for Tool1 and the starting of Tool2 in parallel with

the processes PT1 and PT2 respectively. The variables T1 and T2 are used as identifiers

for Tool1 and Tool2, and the terms t1 and t2 serve as identifiers for the ToolBus processes

PT1 and PT2.

process PT1 is
let

T1: tool1adapter
in

execute(tool1adapter, T1?) .
(

1. Tcl/Tk is combination of the tool command language Tcl and the Tk GUI toolkit extension package.

26

4.1 Example

Figure 4-2. Screendump of the example as ToolBus application with viewer

rec-event(T1, message) .
snd-msg(t1, t2, message) .
rec-msg(t2, t1, ack) .
snd-ack-event(T1, message)

+ rec-event(T1, quit) .
shutdown("")

) * delta
endlet

process PT2 is
let

T2: tool2
in

execute(tool2, T2?) .
(

rec-msg(t1, t2, message) .
snd-eval(T2, eval(message)) .
rec-value(T2, value(ack)) .

27

ToolBus 4

snd-msg(t2, t1, ack)
) * delta

endlet

tool tool1adapter is {
command = "wish-adapter -script tool1adapter.tcl" }

tool tool2 is { command = "wish-adapter -script tool2.tcl" }

toolbus(PT1, PT2)

Following the description of the ToolBus processes is the description of how to execute the

tools by the execute actions. The last line of the ToolBus script starts the processes PT1

and PT2 in parallel.

28

Part II

Animation of Process Algebra
Specifications

Chapter 5

Simulation and Animation

When simulating a process algebra specification, one easily loses track of the current state

of the parallel processes in the specification. A visualization of the state can be very

helpful, especially for larger specifications. We can even go further. By also visualizing

the transitions between the states we get an animation of the simulations of our

specification.

What do we expect from such an animation? First of all, what our simulator already does,

show which actions are performed. We also like to see which processes can perform an

action and how their states are influenced by execution of an action. But above all, we

would like to see a picture in which objects are shown that represent the processes and their

connecting communication channels, and in which the formerly mentioned actions are

visualized.

In the following section we present a platform for the coupling of animation to the

simulator of the PSF Toolkit and describe the implementation of this platform. The

structure of an animation is presented in section 5.2. In the sections thereafter we show

how to build animations on top of the platform.

5.1 Simulation-Animation Platform

The simulation-animation platform consists of the simulator from the PSF Toolkit coupled

to an animator. The animator executes an animation provided by the user. Such an

animation can be build using commands from a library of animation functions. An

animation consists of a number of commands that build up a picture and for each atom that

can be executed by the simulator a set of commands that perform the animation for that

atom. There are two modes of control, passive animation and active animation.

With passive animation, the simulator is in control. It sends the atoms it executes to the

animator. Upon the receipt of an atom from the simulator, the animator interprets the atom

and executes the set of commands associated with this atom. With active animation, the

31

Simulation and Animation 5

animator is in control. Selection of atoms to be executed by the simulator is done through

the interface of the animation. For this, the simulator has to send a list of atoms that can be

executed in a certain state to the animator. The animation must contain for each atom that

can be executed a set of commands that add the atom to a list for one of the items

(representing one of the processes of the simulated specification) in the animation. A user

can select an atom by pointing at an item on which a list of atoms pops up belonging to this

item. On selecting one of the atoms from a list, the animator sends the atom to the

simulator and executes the set of commands for animation of this atom. In this way, a user

can see which atoms can be executed in a certain state and to what item they belong.

The animator is implemented in Tcl/Tk and serves as a framework for the animations. An

animation is actually a part of the animator instead of input for the animator. The reason

for implementing the animator as a framework is that a user can now add Tcl/Tk commands

to the animation. So, if the library of animation functions is not sufficient, a user can

always add the needed functionality to the animation.

5.2 Structure of an Animation

An animation is a piece of Tcl/Tk code executed as part of the animator. It should at least

consist of a part that builds a picture for the animation and an animation function. For

active animation also a choose function is needed. Below we present the structure we use

for our animations.

initialization

proc ANIM_action {atom} {
if {match} {

animation
} elseif {match} {

animation
...
}

}

proc ANIM_choose {atom} {
if {match} {

add-list
} elseif {match} {

add-list
...
}

}

The initialization consist of a serie of commands from the animation library for building the

picture of the animation. The ANIM_action function is called by the animator with the

executed action sent by the simulator as argument. In the if-elseif construction a match is a

match of a regular expression with the action to select an animation consisting of a serie of

commands from the animation library that perform the action. The ANIM_choose can be

omitted from the animation, but then there is no active animation. The function is called by

the animator for each action in the list the animator receives from the simulator. This

function is similar to the ANIM_action function, but instead of an animation commands

must be given for adding the action to a list for a particular item from which an action can

32

5.2 Structure of an Animation

be chosen that has to be executed.

5.3 Building an Animation

We describe how to make an animation and the different forms of control, using the

Alternating Bit Protocol as an example. A specification of this protocol can be found in

Appendix A.1. Most of the lines of code we present here start with line-numbers for

reference purposes, they are not part of the code. For an animation we have to initialize the

windows first. The command

1 Anim::Windows 440 220 61 10

gives us the windows shown in Figure 5-1.

Figure 5-1. Screendump of animation window

The command is built up from the function Windows from the animation package Anim

followed with some arguments indicating the width and height for the windows.

The Figure shows three buttons, which are disabled at the moment. Below that a canvas

(with width 440 and height 220 in pixels) where the actual animation takes place, and

below that a text-window (with width 61 and height 10 in characters) with additional

scrollbar. In the text-window, the atoms that are executed by the simulator are displayed

(the same as in the TRACE-window of the simulator when tracing is on).

The picture in the canvas is made with the following commands.

33

Simulation and Animation 5

2 Anim::CreateItem recti rect 30 110 20 20 "I"
3 Anim::CreateItem ovals oval 120 110 20 20 "S"
4 Anim::CreateItem ovalr oval 360 110 20 20 "R"
5 Anim::CreateItem rectl rect 240 30 40 10 "L"
6 Anim::CreateItem rectk rect 240 190 40 10 "K"
7 Anim::CreateLine toS pos 50 110 item ovals chop -arrow last
8 Anim::CreateLine fromR item ovalr chop pos 430 110 -arrow last
9 Anim::CreateLine StoK item ovals se item rectk w -arrow last

10 Anim::CreateLine KtoR item rectk e item ovalr sw -arrow last
11 Anim::CreateLine RtoL item ovalr nw item rectl e -arrow last
12 Anim::CreateLine LtoS item rectl w item ovals ne -arrow last

The command in line 2 creates a rectangle (indicated by the second argument rect) at the

position 30,110 (calculated from the top left corner) with width and height both 20. The

actual width and height are twice these sizes. The sizes given here indicate the distance

from the position 30,110 to the border of the rectangle. (It is done this way to eliminate

rounding of numbers in calculations.) The first argument is the name of the rectangle, so

that it can be referenced later, and the last argument gives the text to be displayed in the

item.

The command in line 7 creates a line with name toS from position 50,110 (pos 50

110) to the border of the item with name ovals (item ovals chop). And at the end

of the line, an arrow is drawn (-arrow last).

To display text at some positions later on, we do the following.

13 Anim::TextposLine toS toS s
14 Anim::TextposLine fromR fromR s
15 Anim::TextposLine StoK StoK ne
16 Anim::TextposItem atK rectk s n
17 Anim::TextposLine KtoR KtoR nw
18 Anim::TextposLine RtoL RtoL sw
19 Anim::TextposItem atL rectl n s
20 Anim::TextposLine LtoS LtoS se

The command in line 13 defines a position for text with the name toS (the first argument)

at line toS (the second argument) and with anchor s (south), which means that the south of

the text will be placed just above the line. The command in line 16 defines a position with

name atK at the south of item rectk with anchor n (north).

5.3.1 Passive Animation

Now we describe the interpretations for the atoms in the trace of the simulator. We do this

by defining the function ANIM_action as follows.

21 proc ANIM_action {atom} {
22 if {[regexp {ˆinput\(’(.*)\)$} $atom match arg1]} {
23 Anim::Clear recti
24 Anim::Clear ovals
25 Anim::CreateText toS "$arg1"
26 Anim::ActivateLine toS
27 Anim::AddClear ovals {line toS} {text toS}
28 } elseif {[regexp {ˆskip frame-comm\(frame\((.*), ’(.*)\)\)$} \
29 $atom match arg1 arg2]} {
30 Anim::Clear ovals
31 Anim::CreateText StoK "$arg2 ($arg1)"
32 Anim::ActivateLine StoK

34

5.3 Building an Animation

33 Anim::AddClear rectk {line StoK} {text StoK}
34 } elseif {[regexp {ˆskip<(0|1)>$} $atom match]} {
35 Anim::Clear rectk
36 Anim::CreateText atK "$match"
37 Anim::AddClear rectk {text atK}
38 } elseif {[regexp \
39 {ˆskip frame-or-error\(frame\((.*), ’(.*)\)\)$} $atom \
40 match arg1 arg2]} {
41 Anim::Clear rectk
42 Anim::CreateText KtoR "$arg2 ($arg1)"
43 Anim::ActivateLine KtoR
44 Anim::AddClear ovalr {line KtoR} {text KtoR}
45 } elseif {[regexp {ˆskip frame-or-error\(frame-error\)$} $atom \
46 match]} {
47 Anim::Clear rectk
48 Anim::CreateText KtoR "error"
49 Anim::ActivateLine KtoR
50 Anim::AddClear ovalr {line KtoR} {text KtoR}
51 } elseif {[regexp {ˆoutput\(’(.*)\)$} $atom match arg1]} {
52 Anim::Clear ovalr
53 Anim::CreateText fromR "$arg1"
54 Anim::ActivateLine fromR
55 Anim::AddClear ovalr {line fromR} {text fromR}
56 } elseif {[regexp {ˆskip ack-comm\(ack\((.*)\)\)$} $atom match \
57 arg1]} {
58 Anim::Clear ovalr
59 Anim::CreateText RtoL "ack($arg1)"
60 Anim::ActivateLine RtoL
61 Anim::AddClear rectl {line RtoL} {text RtoL}
62 } elseif {[regexp {ˆskip<(2|3)>$} $atom match]} {
63 Anim::Clear rectl
64 Anim::CreateText atL "$match"
65 Anim::AddClear rectl {text atL}
66 } elseif {[regexp {ˆskip ack-or-error\(ack\((.*)\)\)$} $atom \
67 match arg1]} {
68 Anim::Clear rectl
69 Anim::CreateText LtoS "ack($arg1)"
70 Anim::ActivateLine LtoS
71 Anim::AddClear recti {line LtoS} {text LtoS}
72 } elseif {[regexp {ˆskip ack-or-error\(ack-error\)$} $atom \
73 match]} {
74 Anim::Clear rectl
75 Anim::CreateText LtoS "error"
76 Anim::ActivateLine LtoS
77 Anim::AddClear ovals {line LtoS} {text LtoS}
78 }
79 }

We take line 22 as an example of how an atom can be matched. First note that in Tcl the

value of a variable with the name var is substituted for $var. The condition of the if-

command is enclosed in braces ({ }). In Tcl, square brackets ([]) indicate that the text

in between has to be evaluated as a command. Here, this is the matching of a regular

expression with the value in the variable atom. In the regular expression

ˆinput\(’(.*)\)$ the ˆ and $ match with the begin and end of the action in atom, so

that we match all of atom and not just a part of it. The \(and \) match with a (and a)

respectively. We use .* to match with anything and we put it in between () to save the

part it matched (this becomes available in the variable with name arg1). The other

characters match with themselves. The variable with name match will contain everything

35

Simulation and Animation 5

that has been matched. So in case the atom is input(’a) the regular expression will

match and variable arg1 gets the value a.

The order of the matching of regular expressions can be relevant. For instance, the regular

expression ˆsnd\((.*)\)$ matches the action snd(f, g). In such cases the

matching for the action with more arguments has to take place before the matching for the

action with fewer arguments. Thus, the matching with regular expression

ˆsnd\((.*), (.*)\)$ has to be placed before the matching with regular expression

ˆsnd\((.*)\)$ in the if-elseif construction.

In line 25 we create a text (the value of arg1) on the position toS created earlier with the

use of Anim::TextposLine. The line toS is activated in line 26 (on color displays it

gets a different color and on monochrome displays it becomes solid).

In line 27 we add the line toS and the text toS to the clear-list of ovals. With the next

match of an atom (line 28) we give the order to clear this list for ovals (line 30). Instead

of line 27 and 30 we also could have done

Anim::DeactivateLine toS
Anim::DeleteText toS

directly after line 29. The use of clear-lists has the advantage that is not necessary to know

what has to be cleared (deactivated and deleted) on the next action in which an item is

involved (here ovals).

Now let us look at the result of this. After the simulation of the atoms

input(’a)

skip frame-comm(frame(0, ’a))

we get the picture in Figure 5-2. In the animation we only display ’a(0)’ as communication

between S and K instead of ’skip frame-comm(frame(0, ’a))’ (see line 31).

5.3.2 Active Animation

It is also possible to let the animation control the simulation. For this, we have to define a

function ANIM_choose. When this function is found in the animation, the control is

given to the animation automatically and the buttons control to sim , reset, and

quit are enabled. The first one gives control to the simulator, that gives us passive

animation. The simulator then has a button control to anim enabled to give control

back to the animation. The button reset performs a re-initialisation of the animation and

sends a reset action to the simulator, and the button quit sends a quit action to the

simulator.

80 proc ANIM_choose {atom} {
81 if {[regexp {ˆinput\(’(.*)\)$} $atom match arg1]} {
82 Anim::AddList recti $match
83 } elseif {[regexp {ˆskip frame-comm\(frame\((.*), ’(.*)\)\)$} \
84 $atom match arg1 arg2]} {
85 Anim::AddList ovals $match
86 } elseif {[regexp {ˆskip<(0|1)>$} $atom match]} {
87 Anim::AddList rectk $match
88 } elseif {[regexp

36

5.3 Building an Animation

Figure 5-2. Alternating bit protocol: passive animation

89 {ˆskip frame-or-error\(frame\((.*), ’(.*)\)\)$} $atom \
90 match arg1 arg2]} {
91 Anim::AddList rectk $match
92 } elseif {[regexp {ˆskip frame-or-error\(frame-error\)$} $atom \
93 match]} {
94 Anim::AddList rectk $match
95 } elseif {[regexp {ˆoutput\(’(.*)\)$} $atom match arg1]} {
96 Anim::AddList ovalr $match
97 } elseif {[regexp {ˆskip ack-comm\(ack\((.*)\)\)$} $atom match \
98 arg1]} {
99 Anim::AddList ovalr $match

100 } elseif {[regexp {ˆskip<(2|3)>$} $atom match]} {
101 Anim::AddList rectl $match
102 } elseif {[regexp {ˆskip ack-or-error\(ack\((.*)\)\)$} $atom \
103 match arg1]} {
104 Anim::AddList rectl $match
105 } elseif {[regexp {ˆskip ack-or-error\(ack-error\)$} $atom \
106 match]} {
107 Anim::AddList rectl $match
108 }
109 }

For each atom in the choose-list of the simulator the above function is called. Each item in

the animation has its own choose-list. When there are atoms added to a list with the use of

Anim::AddList, the item becomes activated (on color displays it gets a different color

and on monochrome displays it becomes stippled). When an activated item is clicked upon

with the mouse, a list pops up from which an atom can be selected for execution. Leaving

37

Simulation and Animation 5

the list with the mouse makes the list disappear. So the lists can be examined without

making a selection. A snapshot of active animation is shown in Figure 5-3.

Figure 5-3. Alternating bit protocol: active animation

5.4 Visual Attractive Animation

The animation functions shown so far, are satisfactory for displaying processes and their

communications. However, more can be done to make the animations more attractive, such

as moving items, queues, display counters on an information panel, etc.

Here, a few features are shown of which the ones mentioned above are the most important.

For this, we use the specification of a small factory consisting of input, output, some

stations and conveyor belts. It produces the products A and B which take slightly different

routes through the factory. A specification of this factory can be found in Appendix A.2.

We first give the commands for the picture in the canvas of the animation.

1 Anim::Windows 340 200 30 10
2 Anim::CreateItem inp rect 30 30 15 15 "In"
3 Anim::CreateItem s1 rect 30 100 15 15 "1"
4 Anim::CreateItem s2 rect 100 100 15 15 "2"
5 Anim::CreateItem s3 rect 170 100 15 15 "3"
6 Anim::CreateItem s4 rect 240 100 15 15 "4"
7 Anim::CreateItem s5 rect 240 170 15 15 "5"
8 Anim::CreateItem s6 rect 310 170 15 15 "6"
9 Anim::CreateItem out rect 310 100 15 15 "Out"

38

5.4 Visual Attractive Animation

10 Anim::CreateLine ins1 item inp s item s1 n -arrow last
11 Anim::TextposLine ins1 ins1 e
12 Anim::CreateLine outs6 item s6 n item out s -arrow last
13 Anim::TextposLine outs6 outs6 w
14 Anim::CreateLine s1s2 item s1 e item s2 w -width 15
15 Anim::CreateLine s2s3 item s2 e item s3 w -width 15
16 Anim::CreateLine s3s4 item s3 e item s4 w -width 15
17 Anim::CreateLine s3s5 item s3 s pos [Anim::Dim s3 x] \
18 [Anim::Dim s5 y] item s5 w -width 15
19 Anim::CreateLine s4s5 item s4 s item s5 n -width 15
20 Anim::CreateLine s5s6 item s5 e item s6 w -width 15

This gives us the picture in Figure 5-4.

Figure 5-4. Factory

In line 17, we see the use of function Anim::Dim. It is used the get a dimension from its

first argument (here, the x-coordinate of item s3 and the y-coordinate of item s5). The

square brackets around it are to let Tcl/Tk know it has to call the function. It is also

possible to do more calculations, for example with the use of the Tcl/Tk function expr like

this

[expr [Anim::Dim s3 x] * 2 + 5]

which takes the x-coordinate of s3, multiplies it by 2 and adds 5 to it.

5.4.1 Moving Items

Instead of showing that a product is moved from one station to another by means of an

39

Simulation and Animation 5

arrow and some text, we actually want to see it moving over the conveyor belt. We define

the function ANIM_action as follows.

21 proc ANIM_action {atom} {
22 if {[regexp {ˆinput\((.*)\)$} $atom match arg1]} {
23 Anim::CreateText ins1 "$arg1"
24 Anim::ActivateLine ins1
25 } elseif {[regexp {ˆcomm-input\((.*)\)$} $atom match arg1]} {
26 Anim::DeleteText ins1
27 Anim::DeactivateLine ins1
28 Anim::CreateItem AT1 rect [Anim::Dim s1 x] [Anim::Dim s1 y] \
29 7 7 "$arg1" -free -color 1
30 } elseif {[regexp {ˆcomm-belt\(3, 4, .*\)$} $atom match arg1]} {
31 Anim::Move AT3 rightto [Anim::Dim s4 x] -newid AT4
32 } elseif {[regexp {ˆcomm-belt\(3, 5, .*\)$} $atom match arg1]} {
33 Anim::Move AT3 downto [Anim::Dim s5 y] rightto \
34 [Anim::Dim s5 x] -newid AT5
35 } elseif {[regexp {ˆcomm-belt\(4, 5, .*\)$} $atom match arg1]} {
36 Anim::Move AT4 downto [Anim::Dim s5 y] -newid AT5
37 } elseif {[regexp {ˆcomm-belt\((.*), (.*), .*\)$} $atom match \
38 arg1 arg2]} {
39 Anim::Move AT$arg1 rightto [Anim::Dim s$arg2 x] \
40 -newid AT$arg2
41 } elseif {[regexp {ˆcomm-output\((.*)\)$} $atom match arg1]} {
42 Anim::DestroyItem AT6
43 Anim::CreateText outs6 "$arg1"
44 Anim::ActivateLine outs6
45 } elseif {[regexp {ˆoutput\((.*)\)$} $atom match arg1]} {
46 Anim::DeleteText outs6
47 Anim::DeactivateLine outs6
48 }
49 }

Line 31 shows how we move a product from station 3 to station 4. With the option

-newid we give it a new name. In this way, we do not have to keep track of which item is

at what position (the name of the item indicates its location).

In lines 28 and 29, items are created with the options -free and -color. The option

-free indicates that this item has to be freed (destroyed) on a reset. The option -color

x indicates that the color for the item must come from colorset x, where x can be either 0 or

1, or a colorset created with the function Anim::Colorset. A snapshot of this passive

animation is shown in Figure 5-5.

The function for active animation is given below.

50 proc ANIM_choose {atom} {
51 if {[regexp {ˆinput\((.*)\)$} $atom match arg1]} {
52 Anim::AddList inp $match
53 } elseif {[regexp {ˆcomm-input\((.*)\)$} $atom match arg1]} {
54 Anim::AddList s1 $match
55 } elseif {[regexp {ˆcomm-belt\((.*), (.*), .*\)$} $atom match \
56 arg1 arg2]} {
57 Anim::AddList AT$arg1 $match
58 } elseif {[regexp {ˆcomm-output\((.*)\)$} $atom match arg1]} {
59 Anim::AddList s6 $match
60 } elseif {[regexp {ˆoutput\((.*)\)$} $atom match arg1]} {
61 Anim::AddList out $match
62 }
63 }

40

5.4 Visual Attractive Animation

Figure 5-5. Factory: passive animation

5.4.2 Queues

Now, we extend our specification of the factory with input- and output-queues. In the

animation, we replace line 2 with

Anim::CreateQueue qin 25 30 13 1 -anchor w

and line 9 with

Anim::CreateQueue qout 310 115 1 7 -orient vertical -anchor s

This gives us a horizontal input-queue of 13 characters long and 1 character high, at

position 25,30. By using the option -orient vertical a vertical output-queue is

created.

This is enough for passive animation. However, for active animation we need an item on

both sides of the queue in order to control the input and output of the queue. We now

replace line 2 with

Anim::CreateItem qin-out rect 22 30 7 15 ""
Anim::CreateQueue qin [Anim::Dim qin-out e,x] 30 10 1 -anchor w
Anim::CreateItem qin-in rect [expr [Anim::DimQ qin e,x] + 7] 30 7 \

15 "In"

and line 9 with

Anim::CreateItem qout-in rect [Anim::Dim s6 x] 107 12 8 ""
Anim::CreateQueue qout [Anim::Dim qout-in x] \

41

Simulation and Animation 5

[Anim::Dim qout-in n,y] 1 5 -orient vertical -anchor s
Anim::CreateItem qout-out rect [Anim::DimQ qout x] \

[expr [Anim::DimQ qout n,y] - 8] 12 8 "Out"

The code for passive and active animation is given below

64 proc ANIM_action {atom} {
65 if {[regexp {ˆq-input\((.*)\)$} $atom match arg1]} {
66 Anim::AddQueue qin $arg1
67 } elseif {[regexp {ˆcomm-q-input\((.*)\)$} $atom match arg1]} {
68 Anim::SubQueue qin
69 Anim::CreateText ins1 $arg1
70 Anim::ActivateLine ins1
71 } elseif {[regexp {ˆcomm-input\((.*)\)$} $atom match arg1]} {
72 Anim::DeleteText ins1
73 Anim::DeactivateLine ins1
74 Anim::CreateItem AT1 rect [Anim::Dim s1 x] [Anim::Dim s1 y] \
75 7 7 "$arg1" -free -color 1
76 } elseif {[regexp {ˆcomm-belt\(3, 4, .*\)$} $atom match arg1]} {
77 Anim::Move AT3 rightto [Anim::Dim s4 x] -newid AT4
78 } elseif {[regexp {ˆcomm-belt\(3, 5, .*\)$} $atom match arg1]} {
79 Anim::Move AT3 downto [Anim::Dim s5 y] rightto \
80 [Anim::Dim s5 x] -newid AT5
81 } elseif {[regexp {ˆcomm-belt\(4, 5, .*\)$} $atom match arg1]} {
82 Anim::Move AT4 downto [Anim::Dim s5 y] -newid AT5
83 } elseif {[regexp {ˆcomm-belt\((.*), (.*), .*\)$} $atom match \
84 arg1 arg2]} {
85 Anim::Move AT$arg1 rightto [Anim::Dim s$arg2 x] \
86 -newid AT$arg2
87 } elseif {[regexp {ˆcomm-output\((.*)\)$} $atom match arg1]} {
88 Anim::DestroyItem AT6
89 Anim::CreateText outs6 "$arg1"
90 Anim::ActivateLine outs6
91 } elseif {[regexp {ˆcomm-q-output\((.*)\)$} $atom match arg1]} {
92 Anim::DeleteText outs6
93 Anim::DeactivateLine outs6
94 Anim::AddQueue qout $arg1
95 } elseif {[regexp {ˆq-output\((.*)\)$} $atom match arg1]} {
96 Anim::SubQueue qout
97 }
98 }
99 proc ANIM_choose {atom} {
100 if {[regexp {ˆq-input\((.*)\)$} $atom match arg1]} {
101 Anim::AddList qin-in $match
102 } elseif {[regexp {ˆcomm-q-input\((.*)\)$} $atom match arg1]} {
103 Anim::AddList qin-out $match
104 } elseif {[regexp {ˆcomm-input\((.*)\)$} $atom match arg1]} {
105 Anim::AddList s1 $match
106 } elseif {[regexp {ˆcomm-belt\((.*), (.*), .*\)$} $atom match \
107 arg1 arg2]} {
108 Anim::AddList AT$arg1 $match
109 } elseif {[regexp {ˆcomm-output\((.*)\)$} $atom match arg1]} {
110 Anim::AddList s6 $match
111 } elseif {[regexp {ˆcomm-q-output\((.*)\)$} $atom match arg1]} {
112 Anim::AddList qout-in $match
113 } elseif {[regexp {ˆq-output\((.*)\)$} $atom match arg1]} {
114 Anim::AddList qout-out $match
115 }
116 }

A snapshot of this is shown in Figure 5-6.

42

5.4 Visual Attractive Animation

Figure 5-6. Factory with queues: active animation

5.4.3 Information Panel

In order to get an even better view, support for accounting is added. If we want to display

the lengths of the queues and the amount of input and output of the factory, we can add the

following code.

117 Anim::CreateBox info queues -side top -ipadx 1 -ipady 1 -expand \
118 -bw 2 -relief ridge
119 Anim::CreateBox queues queueinput -side left
120 Anim::CreateLabel queueinput inputtext "queue In" -width 9 \
121 -anchor w
122 Anim::CreateLabel queueinput inputvar q-input -var -bw 2 \
123 -relief sunken -width 2
124 Anim::CreateBox queues queueoutput -side left
125 Anim::CreateLabel queueoutput outputtext "queue Out" -width 9 \
126 -anchor w
127 Anim::CreateLabel queueoutput outputvar q-output -var -bw 2 \
128 -relief sunken -width 2
129 Anim::InitVar q-input 0
130 Anim::InitVar q-output 0
131 Anim::CreateBox info table -side top -bw 2 -relief ridge
132 Anim::CreateBox table header -side left
133 Anim::CreateLabel header col0 "" -width 6
134 Anim::CreateLabel header col1 "A" -width 2
135 Anim::CreateLabel header col2 "B" -width 2
136 Anim::CreateBox table row1 -side left
137 Anim::CreateLabel row1 input input -width 6 -anchor w
138 Anim::CreateLabel row1 inpA input(A) -var -width 2 -bw 2 \

43

Simulation and Animation 5

139 -relief sunken
140 Anim::CreateLabel row1 inpB input(B) -var -width 2 -bw 2 \
141 -relief sunken
142 Anim::CreateBox table row2 -side left
143 Anim::CreateLabel row2 output output -width 6 -anchor w
144 Anim::CreateLabel row2 outpA output(A) -var -width 2 -bw 2 \
145 -relief sunken
146 Anim::CreateLabel row2 outpB output(B) -var -width 2 -bw 2 \
147 -relief sunken
148 Anim::InitArray input [list A 0 B 0]
149 Anim::InitArray output [list A 0 B 0]

At line 117, a box is created with the name queues and parent info. Box info is

predefined and is normally empty. In that box we create the boxes queueinput and

queueoutput. In box queueinput we create two labels, one which contains text and

one which will contain the last value assigned to variable q-input (this is indicated with

the option -var). Variables must be initialized with the use of function

Anim::InitVar, in order to initialize them again after a reset.

In box info also a box table is made. In this box we display the arrays input and

output, which must be initialized with function Anim::InitArray.

Now, in the function ANIM_action one can assign values to these variables with either

the set or the incr command of Tcl. We insert after line 65 the commands

incr q-input
incr input($arg1)

after line 68

incr q-input -1

after line 94

incr q-output

and after line 96

incr q-output -1
incr output($arg1)

Unfortunately, in Tcl these variables must be declared to be global in the function

ANIM_action. We do this by inserting

global q-input q-output input output

after line 64. A snapshot of the animation with information panel is shown in Figure 5-7.

44

5.4 Visual Attractive Animation

Figure 5-7. Factory with info-panel: active animation

45

Chapter 6

Generation of Animations

In the previous chapter a platform is presented for simulation and animation of process

algebra specifications. These animations have to be created by hand. So whenever the

specification changes, the animation has to be adapted. This makes it difficult to use it for

testing, especially for larger specifications.

We try to overcome this problem by generating animations from the specifications. In

using static analysis of the specification for the generation of animation we have to deal

with open terms, i.e. terms that contain variables, causing problems when term matching is

involved. Dynamic analysis of the specification can only solve these problems in some

cases because in general all possible executions have to be considered to be sure that all

characteristics of the specification are encountered. Here, we use static analyse to find out

to what extent we can generate animations and how we hav e to adapt the specifications in

order to get better results.

We hav e divided the problem of generating an animation from a specification into several

steps. First, we have to analyse the specification with as result a process graph and a list

consisting of the atoms that are part of the processes in the graph and of the

communications that can occur between the processes.

Secondly, we hav e to convert the process graph into a picture. We use the program dot,2

which calculates coordinates for nodes and edges of a graph. We generate an animation

from the output of dot by a Perl [67] script.

Thirdly, we generate an action-function and a choose-function from the list of atoms and

communications.

We explain the implementation of the various parts in general and use a specification of the

Alternating Bit Protocol in PSF as an example. The specification of this protocol can be

found in Appendix A.1.

2. Dot is part of the software package Graphviz from AT&T Bell Laboratories.

47

Generation of Animations 6

6.1 Generation of a Process Graph

We describe here the steps that we make in order to generate a graph from a specification.

Several steps could have been incorporated, but we have chosen to keep our code as simple

as possible.

Build Process Tree

For each definition of a process we build a process tree in which the nodes represent

the operators and processes, and the edges represent a list of atoms. These lists of

atoms eliminate the sequential operator (.).

Expand Tree

We take the process tree for the top process and expand it, by replacing the processes

with their process tree. This is done recursively, but a process is only expanded once

in a tree since we have all possible actions that can occur already in this tree. Except

for the subtrees of a parallel operator (||), in which a process may be expanded in each

subtree, so that possible communications can be found.

Mark up Tree

Put ID on Processes

Give the top process of the tree and of the subtrees of a node that represents a

parallel operator, an ID. Mark all atoms with the process-ID of the subtree it

belongs to.

Find Sum Atoms

We mark all atoms that can act as a sum-port (see section 3.3.4). These are the

atoms first in the list of atoms belonging to the edge from the node for the sum

operator to its subtree, and that have the variable of this sum operator in one of

their arguments.

This information is later used in deciding the type of the communications.

Encapsulate and Hide Atoms

We also mark the atoms that will be encapsulated or hidden. This information

will be used later in calculation of the communications. (We are matching open

terms, so this can result in not detecting an atom as a member of a set.)

Find Communications

We go down the tree to the leaf nodes. From there we go up and list the atoms we

encounter. When we meet an encapsulation operator, we delete the atoms from our list

that are encapsulated by this operator. When we meet a hide operator, we mark the

atoms that are hidden by this operator. When we meet a parallel operator, we calculate

the possible communications between the atoms from the list for each subtree, and

assign this list of communications to this node. We also decide on the direction of the

communications. When the left communication partner can act as a sum-port we

indicate this with ’<-’, for the right communication partner we use ’->’, for both ’<->’,

and ’-’ for none.

Back at the top, we have collected a list of all atoms that can be performed.

48

6.1 Generation of a Process Graph

Encapsulate and Hide Communications

We mark the communications that will be encapsulated or hidden.

Collect the communications

We go down in the tree and on our way up we list the communications. When we

meet an encapsulation operator, we remove the communications that are encapsulated

by this operator from the list.

At the top, we have collected a list of all possible communications.

Properties of the Processes

By inspecting the list of atoms and communications, we can see which of the

processes are used. There is no need to put processes in the graph that are not used.

However, for debugging purposes this is made optional.

We consider processes which contain atoms that are part of sum-constructions and that

are not hidden, input-processes. We also consider processes which contain atoms that

are not hidden, output-processes. We want to mark them as such, so that we can try to

put the input-processes at the top and the output-processes at the bottom in our

animation.

From the list of atoms we can decide which are the input-processes and output-

processes.

Print Graph

We start with creating a node called ’Input’ to which we can connect the input-

processes.

Then we traverse our graph and create a node for every process that has got an ID and

that is used. When we encounter a node that represents an encapsulation, we start a

subgraph. If the node has a list of communications, we create edges between the

processes that take part in a communication in this list. These edges are directed

according to the communication. If a side of a communication is a sum-construction, it

gets an arrow. Care is taken to not create multiple edges between two processes that

have the same direction.

We create a node called ’Output’ to which we can connect the output-processes, and

we create the edges between the input and output nodes.

digraph ABP {
node [color=lightblue]
node [style=filled]
subgraph clusterinput { I [label="Input", color=green]; }
subgraph cluster {

subgraph cluster1 {
{ rank=min; n4 [label="Sender"]; }
{ rank=max; n5 [label="Receiver"]; }
n6 [label="K"];
n6 → n5 [dir=forward];
n5 → n6 [dir=none];
n4 → n6 [dir=forward];
n7 [label="L"];
n5 → n7 [dir=forward];
n4 → n7 [dir=none];

}
}
subgraph clusteroutput { O [label="Output", color=green]; }

49

Generation of Animations 6

I → n4 [dir=forward, label=""];
n5 → O [dir=forward, label=""];

}

Print Communication List

For each communication in our list, we print ’skip’ if it is marked as hidden, the

communication itself followed by the IDs of the processes which cause this

communication with a direction (either ’-’, ’->’, ’<-’, or ’<->’) in between.

skip frame-or-error(frame(!b!, !d!)) 6 -> 5
skip frame-or-error(frame-error) 5 - 6
skip frame-comm(frame(!b!, !d!)) 4 -> 6
skip ack-comm(ack(!b!)) 5 -> 7
skip ack-comm(ack(!b!)) 5 -> 7
skip ack-or-error(ack(!b!)) 4 - 7
skip ack-or-error(ack-error) 4 - 7

Note that we put variable names inside ’!’, so that we can recognize them as variables

later on.

Print Atom List

For each atom in our list, we print ’skip’ if it is marked as hidden followed by the atom

itself, and if it not marked as hidden, then we print the atom followed by ’I ->’ and the

ID of the process it belongs to, if it is an input-process and the ID of the process and

’-> O’, if it is an output-process.

input(!d!) I -> 4
output(!d!) 5 -> O
skip<0> 6
skip<1> 6
skip<2> 7
skip<3> 7

6.2 Generation of an Animation

If we apply the program dot on the generated graph that is shown above, we get the

following output (line-numbers are not part of the output).

1 digraph ABP {
2 node [label = "\N",
3 color = lightblue,
4 style = filled];
5 graph [lp= "81,0"];
6 graph [bb= "0,0,162,342"];
7 subgraph clusterinput {
8 graph [lp= ""];
9 graph [bb= "45,288,117,342"];

10 I [label=Input, color=green, pos="81,315", width="0.75",
11 height="0.50"];
12 }
13 subgraph cluster {
14 graph [lp= ""];
15 graph [bb= "0,63,162,279"];
16 subgraph cluster1 {
17 graph [bb= "9,72,153,270"];
18 {
19 graph [rank= min];
20 graph [bb= ""];

50

6.2 Generation of an Animation

21 n4 [label=Sender, pos="81,243", width="0.81",
22 height="0.50"];
23 }
24 {
25 graph [rank= max];
26 graph [bb= ""];
27 n5 [label=Receiver, pos="53,99", width="0.97",
28 height="0.50"];
29 }
30 n6 [label=K, pos="45,171", width="0.75", height="0.50"];
31 n7 [label=L, pos="117,171", width="0.75", height="0.50"];
32 n6 → n5 [dir=forward,
33 pos="e,45,117 41,153 41,145 42,135 43,127"];
34 n5 → n6 [dir=none, pos="53,154 55,143 57,128 57,117"];
35 n4 → n6 [dir=forward,
36 pos="e,54,188 72,226 68,217 63,207 58,197"];
37 n5 → n7 [dir=forward,
38 pos="s,103,155 99,150 89,139 77,125 68,115"];
39 n4 → n7 [dir=none, pos="90,226 95,214 103,200 108,188"];
40 }
41 }
42 subgraph clusteroutput {
43 graph [lp= ""];
44 graph [bb= "14,0,92,54"];
45 O [label=Output, color=green, pos="53,27", width="0.83",
46 height="0.50"];
47 }
48 I → n4 [dir=forward,
49 pos="e,81,261 81,297 81,289 81,280 81,271"];
50 n5 → O [dir=forward, pos="e,53,45 53,81 53,73 53,64 53,55"];
51 }

The positions are in default units, 1/72 of an inch, and widths and heights are in inches.

These have to be converted to pixels, which usually are 75 pixels per inch.

From the bounding-box in line 6, we derive the size we have to use for the window that will

contain the picture. That gives us the following line.

Anim::Windows 188 376 -text 60 10

The last part gives us a text-window of width 60 and height 10 for printing the actions that

are performed in the animation.

For the bounding-box in line 16 we draw a box in our picture.

Anim::CreateLine box1 pos 19 291 pos 169 291 pos 169 85 pos 19 85 \
pos 19 291 -width 1

We do this only for bounding-boxes belonging to a subgraph with the name cluster

followed by a number. These represent the encapsulations in the specification.

We create the nodes and define for each node a text-position at which the atoms belonging

to this node will be printed.

Anim::CreateItem I oval 94 38 28 18 "Input" -anchor s -color 1
Anim::TextposItem textI I ce n
Anim::CreateItem n4 oval 94 113 30 18 "Sender" -anchor s -color 0
Anim::TextposItem textn4 n4 ce n
Anim::CreateItem n5 oval 65 263 36 18 "Receiver" -anchor s \

-color 0

51

Generation of Animations 6

Anim::TextposItem textn5 n5 ce n
Anim::CreateItem n6 oval 56 188 28 18 "K" -anchor s -color 0
Anim::TextposItem textn6 n6 ce n
Anim::CreateItem n7 oval 131 188 28 18 "L" -anchor s -color 0
Anim::TextposItem textn7 n7 ce n
Anim::CreateItem O oval 65 338 31 18 "Output" -anchor s -color 1
Anim::TextposItem textO O ce n

We also create the edges and define text-positions for them, at which the communications

will be printed.

Anim::CreateLine linen6ton5 pos 52 206 pos 52 215 pos 53 225 \
pos 54 233 pos 56 244 -arrow last -smooth

Anim::Textpos textn6ton5 53 225 ce
Anim::CreateLine linen5ton6 pos 65 205 pos 67 217 pos 69 232 \

pos 69 244 -arrow none -smooth
Anim::Textpos textn5ton6 68 224 ce
Anim::CreateLine linen4ton6 pos 85 130 pos 80 140 pos 75 150 \

pos 70 161 pos 66 170 -arrow last -smooth
Anim::Textpos textn4ton6 75 150 ce
Anim::CreateLine linen5ton7 pos 117 204 pos 113 210 pos 102 221 \

pos 90 236 pos 80 246 -arrow first -smooth
Anim::Textpos textn5ton7 102 221 ce
Anim::CreateLine linen4ton7 pos 103 130 pos 108 143 pos 117 157 \

pos 122 170 -arrow none -smooth
Anim::Textpos textn4ton7 112 150 ce
Anim::CreateLine lineIton4 pos 94 56 pos 94 65 pos 94 74 pos 94 83 \

pos 94 94 -arrow last -smooth
Anim::Textpos textIton4 94 74 ce
Anim::CreateLine linen5toO pos 65 281 pos 65 290 pos 65 299 \

pos 65 308 pos 65 319 -arrow last -smooth
Anim::Textpos textn5toO 65 299 ce

This results in the picture given in Figure 6-1.

Output

Sender

Receiver

K

Input

L

Figure 6-1. Alternating Bit Protocol

Note the two lines between node K and node Receiver. We could not determine the

direction of the communication of one of them. Also, the arrow between the nodes should

represent two different communications, but we found only one. Let’s take a look at the

52

6.2 Generation of an Animation

process-definitions for Receiver.

Receiver = Receive-Frame(0)
Receive-Frame(b) = (

sum(d in DATA,
receive-frame-or-error(frame(flip(b),d)))

+ receive-frame-or-error(frame-error)
) . Send-Ack(flip(b))

+ sum(d in DATA, receive-frame-or-error(frame(b,d)) .
Send-Message(b,d)

)
Send-Ack(b) = send-ack(ack(b)) . Receive-Frame(flip(b))
Send-Message(b,d) = output(d) . Send-Ack(b)

The three candidates to communicate here are:

receive-frame-or-error(frame(flip(b),d))
receive-frame-or-error(frame-error)
receive-frame-or-error(frame(b,d))

For the first one, we cannot find a communication. The supposed communication partner is

send-frame-or-error(frame(b,d)) from K . Static analysis is not sufficient in

this case, because we need to rewrite the terms with all possible values for the variables to

decide if a communication is possible between the two. In the general case this is not

possible at all, since there may be an infinite number of possible values for a variable. To

inform the user, we giv e a warning whenever an atom is encapsulated for which we could

not find a possible communication.

To solve this, we give another definition for the process Receive-Frame.

Receive-Frame(b) =
sum(f in FRAME,

receive-frame-or-error(f) . (
[flip(frame-bit(f)) = b] → Send-Ack(flip(b))

+ [f = frame-error] → Send-Ack(flip(b))
+ [frame-bit(f) = b] → Send-Message(b, frame-data(f))
)

)

We introduced here the functions frame-bit and frame-data, which extract the concerning

fields from the frame. This does not only solve the problem, it also makes the definition

much clearer.

The same applies for the communication between the nodes L and Sender, so we redefine

the process Receive-Ack in the same manner.

Receive-Ack(b,d) =
sum(a in ACK,

receive-ack-or-error(a) . (
[flip(ack-bit(a)) = b] → Send-Frame(b, d)

+ [a = ack-error] → Send-Frame(b, d)
+ [ack-bit(a) = b] → Receive-Message(flip(b))
)

)

Now we can determine the direction of the communication between L and Sender. This

results in the picture in Figure 6-2.

53

Generation of Animations 6

Output

Sender

Receiver

K

Input

L

Figure 6-2. Alternating Bit Protocol (adjusted)

6.2.1 Generating the Action Function

From the list of communications and the list of atoms we derive the function which does the

animation for these actions.

proc ANIM_action {line} {
if {[regexp {ˆskip frame-or-error\(frame\((.*), (.*)\)\)$} \

$line match]} {
Anim::Clear n6
Anim::CreateText textn6ton5 "$match"
Anim::ActivateLine linen6ton5
Anim::AddClear n5 {line linen6ton5} {text textn6ton5}

} elseif {[regexp {ˆskip frame-or-error\(frame-error\)$} $line \
match]} {

Anim::Clear n6
Anim::Clear n5
Anim::CreateText textn5ton6 "$match"
Anim::ActivateLine linen5ton6
Anim::AddClear n5 {line linen5ton6} {text textn5ton6}
Anim::AddClear n6 {line linen5ton6} {text textn5ton6}

} elseif {[regexp {ˆskip frame-comm\(frame\((.*), (.*)\)\)$} \
$line match]} {

Anim::Clear n4
Anim::CreateText textn4ton6 "$match"
Anim::ActivateLine linen4ton6
Anim::AddClear n6 {line linen4ton6} {text textn4ton6}

} elseif {[regexp {ˆskip ack-comm\(ack\((.*)\)\)$} $line match]} {
Anim::Clear n5
Anim::CreateText textn5ton7 "$match"
Anim::ActivateLine linen5ton7
Anim::AddClear n7 {line linen5ton7} {text textn5ton7}

} elseif {[regexp {ˆskip ack-comm\(ack\((.*)\)\)$} $line match]} {
Anim::Clear n5
Anim::CreateText textn5ton7 "$match"
Anim::ActivateLine linen5ton7
Anim::AddClear n7 {line linen5ton7} {text textn5ton7}

} elseif {[regexp {ˆskip ack-or-error\(ack\((.*)\)\)$} $line \

54

6.2 Generation of an Animation

match]} {
Anim::Clear n7
Anim::Clear n4
Anim::CreateText textn4ton7 "$match"
Anim::ActivateLine linen4ton7
Anim::AddClear n4 {line linen4ton7} {text textn4ton7}
Anim::AddClear n7 {line linen4ton7} {text textn4ton7}

} elseif {[regexp {ˆskip ack-or-error\(ack-error\)$} $line \
match]} {

Anim::Clear n7
Anim::Clear n4
Anim::CreateText textn4ton7 "$match"
Anim::ActivateLine linen4ton7
Anim::AddClear n4 {line linen4ton7} {text textn4ton7}
Anim::AddClear n7 {line linen4ton7} {text textn4ton7}

} elseif {[regexp {ˆinput\((.*)\)$} $line match]} {
Anim::Clear I
Anim::CreateText textIton4 "$match"
Anim::ActivateLine lineIton4
Anim::AddClear n4 {line lineIton4} {text textIton4}

} elseif {[regexp {ˆoutput\((.*)\)$} $line match]} {
Anim::Clear n5
Anim::CreateText textn5toO "$match"
Anim::ActivateLine linen5toO
Anim::AddClear n5 {line linen5toO} {text textn5toO}

} elseif {[regexp {ˆskip<0>$} $line match]} {
Anim::Clear n6
Anim::CreateText textn6 "$match"
Anim::AddClear n6 {text textn6}

} elseif {[regexp {ˆskip<1>$} $line match]} {
Anim::Clear n6
Anim::CreateText textn6 "$match"
Anim::AddClear n6 {text textn6}

} elseif {[regexp {ˆskip<2>$} $line match]} {
Anim::Clear n7
Anim::CreateText textn7 "$match"
Anim::AddClear n7 {text textn7}

} elseif {[regexp {ˆskip<3>$} $line match]} {
Anim::Clear n7
Anim::CreateText textn7 "$match"
Anim::AddClear n7 {text textn7}

}
}

6.2.2 Generating the Choose Function

From the list of communications and the list of atoms we also derive the function for the

construction of the choose-lists for active animation. This looks the same as the action-

function except for the parts inside the if-else construction.

proc ANIM_choose {line} {
if {[regexp {ˆskip frame-or-error\(frame\((.*), (.*)\)\)$} \

$line match]} {
Anim::AddList n6 $match

} elseif {[regexp {ˆskip frame-or-error\(frame-error\)$} $line \
match]} {

Anim::AddList n6 $match
Anim::AddList n5 $match

} elseif {[regexp {ˆskip frame-comm\(frame\((.*), (.*)\)\)$} \
$line match]} {

55

Generation of Animations 6

Anim::AddList n4 $match
} elseif {[regexp {ˆskip ack-comm\(ack\((.*)\)\)$} $line match]} {

Anim::AddList n5 $match
} elseif {[regexp {ˆskip ack-comm\(ack\((.*)\)\)$} $line match]} {

Anim::AddList n5 $match
} elseif {[regexp {ˆskip ack-or-error\(ack\((.*)\)\)$} $line \

match]} {
Anim::AddList n7 $match
Anim::AddList n4 $match

} elseif {[regexp {ˆskip ack-or-error\(ack-error\)$} $line \
match]} {

Anim::AddList n7 $match
Anim::AddList n4 $match

} elseif {[regexp {ˆinput\((.*)\)$} $line match]} {
Anim::AddList I $match

} elseif {[regexp {ˆoutput\((.*)\)$} $line match]} {
Anim::AddList n5 $match

} elseif {[regexp {ˆskip<0>$} $line match]} {
Anim::AddList n6 $match

} elseif {[regexp {ˆskip<1>$} $line match]} {
Anim::AddList n6 $match

} elseif {[regexp {ˆskip<2>$} $line match]} {
Anim::AddList n7 $match

} elseif {[regexp {ˆskip<3>$} $line match]} {
Anim::AddList n7 $match

}
}

6.3 Complexities and Features

In the generation of an animation for a specification some complex issues can arise. We

describe these issues and how to cope with them. Some solutions demand a certain

specification style and others are implemented as features of the animation generation tool.

6.3.1 Merge

In order to show how we deal with the generalized merge, we consider a specification of a

small factory consisting of six stations connected by conveyer belts, with an input and an

output. It produces two products which take slightly different routes through the factory.

The complete specification can be found in Appendix A.2. Here we show the process

definitions for the stations.

Stations = merge(s in STATION-set, Station(s))
Station(s) =

[eq-stat(s, 1) = true] → (
sum(p in PRODUCT,

read-input(p) . to-belt(s, next(s, p), p)
) . Station(s)

)
+ [eq-stat(s, 6) = true] → (

sum(p in PRODUCT,
from-belt(s, p) . send-output(p)

) . Station(s)
)

+ [and(not(eq-stat(s, 1)), not(eq-stat(s, 6))) = true] → (
sum(p in PRODUCT,

from-belt(s, p) .

56

6.3 Complexities and Features

to-belt(s, next(s, p), p)
) . Station(s)

)

If we simply expand the merge as many times as there are elements in the set STATION-set,

we end up with six stations that can all communicate with each other. But we want only the

communications that really represent a conveyer belt. We could do a better job if the

conditional expressions do not contain a variable, so we can evaluate them and disregard

the following process expression on a negative result.

So, we have to expand the merge for each element of the set with this element filled in for

the variable of the sum operator, and replace every occurrence of a variable with its value,

whether it is a variable of a sum operator, or a variable we obtained a value for from

matching a process with the left hand side of a process definition.

We giv e here the equations for the function next that decides what the next station is.

[3] next(1, p) = 2
[4] next(2, p) = 3
[5] next(3, A) = 4
[6] next(3, B) = 5
[7] next(4, p) = 5
[8] next(5, p) = 6

We see that a rewriting of the function next with only a value given for the station, gives us

the new station, except for station 3 since it depends on the product. We can alter the last

part of the process definition like this.

+ [and(not(eq-stat(s, 1)), not(eq-stat(s, 6))) = true] → (
sum(p in PRODUCT,

from-belt(s, p) . (
[p = A] → to-belt(s, next(s, A), p)

+ [p = B] → to-belt(s, next(s, B), p)
)

) . Station(s)
)

This gives us the picture in Figure 6-3.

Output
Station(4)

Station(1) Station(6) OutputStation(5)Station(2)Input Input Station(3)

Figure 6-3. Factory

We used here an option that gives an orientation from left to right, instead of the default top

to bottom. Note that there are two nodes named ’Input’ and two nodes named ’Ouput’.

The nodes inside the box represents the processes Input and Output from the specification,

and the others are added to connect the input-processes and output-processes as described

on page 49.

6.3.2 Combination of Processes

Consider now a generalized form of the factory in which all stations are connected with

each other by conveyer belts. We use a scheduler to control this factory in such a way that it

57

Generation of Animations 6

acts the same as the factory in the previous factory. The specification can be found in

Appendix A.3.

Lets take a look at the specification of the scheduler.

Scheduler =
sum(p in PRODUCT,

rec-start(p) .
(

SubScheduler(1, p)
|| Scheduler
)

)
SubScheduler(s, p) =

[not(eq-stat(s, 6)) = true] → (
rec-request(s, p) .
Next(s, p, next(s, p))

)
+ [s = 6] →

rec-end
Next(s, p, n) =

send-next(s, n) .
SubScheduler(n, p)

We see here that for each product a subscheduler is created. If we generate an animation

for this specification it gives us the picture in Figure 6-4.

Output

Scheduler

Station(2)

Station(3)

Station(6)

Station(1)

Station(5)

Input

Output

Station(4)

SubScheduler(s,p)

Input

Figure 6-4. Scheduled factory

The processes Scheduler and SubScheduler in this picture do not reflect the specification.

We should create and destroy SubScheduler processes dynamically, but that is not possible

(at the moment). But since there is no communication possible between the Scheduler and

SubScheduler, or between two SubSchedulers, we can consider them as one process. This

results in the picture shown in Figure 6-5. Whether this behaviour is always wanted, we do

not know, so we made this combination of processes optional.

6.3.3 Heuristics

Sometimes the direction of a communication cannot be decided upon, for instance when

both communication partners are not sum-ports. However, from the names of the

communication partners one could speculate the direction. If one of the partners has the

name send and the other the name receive then one can conclude on the direction of the

communication, taken the names are not poorly chosen. We hav e implemented an optional

decision on the direction using heuristics when it is not possible otherwise. The possible

58

6.3 Complexities and Features

Output

Scheduler

Station(2)

Station(3)

Station(6)

Station(1)

Station(5)

Input

Output

Station(4)

Input

Figure 6-5. Scheduled factory with combined processes

combinations of names of the communication partners are given in Table 6-1. The ’*’

represent at least one character.

Table 6-1. Communication heuristics

send receive

snd rec

snd-* rec-*

*-snd *-rec

-snd- *-rec-*

snd rec-*

snd *-rec

snd-* rec

*-snd rec

-snd- *-rec

*-snd *-rec-*

It is most likely that other combinations are desired for a particular specification, but the

ones listed here are sufficient for our specifications. It is our intention to implement an

option with which a user can specify a particular combination of names that should act as

sending and receiving actions.

6.4 Remarks

Although it seems that we can generate animations for all specifications with only a few

adjustments, we should keep in mind that expanding processes is done through open term

matching with the left hand side of process definition. This can result in a mismatch since

the process to expand can have an argument that should be rewritten in order to match but

contains a variable which prevents a rewrite.

Also, deciding if an atom is an element of a hide or an encapsulation set is open term

matching and thus can result in a mismatch for the same reason.

So we must try to circumvent these situations. We can use conditional expressions for this,

but they make the specifications larger.

The direction of a communication is now based on the presence of a sum-construction at

59

Generation of Animations 6

the sides of the communication. In some cases, we could try to do a better job by

examining the context of both sides of the communication.

We should also note that a sum-construction is not always meant to be a port. It could for

instance also be used to connect to a random process.

Despite the above, generating an animation is very useful in testing and understanding

specifications. One of its main advantages is that a generated animation reflects the

specification, in contrast with other techniques such as visualization through transition

systems, so that events can easily be traced back to their origin in the specification.

60

Chapter 7

Related Work

There are many examples of animation of process algebra specifications that are built in an

ad hoc manner. These examples usually concern a particular specification and mostly are

visualizations of execution traces. Moreover, they usually do not have any interaction

through the visualization like our animations have. Animation of process algebra

specifications that use some kind of model can roughly be divided in state-based and data-

flow-based approaches. In this chapter we list some of the approaches and compare these

with our approach.

7.1 State-Based

Often specifications are converted to another formalism for visualization or animation. For

instance, LOTOS [29] and µCRL [26] connect to CADP (Caesar/Aldebaran Development

Package) [23], which is based on finite-state machines. An example is shown in Figure 7-1.

a1
a2 a3

a4
a5

a6 a7

a8

Figure 7-1. Example of a state machine

State machines can easily be animated. For large specifications, the generation of state

machines can take a lot of time and space, and can lead to an explosion of the number of

states far above the limits of the computer in use. A similar transformation can be applied

to PSF specifications and animation of the state machines can be based on the animation

library presented in Chapter 5. The disadvantage of this is that in most cases a particular

61

Related Work 7

state in a state machine cannot be coupled back to a process or processes in the

specification, which makes it difficult to use in testing and education.

7.2 Data-Flow-Based

In many animations of communication protocols Message Sequence Charts (MSCs) [30]

are used for visualization of the behaviour of these protocols. In [59] LOTOS execution

traces are transformed into MSCs and in [66] interworkings, a technique similar to MSCs,

are generated from PSF process traces. In a MSC a system component is represented by a

vertical line called an instance with time running from top to bottom along this instance.

Exchange of messages is described by arrows between the instances. An example is given

in Figure 7-2.

i1 i2 i3

msc example

m1

m2

m3

Figure 7-2. Example of a Message Sequence Chart

One advantage of our animations is that they giv e a two dimensional view of processes and

their connections with other processes, instead of a one dimensional view of the processes

with a time scale. This gives a better view with a larger number of processes. An

advantage of MSCs is that they show a history of actions.

7.3 Framework

In some cases the animations are still built in an ad hoc manner, but now a framework is

used. A framework is meant to create animations in an easy and consistent manner. An

example of such a framework is Jasper [61], where the behaviour of a protocol must be

defined by a set of Java classes and the view of the protocol is given in the form of a Time

Sequence Diagram. Another example is ANGOR [14], an open animation environment for

linking execution actions to graphical elements in a Java framework. A number of

graphical elements is predefined, and others can be added.

Our work can be considered a framework giving standard features, but it can also be

extended with other features for a particular animation. It also allows for easy generation of

consistent animations.

62

7.4 Animation Generation

7.4 Animation Generation

Most animations in the related work mentioned in this chapter need to be adapted by hand

or take a lot of time to be generated on a change in the specification. We can generate the

animations from the specifications in a fast and consistent manner, making it ideal in

development and debugging of specifications.

63

Part III

Software Engineering with PSF

Chapter 8

Re-engineering the PSF Compiler

In software engineering and re-engineering it is common practice to decompose systems

into components that communicate with each other. An advantage of this decomposition is

that maintenance can be done on smaller components that are easier to comprehend.

Another advantage is that components can be reused in other applications or can be

replaced with different implementations offering the same functionality. To allow a number

of components to communicate with each other a so-called coordination architecture is

required. In connection with PSF we will make use of the ToolBus described in Chapter 4.

The ToolBus utilizes a scripting language to describe processes inside the ToolBus that can

communicate with each other and with various tools existing outside the ToolBus. For

larger systems, such scripts can become rather complex and for that reason quite difficult to

test and debug. Specification of a script in PSF enables one to apply the analysis tools

available for PSF to the specification of the script. Moreover, if one or more tools have

been specified in PSF the script may also be analysed in combination with PSF

specifications of components of the whole system.

The purpose of this chapter is to get experience with decomposing a software system using

process algebra. We do this by making a specification of the behaviour of the

implementation of the system and transforming the specification into a specification of this

system as a ToolBus application that functions as the design of the decomposed system.

From this design we build a new implementation of the system as a ToolBus application.

Furthermore, we obtain a specification of the architecture of the system by abstracting from

implementation details and applying algebraic laws. This re-engineering process is

depicted in Figure 8-1. The re-engineering process shows the way to an engineering

process which starts with a specification of the architecture and through development of a

ToolBus application specification leads to an implementation.

As a case study, we re-engineer the PSF compiler. At the start of the re-engineering process

this compiler consists of several components run by a driver, which makes it a suitable

candidate for ToolBus based coordination. We describe the specification of the compiler in

section 8.1. In section 8.2 we develop a PSF library of ToolBus internals. We giv e an

67

Re-engineering the PSF Compiler 8

specification

implementation

ToolBus application

specification

ToolBus application

architecture

specification

Figure 8-1. Re-engineering process

example specification to show how to use this library in section 8.3, and turn this

specification into a ToolBus application. In section 8.4 we provide a specification of the

compiler as a ToolBus application, using the PSF ToolBus library, from which we

implement the compiler as a real ToolBus application. In section 8.5 a specification of the

architecture for this (re-engineered) compiler is extracted from its specification. In section

8.6 we build a parallel version of the compiler based on the architecture of the re-

engineered compiler while reusing specifications and implementations for components of

the compiler as a ToolBus application.

8.1 Specification of the Compiler

As starting point for the re-engineering of the PSF compiler we use a specification of the

behaviour of the compiler. A description of the PSF compiler can be found in section 3.1.

We repeat here the phases of the compiler driver.

1. collecting modules

The modules are collected from the files given to the compiler, and missing

imported modules are searched for in the libraries.

2. sorting modules

The modules are sorted according to their import relation.

3. splitting files

Files scanned in phase 1 that contain more than one module are split into files

containing one module each.

4. parsing (from PSF to MTIL)

All modules that are out of date, that is the destination file does not exist, or the

source file (with extension .psf) is newer than the destination file (with extension

.mtil), are parsed.

68

8.1 Specification of the Compiler

5. normalizing (from MTIL to ITIL)

All modules that are out of date, that is the destination file does not exist, or the

source file (with extension .mtil) is newer than the destination file (with extension

.itil) or one of its imported modules (ITIL) is newer, are normalized.

6. flattening (from ITIL to TIL)

The main module is translated from ITIL to TIL.

7. converting sorts to sets

The simulator preprocessor is invoked for converting sorts to sets so that the

simulator can deal with them.

8. checking TRS

The term rewrite system checker is invoked.

We will not display the specification of the compiler here, but we show the generated

animation of the compiler in Figure 8-2. The animation clearly shows the different phases

of the compiler that communicate with the compiler driver. The processes PsfMtil, MtilItil,

ItilTil, SimPP, and TrsCheck are implemented as calls to separate programs. These are used

as components and an abstraction is made from their internal workings in the context of this

specification.

To giv e some insight in the complexity of the specification, the import structure of the

modules of the specification is shown in Figure 8-3. The module Booleans originates from

a standard data library of PSF.

8.2 PSF ToolBus Library

This section presents a specification of a library of interfaces for PSF which can be used as

a basis for the specification of ToolBus applications. This specification does not cover all

the facilities of the ToolBus, but just what is necessary for the project at hand.

8.2.1 Data

First, a sort is defined for the data terms (Tterm) used in the tools. An abstraction is made

from the actual data used by the tools.

data module ToolTypes
begin

exports
begin

sorts
Tterm

end
end ToolTypes

Next, the sorts are introduced for the data terms (TBterm) and identifiers (TBid) which

will be used inside the ToolBus as well as for communication with the ToolBus.

data module ToolBusTypes
begin

exports
begin

69

Re-engineering the PSF Compiler 8

Phase3(co)

Phase1(options,ll)

CheckImport

Compiler

InLibrary

Phase2(co)

Phase7(co)

Phase5(co)

UpToDate

Phase6(co)

SplitFile

AddModules

CompileOrder

Split

TrsCheck

UpToDate

AddImports

SimPP

InLibrary

AddImports

Phase4(co) ParseModules

SplitFiles

MtilItil

LibrarySearch(ll)

Phase8(co)

ItilTil

FindTopModule

NormalizeModules

ScanFiles

PsfMtil

Figure 8-2. Generated animation of the compiler

sorts
TBterm,
TBid

end
end ToolBusTypes

70

8.2 PSF ToolBus Library

psflib

Booleans

GenericList

CompilerOptions

Option

Modules

Module

ImportCycle CompileOrder

Files

File

FileTypes FileContent

SimpleFileSystem

Library

Libraries

Types

Phase1

Result

Phase2 Phase3Phase4Phase5Phase6 Phase7Phase8

Compiler

Figure 8-3. Import graph of the specification of the compiler

The module ToolFunctions provides names for conversions between data terms used

outside and inside the ToolBus.

data module ToolFunctions
begin

exports
begin

functions
tbterm : Tterm → TBterm
tterm : TBterm → Tterm

end
imports

ToolTypes,
ToolBusTypes

variables
t : → Tterm

equations
[’] tterm(tbterm(t)) = t

end ToolFunctions

The ToolBus has access to several functions operating on different types. Here only the

operators for tests on equality and inequality of terms, will be needed. These are

introduced in the module ToolBusFunctions.

data module ToolBusFunctions
begin

exports
begin

71

Re-engineering the PSF Compiler 8

functions
equal : TBterm # TBterm → BOOLEAN

end
imports

ToolBusTypes,
Booleans

variables
tb1 : → TBterm
tb2 : → TBterm

equations
[’] equal(tb1, tb1) = true
[’] not(equal(tb1, tb2)) = true

end ToolBusFunctions

Here, we applied a little trick for specifying inequality, based on the rewriting strategy

(innermost) in use. When the terms a and b are equal, equal(a,b) gives true and

not(equal(a,b)) thus gives false. When the terms are not equal, there is no

matching equation for equal(a,b), and therefore not(equal(a,b)) gives true.

8.2.2 Connecting Tools to the ToolBus

We repeat Figure 8-4 from Chapter 4 showing two possible ways of connecting tools to the

ToolBus. One way is to use a separate adapter and the other is to have a built-in adapter.

ToolBus

PT1

Adapter

Tool 1

PT2

Tool 2

Adapter

Figure 8-4. Model of tool and ToolBus interconnection

We define the primitives for communication between a tool and its adapter.

process module ToolAdapterPrimitives
begin

exports
begin

atoms
tooladapter-rec : Tterm
tooladapter-snd : Tterm

end
imports

ToolTypes

72

8.2 PSF ToolBus Library

end ToolAdapterPrimitives

The primitives for communication between a tool and the ToolBus are fixed by the ToolBus

design. At this stage these need to be formally defined in PSF, howev er. These primitives

can be used for communication between an adapter and the ToolBus as well, since the

adapter logically takes the place of the tool it is supposed to connect to the ToolBus.

process module ToolToolBusPrimitives
begin

exports
begin

atoms
tooltb-snd : TBterm
tooltb-rec : TBterm
tooltb-snd-event : TBterm
tooltb-rec-ack-event : TBterm

end
imports

ToolBusTypes
end ToolToolBusPrimitives

Inside a ToolBus script a number of primitives can be used. These primitives consist of the

actions for communication between ToolBus processes and their synchronous

communication action, the actions used to communicate with the tools, and the action

required to shutdown the ToolBus.

process module ToolBusPrimitives
begin

exports
begin

atoms
tb-snd-msg : TBterm # TBterm
tb-rec-msg : TBterm # TBterm
tb-comm-msg : TBterm # TBterm
tb-snd-msg : TBterm # TBterm # TBterm
tb-rec-msg : TBterm # TBterm # TBterm
tb-comm-msg : TBterm # TBterm # TBterm
tb-snd-eval : TBid # TBterm
tb-rec-value : TBid # TBterm
tb-snd-do : TBid # TBterm
tb-rec-event : TBid # TBterm
tb-snd-ack-event : TBid # TBterm
tb-shutdown

end
imports

ToolBusTypes
communications

tb-snd-msg(tb1, tb2) | tb-rec-msg(tb1, tb2) =
tb-comm-msg(tb1, tb2) for tb1 in TBterm, tb2 in TBterm

tb-snd-msg(tb1, tb2, tb3) | tb-rec-msg(tb1, tb2, tb3) =
tb-comm-msg(tb1, tb2, tb3)
for tb1 in TBterm, tb2 in TBterm, tb3 in TBterm

end ToolBusPrimitives

In Table 8-1 we give an overview of the corresponding ToolBus primitives and the

primitives used in the PSF ToolBus library with communications for the primitives of the

latter. Arguments of the primitives are left out for clearness. The <function> is not

really a primitive, but the invocation of the function found in the second argument from

either a snd-eval or a snd-do that is received by the adapter of a tool. The receive

73

Re-engineering the PSF Compiler 8

action of the adapter is the real primitive with which tooltb-rec corresponds.

Table 8-1. ToolBus and PSF ToolBus Library primitives

ToolBus PSF ToolBus Library

snd-msg tb-snd-msg

rec-msg tb-rec-msg
tb-comm-msg

snd-eval tb-snd-eval

<function> tooltb-rec
tooltb-rec-eval

snd-do tb-snd-do

<function> tooltb-rec
tooltb-rec-do

snd-value tooltb-snd

rec-value tb-rec-value
tooltb-snd-value

snd-event tooltb-snd-event

rec-event tb-rec-event
tooltb-snd-event

snd-ack-event tb-snd-ack-event

<rec-ack-event> tooltb-rec-ack-event
tooltb-rec-ack-event

The ToolBus provides primitives allowing an arbitrary number of terms as parameters for

communication between processes in the ToolBus. Here, the specification only covers the

case of two and three term arguments for the primitives, because versions with more

arguments are usually not needed. In order to do better, lists of terms have to be introduced

that can be used in place of a single term. Specification of such lists is certainly possible in

PSF but an unnecessary complication at this stage. The two-term version can be used with

the first term as a ’to’ or ’from’ identifier and the second as a data argument. The three-

term version can be used with the first term as ’from’, the second as ’to’, and the third as

the actual data argument. If more arguments have to be passed, they can always be grouped

into a single argument.

The module NewTool is a generic module with parameter Tool for connecting a tool to the

ToolBus.

process module NewTool
begin

parameters
Tool
begin

processes
Tool

end Tool
exports
begin

atoms
tooltb-snd-value : TBid # TBterm
tooltb-rec-eval : TBid # TBterm
tooltb-rec-do : TBid # TBterm
tooltb-snd-event : TBid # TBterm
tooltb-rec-ack-event : TBid # TBterm

processes
TBProcess

sets
of atoms

74

8.2 PSF ToolBus Library

TBProcess = {
tb-rec-value(tid, tb), tooltb-snd(tb),
tb-snd-eval(tid, tb), tb-snd-do(tid, tb),
tooltb-rec(tb), tb-rec-event(tid, tb),
tooltb-snd-event(tb), tb-snd-ack-event(tid, tb),
tooltb-rec-ack-event(tb)
| tid in TBid, tb in TBterm

}
end
imports

ToolToolBusPrimitives,
ToolBusPrimitives

communications
tooltb-snd(tb) | tb-rec-value(tid, tb) =

tooltb-snd-value(tid, tb) for t in TBterm, tid in TBid
tooltb-rec(tb) | tb-snd-eval(tid, tb) =

tooltb-rec-eval(tid, tb) for t in TBterm, tid in TBid
tooltb-rec(tb) | tb-snd-do(tid, tb) =

tooltb-rec-do(tid, tb) for t in TBterm, tid in TBid
tooltb-snd-event(tb) | tb-rec-event(tid, tb) =

tooltb-snd-event(tid, tb) for t in TBterm, tid in TBid
tooltb-rec-ack-event(tb) | tb-snd-ack-event(tid, tb) =

tooltb-rec-ack-event(tid, tb) for tb in TBterm, tid in TBid
definitions

TBProcess = encaps(TBProcess, Tool)
end NewTool

The process Tool accomplishes the connection between a process inside the ToolBus and a

tool outside the ToolBus. The process TBProcess encapsulates the process Tool in order to

enforce communications and thereby to prevent communications with other tools or

processes. Note that TBProcess is used as the name of the main process and as the name of

the encapsulation set. By doing so, they can both be renamed with a single renaming. This

renaming is necessary if more than one tool is connected to the ToolBus (which is of course

the essence of the ToolBus).

The module NewToolAdapter is a generic module with parameters Tool and Adapter for

connecting a tool and its adapter.

process module NewToolAdapter
begin

parameters
Tool
begin

atoms
tool-snd : Tterm
tool-rec : Tterm

processes
Tool

end Tool,
Adapter
begin

processes
Adapter

end Adapter
exports
begin

atoms
tooladapter-comm : Tterm
adaptertool-comm : Tterm

75

Re-engineering the PSF Compiler 8

processes
ToolAdapter

sets
of atoms

ToolAdapter = {
tool-snd(t), tooladapter-rec(t),
tool-rec(t), tooladapter-snd(t)
| t in Tterm

}
end
imports

ToolAdapterPrimitives,
ToolBusTypes

communications
tool-snd(t) | tooladapter-rec(t) = tooladapter-comm(t)

for t in Tterm
tool-rec(t) | tooladapter-snd(t) = adaptertool-comm(t)

for t in Tterm
definitions

ToolAdapter = encaps(ToolAdapter, Adapter || Tool)
end NewToolAdapter

The process ToolAdapter puts an Adapter and a Tool in parallel and enforces

communication between them by an encapsulation. In this case the main process and the

encapsulation set have the same name, so that only one renaming is needed.

8.2.3 ToolBus Instantiation

The module NewToolBus is a generic module with parameter Application for instantiation

of the ToolBus with an application.

process module NewToolBus
begin

parameters
Application
begin

processes
Application

end Application
exports
begin

processes
ToolBus

end
imports

ToolBusPrimitives
atoms

application-shutdown
tbc-shutdown
tbc-app-shutdown
TB-shutdown
TB-app-shutdown

processes
ToolBus-Control
Shutdown

sets
of atoms

H = {
tb-snd-msg(tb1, tb2), tb-rec-msg(tb1, tb2),

76

8.2 PSF ToolBus Library

tb-snd-msg(tb1, tb2, tb3), tb-rec-msg(tb1, tb2, tb3)
| tb1 in TBterm, tb2 in TBterm, tb3 in TBterm

}
TB-H = {

tb-shutdown, tbc-shutdown,
tbc-app-shutdown, application-shutdown

}
P = { TB-shutdown, TB-app-shutdown }

communications
tb-shutdown | tbc-shutdown = TB-shutdown
tbc-app-shutdown | application-shutdown = TB-app-shutdown

definitions
ToolBus =

encaps(TB-H,
prio(P > atoms,

ToolBus-Control
|| disrupt(

encaps(H, Application),
Shutdown

)
)

)
ToolBus-Control = tbc-shutdown . tbc-app-shutdown
Shutdown = application-shutdown

end NewToolBus

A toolbus application can be described basically with ToolBus = encaps(H,

Application). The remaining code is needed to force a shutdown of all processes that

otherwise would be left either running or in a state of deadlock after a ToolBus shutdown

by the application. When an application needs to shutdown it performs an action tb-

shutdown which will communicate with the action tbc-shutdown of the ToolBus-

Control process, which then performs a tbc-app-shutdown that will communicate

with application-shutdown of the Shutdown process enforcing a disrupt of the

Application process.

In Figure 8-5 an overview is giv en of the import relations of the modules in the PSF

ToolBus library. The module Booleans stems from a standard data library of PSF.

psflib

Booleans

ToolFunctions

ToolTypesToolBusTypes

ToolBusFunctions ToolAdapterPrimitivesToolToolBusPrimitivesToolBusPrimitives

NewTool NewToolAdapterNewToolBus

Figure 8-5. Import graph of the ToolBus library

8.3 Example

As an example of the use of the PSF ToolBus library, we specify an application carried out

in the form as shown in Figure 8-4, which is also used as example in describing the

77

Re-engineering the PSF Compiler 8

ToolBus. In this example, Tool1 can either send a ’message’ to Tool2 and then wait for an

acknowledgement from Tool2, or it can send a ’quit’ after which the application will

shutdown.

8.3.1 Specification of the Tools

The first module defines the data that will be used.

data module Data
begin

exports
begin

functions
message : → Tterm
ack : → Tterm
quit : → Tterm

end
imports

ToolTypes
end Data

A specification of Tool1 and its adapter is then obtained.

process module Tool1
begin

exports
begin

atoms
snd : Tterm
rec : Tterm

processes
Tool1

end
imports

Data
definitions

Tool1 =
snd(message) .
rec(ack) .
Tool1

+ snd(quit)
end Tool1

process module AdapterTool1
begin

exports
begin

processes
AdapterTool1

end
imports

Data,
ToolFunctions,
ToolAdapterPrimitives,
ToolToolBusPrimitives

definitions
AdapterTool1 =

tooladapter-rec(message) .
tooltb-snd-event(tbterm(message)) .
tooltb-rec-ack-event(tbterm(message)) .

78

8.3 Example

tooladapter-snd(ack) .
AdapterTool1

+ tooladapter-rec(quit) .
tooltb-snd-event(tbterm(quit))

end AdapterTool1

Tool1 and its adapter are combined by importing NewToolAdapter and binding the

parameters.

process module Tool1Adapter
begin

imports
NewToolAdapter {

Tool bound by [
tool-snd → snd,
tool-rec → rec,
Tool → Tool1

] to Tool1
Adapter bound by [

Adapter → AdapterTool1
] to AdapterTool1
renamed by [

ToolAdapter → Tool1Adapter
]

}
end Tool1Adapter

We specify Tool2.

process module Tool2
begin

exports
begin

processes
Tool2

end
imports

Data,
ToolFunctions,
ToolToolBusPrimitives

definitions
Tool2 =

tooltb-rec(tbterm(message)) .
tooltb-snd(tbterm(ack)) .
Tool2

end Tool2

8.3.2 Specification of the ToolBus Processes

Some identifiers are defined in order to distinguish the messages sent between ToolBus

processes themselves and between ToolBus processes and their accompanying tools. The

lowercase identifiers (of type TBterm) are used with the actions tb-snd-msg and tb-

rec-msg. The first argument of a message will always be the origin of the message, and

the second argument will serve as its destination. Uppercase identifiers (of type TBid) are

used as tool identifiers. Strictly speaking these are not necessary, since there can’t be any

communication with any other tool because of encapsulation. By using them, however, the

actions for communication with a tool will have more similarity to the ones used in the

ToolBus.

79

Re-engineering the PSF Compiler 8

data module ID
begin

exports
begin

functions
T1 : → TBid
t1 : → TBterm
T2 : → TBid
t2 : → TBterm

end
imports

ToolBusTypes
end ID

For both tools a ToolBus process is defined. The specifications for these processes describe

the protocol for communication between the tools.

process module PTool1
begin

exports
begin

processes
PTool1

end
imports

Tool1Adapter,
ID,
ToolBusPrimitives,
ToolBusFunctions

processes
PT1

definitions
PTool1 = Tool1Adapter || PT1
PT1 =

tb-rec-event(T1, tbterm(message)) .
tb-snd-msg(t1, t2, tbterm(message)) .
tb-rec-msg(t2, t1, tbterm(ack)) .
tb-snd-ack-event(T1, tbterm(message)) .
PT1

+ tb-rec-event(T1, tbterm(quit)) .
snd-tb-shutdown

end PTool1

process module PTool2
begin

exports
begin

processes
PTool2

end
imports

Tool2,
ID,
ToolBusPrimitives

processes
PT2

definitions
PTool2 = Tool2 || PT2
PT2 =

tb-rec-msg(t1, t2, tbterm(message)) .
tb-snd-eval(T2, tbterm(message)) .

80

8.3 Example

tb-rec-value(T2, tbterm(ack)) .
tb-snd-msg(t2, t1, tbterm(ack)) .
PT2

end PTool2

8.3.3 Specification of the ToolBus Application

The ToolBus processes are connected with the tools and together they constitute the process

System that merges the resulting two processes.

process module Tools
begin

exports
begin

processes
System

end
imports

NewTool {
Tool bound by [

Tool → PTool1
] to PTool1
renamed by [

TBProcess → XPTool1
]

},
NewTool {

Tool bound by [
Tool → PTool2

] to PTool2
renamed by [

TBProcess → XPTool2
]

},
ID,
ToolBusFunctions

definitions
System = XPTool1 || XPTool2

end Tools

At this stage renamings are necessary to be able to distinguish the two processes TBProcess

(and sets).

The process System is now transformed into a ToolBus application.

process module App
begin

imports
NewToolBus {

Application bound by [
Application → System

] to Tools
}

end App

The main process of this application is ToolBus. A generated animation is shown in Figure

8-6, in which AdapterTool1 just sent a message it had received from Tool1, to ToolBus

process PT1.

81

Re-engineering the PSF Compiler 8

PT1

ToolBusControl

Tool1

ToolBusShutdown

PT2

Tool2

AdapterTool1

tooltb−snd−event(T1, tbterm(message))

Figure 8-6. Animation of the ToolBus specification example

8.3.4 Example as ToolBus Application

The application we have specified above has been implemented as an application consisting

of three Tcl/Tk programs (see the ToolBus example in section 4.1). We repeat the ToolBus

script below. The processes PT1 and PT2 closely resemble the processes PTool1 and

PTool2 in our PSF specification. The execute actions in the ToolBus script correspond

to starting the adapter for Tool1 and starting Tool2 in parallel with the processes PT1 and

PT2 respectively.

process PT1 is
let

T1: tool1adapter
in

execute(tool1adapter, T1?) .
(

rec-event(T1, message) .
snd-msg(t1, t2, message) .
rec-msg(t2, t1, ack) .
snd-ack-event(T1, message)

+ rec-event(T1, quit) .
shutdown("")

) * delta
endlet

process PT2 is
let

T2: tool2
in

execute(tool2, T2?) .
(

rec-msg(t1, t2, message) .
snd-eval(T2, eval(message)) .
rec-value(T2, value(ack)) .
snd-msg(t2, t1, ack)

) * delta
endlet

82

8.3 Example

tool tool1adapter is {
command = "wish-adapter -script tool1adapter.tcl" }

tool tool2 is { command = "wish-adapter -script tool2.tcl" }

toolbus(PT1, PT2)

The actions snd-eval and rec-value differentiate from their equivalents in the PSF

specification. The term eval(message) instead of just message is needed because the

interpreter of evaluation requests that a tool receives from the ToolBus, calls a function with

the name it finds as function in this term. We could have used any name instead of eval

provided that Tool2 has got a function with that name.

The same scheme is needed by the ToolBus for rec-value, but for a different reason.

Users have problems understanding that in something like rec-value(T, ack) +

rec-value(T, X?), although the value returned is ack, the ToolBus can choose for

the rec-value(T, X?). To prevent such errors by users it is required to give at least

the name of a function in the argument.

The processes in the ToolBus script use iteration and the processes in the PSF specification

recursion. In PSF it is also possible to use iteration in this case, since the processes have no

arguments to hold the current state. On the other hand, in PSF it is not possible to define

variables for storing a global state, so when it is necessary to hold the current state, this

must be done through the arguments of a process and be formalized via recursion.

The last line of the ToolBus script starts the processes PT1 and PT2 in parallel. Its

equivalent in the PSF specification is the process System.

8.4 The Compiler as ToolBus Application

Instead of calling the parser (process PsfMtil) and normalizer (process MtilItil) directly,

they should be called via the ToolBus. This can be accomplished by specifying an adapter

for the compiler, and a ToolBus script consisting of the ToolBus processes for the compiler,

parser and normalizer. The resulting animation is shown in Figure 8-7.

The specification of the ToolBus processes is shown below. The specification for the tools

and adapter used in here is similar to the specifications for the tools and adapter used in the

example on page 79. The terms tool-mtil and tool-itil originate from the

specification of the compiler and have to be converted to a tterm in order to be used in an

adapter, and the resulting terms have to be converted to a tbterm in order to be used in a

ToolBus process.

process module PPSF
begin

exports
begin

processes
PPSF

end
imports

PSFAdapter,
ToolFunctions,
ToolBusPrimitives,
ToolBusFunctions,

83

Re-engineering the PSF Compiler 8

ToolBus−Control

ITIL

PSF−Adapter

Phase2(co)

Phase6(co)

UpToDate

SplitFile

AddImports

CheckImport

ParseModules

SimPP

InLibrary

ItilTil

SplitFiles

TrsCheck

TB−PMTIL

Compiler

Phase5(co)

Phase7(co)

AddModules

MTIL

UpToDate

CompileOrder

LibrarySearch(ll)

NormalizeModules

InLibrary

Shutdown

Phase8(co)

Phase1(options,ll)

TB−PITIL

Phase3(co)

FindTopModule

ScanFiles

Phase4(co)

Split

AddImports

TB−PPSF

Figure 8-7. Generated animation of the compiler as ToolBus application

84

8.4 The Compiler as ToolBus Application

ToolBus-ID
definitions

PPSF =
PSFAdapter

||
(

(
sum(args in TBterm,

tb-rec-event(PSF, tbterm(tterm(tool-mtil)),
args) .

tb-snd-ack-event(PSF,
tbterm(tterm(tool-mtil))) .

tb-snd-msg(psf, mtil, args)
) .
sum(result in TBterm,

tb-rec-msg(mtil, psf, result) .
tb-snd-do(PSF, result)

)
+ sum(args in TBterm,

tb-rec-event(PSF, tbterm(tterm(tool-itil)),
args) .

tb-snd-ack-event(PSF,
tbterm(tterm(tool-itil))) .

tb-snd-msg(psf, itil, args)
) .
sum(result in TBterm,

tb-rec-msg(itil, psf, result) .
tb-snd-do(PSF, result)

)
+ tb-rec-event(PSF, tbterm(quit)) .

tb-shutdown
) * delta

)
end PPSF

process module PMTIL
begin

exports
begin

processes
PMTIL

end
imports

MTIL,
ToolBusPrimitives,
ToolBus-ID

definitions
PMTIL =

MTIL
||

(
sum(args in TBterm,

tb-rec-msg(psf, mtil, args) .
tb-snd-eval(MTIL, args) .
sum(result in TBterm,

tb-rec-value(MTIL, result) .
tb-snd-msg(mtil, psf, result)

)
) * delta

)
end PMTIL

85

Re-engineering the PSF Compiler 8

process module PITIL
begin

exports
begin

processes
PITIL

end
imports

ITIL,
ToolBusPrimitives,
ToolBus-ID

definitions
PITIL =

ITIL
||

(
sum(args in TBterm,

tb-rec-msg(psf, itil, args) .
tb-snd-eval(ITIL, args) .
sum(result in TBterm,

tb-rec-value(ITIL, result) .
tb-snd-msg(itil, psf, result)

)
) * delta

)
end PITIL

The import graph of the specification of the compiler as ToolBus application is shown in

Figure 8-8.

8.4.1 Implementation of the Compiler as ToolBus Application

The original implementation of the compiler has been provided with an interface that

communicates with the adapter. The adapter is written in Perl [67] as an extension of the

Perl-adapter provided with the ToolBus. The ToolBus script is derived from the

specification of the ToolBus processes. The parser and normalizer are wrapped with Perl

scripts that take care of fetching the exit status of the two tools and sending this information

back as a result. The actual application is a Perl script that provides an environment with

all the right settings and invokes the ToolBus, according to the arguments given on the

command line.

Although it is not of primary interest at this stage, a comparison of the performance for the

compiler that uses the ToolBus (tbpsf) and the original compiler (psf) is given. The tests

consist of a complete compilation of the specification of the compiler as a ToolBus

application (consisting of 49 modules) and an update in which only several modules have to

be (re)compiled. The tests have been performed on two different machines, one with only

one cpu (M1), and one with four cpu’s (M4). The timings3 shown in Table 8-2 are averages

over sev eral runs. It clearly shows that the use of the ToolBus imposes a lot of overhead,

largely due to context switching. Because of the four cpu’s, the configuration M4 needs

fewer context switches, resulting in less overhead.

3. The configurations were running in normal operation mode, which means that timings are influenced by

other processes and load on the file server, and for that reason are very rough.

86

8.4 The Compiler as ToolBus Application

ToolBus

psflib

psf

PITIL ITIL

ToolBus-ID

ToolBusPrimitives

PMTIL MTIL

PPSF AdapterPSF

ToolFunctions

ToolBusFunctions

Tool-data

ToolToolBusPrimitives

ToolTypes

Module

ToolBusTypes

App Script

NewToolBus

NewTool

PSF-Adapter

NewToolAdapter

Compiler

AdapterFunctions

ToolAdapterPrimitives

Booleans

Phase1

Phase2

Phase3

Phase4

Phase5

Phase6

Phase7

Phase8
CompilerOptions

Interface

Result

Types

FileContent

CompileOrder

ImportCycle

SimpleFileSystem

Modules

GenericList

File

Files

Library

Libraries

Option

FileTypes

Figure 8-8. Import graph of the specification of the compiler as ToolBus application

Table 8-2. Performance of the compilers

M1 M4

complete update complete update

psf 5.5s 3.0s 5.5s 2.8s

tbpsf 17.2s 5.8s 7.5s 3.3s

8.5 Software Arc hitecture

A software design consist of several levels, each lower one refining the design on the higher

level. The highest level is often referred to as the architecture, the organization of the

system as a collection of interacting components. In conventional software engineering

processes, the architecture is usually described rather informally by means of a boxes-and-

lines diagram. Following a lot of research going on in this area architectural descriptions

are becoming more formal, especially due to the introduction of architectural description

languages (ADLs). A specification in an ADL can be refined (in several steps) to a design

from which an implementation of the system can be built. Here, the reverse has to be done.

87

Re-engineering the PSF Compiler 8

Given a specification of a design in PSF one tries to extract the underlying architecture by

means of an appropriate abstraction. The specification of the architecture will still be in

PSF, howev er in such a way that one can generate an animation. This corresponds to the

boxes-and-lines diagram but it is fully specified.

In the following sections we describe the possibilities for abstraction, and apply these to

extract the architecture of the compiler.

8.5.1 Abstraction

In [52], action refinement is used as a technique for mapping abstract actions onto concrete

processes, called virtual implementation, which is more fully described in [53]. For

extracting the architecture from a specification we use the reverse of action refinement:

action abstraction. One can do this by hiding internal actions of a component, and applying

process algebra laws to combine consecutive internal actions into a single (internal) action.

But also in this transformation step one has to abstract from implementation decisions that

do not belong at the resulting higher level of abstraction. Often this can be done by only

looking at the external behaviour of a component, its interface.

With parameterized actions, data terms are available which can also be refined. At a certain

abstract level one does not care how data is implemented as long as the data is of a

particular type. For instance in a message passing system one can deal with any message as

just a message without knowing its content. Then for the specification at an abstract level

one can use the zero-adic (constant) function message for the parameter of an action. In the

specification at a lower level of abstraction this constant can be refined to a more complex

term. Data abstraction is the reverse of this, we then replace complex terms with zero-adic

functions. With this kind of abstraction, a receiving action of such a term can now use this

zero-adic function instead of a variable coming from a summation construction.

8.5.2 Architecture of the Compiler

In the specification of the compiler the order of compilation steps is laid down. First all

modules are parsed and then all modules are normalized. This is an implementation

decision. A module can be normalized as soon as it has been parsed and all the modules it

imports have been normalized. To abstract from this decision we specify the compiler with

the following process.

PSF’ =
skip .
(

(
skip .
snd(do(tterm(tool-mtil), tterm(args))) .
rec(result)

+ skip .
snd(do(tterm(tool-itil), tterm(args))) .
rec(result)

) * snd(quit)
)

Here, we use the abstract data terms ’args’ and ’result’. This process describes the external

88

8.5 Software Arc hitecture

behaviour of the compiler. The skip actions are abstractions of internal actions.

The adapter for the compiler is defined as follows, where also the abstract form of the data

terms is used.

PSF-Adapter =
(

tooladapter-rec(do(tterm(tool-mtil), tterm(args))) .
tooltb-snd-event(tbterm(tterm(tool-mtil)),

tbterm(tterm(args))) .
tooltb-rec-ack-event(tbterm(tterm(tool-mtil))) .
tooltb-rec(tbterm(tterm(result)) .
tooladapter(tterm(result))

+ tooladapter-rec(do(tterm(tool-itil), tterm(args))) .
tooltb-snd-event(tbterm(tterm(tool-itil)),

tbterm(tterm(args))) .
tooltb-rec-ack-event(tbterm(tterm(tool-itil))) .
tooltb-rec(tbterm(tterm(result)) .
tooladapter(tterm(result))

) *
tooladapter-rec(quit) .
tooltb-snd-event(tbterm(quit))

The parallel composition of PSF’ and PSF-Adapter combined with encapsulation of the

communication actions is equivalent to the following process.

AdapterPSF’ =
skip .
(

(
skip .
tooladapter-comm(do(tterm(tool-mtil), tterm(args))) .
tooltb-snd-event(PSF, tbterm(tterm(tool-mtil)), args)
tooltb-rec-ack-event(tbterm(tterm(tool-mtil))) .
tooltb-rec(result) .
adaptertool-comm(tterm(result))

+ skip .
tooladapter-comm(do(tterm(tool-itil), tterm(args))) .
tooltb-snd-event(PSF, tbterm(tterm(tool-mtil)), args)
tooltb-rec-ack-event(tbterm(tterm(tool-mtil))) .
tooltb-rec(result) .
adaptertool-comm(tterm(result))

) *
tooladapter-comm(quit) .
tooltb-snd-event(tbterm(quit))

)

We hide all internal actions of this process and replace the data terms with a more abstract

form.

AdapterPSF’’ =
skip .
(

(
skip .
skip .
tooltb-snd-event(PSF, tool-mtil, args)
tooltb-rec-ack-event(tool-mtil) .
tooltb-rec(result) .
skip

+ skip .

89

Re-engineering the PSF Compiler 8

skip .
tooltb-snd-event(PSF, tool-mtil, args)
tooltb-rec-ack-event(tool-mtil) .
tooltb-rec(result) .
skip

) *
skip .
tooltb-snd-event(quit)

)

The ToolBus process PPSF (see page 83) with the data terms can be written in an abstract

form as follows.

PPSF’ =
AdapterPSF’’

|| (
(

tb-rec-event(PSF, tool-mtil, args) .
tb-snd-ack-event(PSF, tool-mtil) .
tb-snd-msg(psf, mtil, args) .
tb-rec-msg(mtil, psf, result) .
tb-snd-do(PSF, result)

+ tb-rec-event(PSF, tool-itil, args) .
tb-snd-ack-event(PSF, tool-itil) .
tb-snd-msg(psf, itil, args) .
tb-rec-msg(itil, psf, result) .
tb-snd-do(PSF, result)

) *
tb-rec-event(PSF, quit) .
tb-shutdown

)

After encapsulation of the communication actions between the tool and its ToolBus process

this is equivalent to the following.

PPSF’’ =
skip .
(

(
skip .
skip .
tb-comm-event(PSF, tool-mtil, args) .
tb-comm-ack-event(PSF, tool-mtil) .
tb-snd-msg(psf, mtil, args) .
tb-rec-msg(mtil, psf, result) .
tb-comm-do(PSF, result) .
skip

+ skip .
skip .
tb-comm-event(PSF, tool-itil, args) .
tb-comm-ack-event(PSF, tool-itil) .
tb-snd-msg(psf, itil, args) .
tb-rec-msg(itil, psf, result) .
tb-comm-do(PSF, result) .
skip

) *
skip .
tb-comm-event(PSF, quit) .
tb-shutdown

)

90

8.5 Software Arc hitecture

Hiding all communications between the tool and the ToolBus process the following result is

obtained.

PPSF’’’ =
skip .
(

(
skip .
skip .
skip .
skip .
tb-snd-msg(psf, mtil, args) .
tb-rec-msg(mtil, psf, result) .
skip .
skip

+ skip .
skip .
skip .
skip .
tb-snd-msg(psf, itil, args) .
tb-rec-msg(itil, psf, result) .
skip .
skip

) *
skip .
skip .
tb-shutdown

)

Applying the τ -law x. τ = x of our process algebra yields

PPSF’’’’ =
skip .
(

(
skip .
tb-snd-msg(psf, mtil, args) .
tb-rec-msg(mtil, psf, result)

+ skip .
tb-snd-msg(psf, itil, args) .
tb-rec-msg(itil, psf, result)

) *
skip .
tb-shutdown

)

The same is done for the processes PMTIL and PITIL.

PMTIL’’’’ =
(

tb-rec-msg(psf, mtil, args) .
tb-snd-msg(mtil, psf, result)

) * delta
PITIL’’’’ =

(
tb-rec-msg(psf, itil, args) .
tb-snd-msg(itil, psf, result)

) * delta

The parallel composition of the above three processes describes the intended architecture.

An animation of this architecture is shown in Figure 8-9. With some renaming the

91

Re-engineering the PSF Compiler 8

Shutdown

ToolBus−Control

ITIL

PSF

MTIL

Figure 8-9. Animation of the architecture

processes can be written in a more suitable form.

Compiler = PSF || MTIL || ITIL
PSF =

skip .
(

(
skip .
snd(psf, mtil, args) .
rec(mtil, psf, result)

+ skip .
snd(psf, itil, args) .
rec(itil, psf, result)

) *
skip .
shutdown

)
MTIL =

(
rec(psf, mtil, args) .
snd(mtil, psf, result)

) * delta
ITIL =

(
rec(psf, itil, args) .
snd(itil, psf, result)

) * delta

The above PSF text provides a specification of the compiler architecture. The architecture

does not enforce any restrictions on the type of connections used to glue the various

components together. Both the original compiler as well as the re-engineered version

compiler that makes use of the ToolBus are implementations of this architecture.

8.6 Parallel Compiler

The parsing and normalization of modules allows for parallelization. Parsing of modules

and the normalization of other modules which already have been parsed and for which all

the modules that they import have already been normalized, can be done in parallel. We

build a parallel compiler and reuse as much as possible from the specifications and

implementation of the re-engineered compiler.

92

8.6 Parallel Compiler

8.6.1 Architecture

Instead of issuing commands for parsing and normalization of modules, the parallel

compiler should compose an information structure that tells which modules have to be

parsed and/or normalized and on which modules they depend that also have to be parsed

and/or normalized. The compiler has to send this structure to a scheduler which decides

when modules are to be parsed or normalized.

We giv e here the specification of the architecture for the parallel compiler.

Compiler = PSF || Scheduler || MTIL || ITIL
PSF =

skip .
(

skip .
tb-snd-msg(psf, scheduler, compile-info) .
tb-rec-msg(scheduler, psf, result) .
tb-shutdown

+ skip .
tb-shutdown

)
Scheduler =

tb-rec-msg(psf, scheduler, compile-info) .
(

(
skip .
tb-snd-msg(scheduler, mtil, args)

+ tb-rec-msg(mtil, scheduler, result)
+ skip .

tb-snd-msg(scheduler, itil, args)
+ tb-rec-msg(itil, scheduler, result)
) * tb-snd-msg(scheduler, psf, result)

)
MTIL =

(
tb-rec-msg(scheduler, mtil, args) .
tb-snd-msg(mtil, scheduler, result)

) * delta
ITIL =

(
tb-rec-msg(scheduler, itil, args) .
tb-snd-msg(itil, scheduler, result)

) * delta

An animation of this architecture is shown in Figure 8-10. This specification features only

one MTIL and one ITIL process, but this scheme allows for more MTIL and ITIL processes

in parallel. Whichever process is free can pick up a request from the scheduler to parse or

normalize a module.

Although the specification of the architecture contains separate processes for compiler and

scheduler, it does not imply that these need to be implemented as separate tools. The

scheduler can be incorporated in the compiler, as we show below.

The parallel composition of PSF and Scheduler, is equivalent to the following process.

skip . (
skip . tb-comm-msg(psf, scheduler, compile-info) .
(

93

Re-engineering the PSF Compiler 8

MTIL

ToolBus−Control

Scheduler

ITIL

ShutdownPSF

Figure 8-10. Animation of the architecture

P * tb-comm-msg(scheduler, psf, result) . tb-shutdown
)

+ Q
)

Here, P stands for the alternative composition of the send and receive actions in the

Scheduler process, and Q stands for skip . tb-shutdown.

Hiding the communications between compiler and scheduler results in the following.

skip . (skip . skip . (P * Q) + Q)

Applying the τ -law x. τ = x gives

skip . (skip . (P * Q) + Q)

Applying the algebraic law for iteration x * y = (x * y) + y gives

skip . (skip . ((P * Q) + Q) + Q)

Applying the τ -law v. (τ . (x + y) + x) = v. (x + y) giv es

skip . ((P * Q) + Q)

Applying the algebraic law for iteration x * y = (x * y) + y in reverse gives

skip . (P * Q)

Replacing P and Q gives us

skip .
(

skip .
tb-snd-msg(scheduler, mtil, args)

+ tb-rec-msg(mtil, scheduler, result)
+ skip .

tb-snd-msg(scheduler, itil, args)
+ tb-rec-msg(itil, scheduler, result)
) * skip .
tb-shutdown

)

This looks the same as the compiler process in the architecture of tbpsf but then with the

94

8.6 Parallel Compiler

sending and receiving actions in parallel with the scheduler process in this architecture.

8.6.2 Specification of the Parallel Compiler

As we already mentioned in the previous section, there are several options for the

cooperation of the compiler and the scheduler. A possibility is to incorporate the scheduler

in the compiler and let the scheduler part take care of the connections with the ToolBus.

Here, however, we hav e chosen to implement the Scheduler as a separate process (tool) to

be connected to the ToolBus which gets its information from the compiler over the

ToolBus.

We reuse a large part of the specification of the compiler for the specification of the parallel

compiler. The parsing and normalization phases are replaced by a phase that builds up a

Compiler-Information structure. The ToolBus processes are adjusted and extended to

reflect the processes in the specification of the architecture, and the specification of the

scheduler is added. The animation of the parallel compiler is shown in Figure 8-11.

The import graph for the specification of the parallel compiler is shown in Figure 8-12. The

module Naturals with all its imports4 and the module Tables stem from the standard library

of PSF. Naturals is used for counting the MTIL and ITIL processes that have to be started

in the specification of the ToolBus script and Tables is used for the construction of the

Compiler-Information structure.

8.6.3 Implementation of the Parallel Compiler

The implementation of the compiler has been extended with a phase for building the

Compiler-Information structure which can be invoked instead of the parsing and

normalizing phases, controlled by an option. The scheduler has been implemented in Perl.

The actual application is a Perl script that provides an environment with the right settings

and which will invoke the ToolBus according to the arguments given on the command line.

This script also gives the possibility to start the parallel compiler with indicated numbers of

parsing and normalization processes.

In Table 8-3 the performance of the parallel compiler is shown for several combinations of

numbers of parsing and normalization processes, for the complete compilation of the

specification of the compiler as a ToolBus application. We see that on configuration M1 the

parallel compiler has a better performance than tbpsf, but it is not faster than psf. So the

communication overhead connected with the ToolBus is too large to overcome on this

configuration. Parallel compilation on configuration M4 is faster than psf, although not

much, because the amount of work that can be done in parallel is limited by the imposed

order of compilation of the modules due to their import relation.

4. The imported modules by the Naturals are shown as a single module in gray for clarity of the Figure.

95

Re-engineering the PSF Compiler 8

ToolBus−Control

Phase8(co)

Split

Compile

SplitFiles

CheckImport

LibrarySearch(ll) AddImports

Phase6(co)

ItilInLibrary

CompileOrder

PhaseCompile(co)

TB−PPSF

ITIL

MtilCompilandum

Phase3(co)

TB−PSCHEDULER

PSF−Adapter

CompileImports(ci)

Scheduler−Data

Phase7(co)

ScanFiles

ItilCompilandum(ci)

BuildCompileInfo

Process−Count

SimPP

MTIL

Scheduler

AddImports

FindTopModule

TB−PMTIL

TrsCheck

MtilInLibrary

MtilUpToDate

ItilUpToDate

ItilTil

Compiler

Phase2(co)

Phase1(options,ll)

TB−PITIL

Shutdown

SplitFile

AddModules

Figure 8-11. Generated animation of the parallel compiler as ToolBus application

96

8.6 Parallel Compiler

psflib

ToolBus

psf

Booleans

Naturals

 ...

Tables

ToolFunctions

ToolBusTypes

ToolTypes

NewToolBus ToolBusPrimitives

NewTool

ToolToolBusPrimitives

ToolAdapterPrimitives

ToolBusFunctions

NewToolAdapter

Compiler

Phase1

Phase2

Phase3

Phase6

Phase7

Phase8

PhaseCompile

CompilerOptions

Interface

Result

Types

FileContent

CompileOrder

ImportCycle

SimpleFileSystem

Compile-Info

Module

Modules

GenericListFileFiles

Library

Libraries

Option

Tool-data

FileTypes

App Script

PPSF

PPARCOMPILER

PMTIL

PITIL

AdapterPSF

ToolBus-ID

Scheduler

MTIL

ITIL

PSF-Adapter AdapterFunctions

Schedule-Data
Schedule-Info

Process-Data

Module-eq

Process-Type

Module-Info

Figure 8-12. Import graph of the specification of the parallel compiler

97

Re-engineering the PSF Compiler 8

Table 8-3. Performance of the parallel compiler

processes complete

mtil itil M1 M4

1 1 12.8s 6.0s

1 2 11.7s 5.4s

1 3 11.6s 5.4s

2 1 12.9s 6.1s

2 2 12.1s 5.2s

2 3 11.9s 4.8s

2 4 11.6s 4.9s

3 2 11.7s 5.0s

3 3 11.6s 4.8s

3 4 11.6s 4.9s

4 4 11.6s 4.7s

98

Chapter 9

Software Architecture with PSF

In section 8.5 we introduced software architecture as the highest level of abstraction in

software design. We extracted a specification of the architecture of the PSF compiler from

the specification of the compiler by abstracting from implementation decisions. With some

renamings this resulted in the architecture shown in Figure 8-9. Software architectures are

usually described rather informally by means of boxes-and-lines diagrams. Following a lot

of research in this area, architectural descriptions are becoming more formal, especially due

to the introduction of architectural description languages (ADLs). A specification in an

ADL can be refined (in several steps) to a design from which an implementation of the

system can be built.

In this chapter we present a PSF library for specifying software architectures. This

provides the formalization of boxes-and-lines diagrams used for denotation of and

communication on software architectures. With the use of the PSF Toolkit it is possible to

generate an animation from the specification which can be brought to life with the simulator

of the Toolkit. Furthermore, we present vertical and horizontal implementation techniques

to obtain a ToolBus application specification from an architecture specification.

In section 9.1 we describe the PSF Architecture Library and in section 9.2 we give an

example of the use of this library. We introduce the vertical and horizontal implementation

techniques in section 9.3, where we also demonstrate these techniques by applying them on

our example.

9.1 PSF Architecture Library

First we define the types for the id’s of the components, the connections between

components, and the data.

data module ArchitectureTypes
begin

exports
begin

99

Software Arc hitecture with PSF 9

sorts
ID,
CONNECTION,
DATA

functions
>> : ID # ID → CONNECTION

end
end ArchitectureTypes

The sorts ID and DATA are abstract data types. Elements of these sorts have to be provided

with the specification of an architecture. We could do without the function >> and use just

two ID arguments instead of one CONNECTION argument, but now the connection clearly

stands out from other terms and therefore makes the specifications easier to read.

We define the primitives for the communication between the components and a quitting

action that communicates with the architecture environment.

process module ArchitecturePrimitives
begin

exports
begin

atoms
snd : CONNECTION # DATA
rec : CONNECTION # DATA
comm : CONNECTION # DATA

snd-quit
end
imports

ArchitectureTypes
communications

snd(c, s) | rec(c, s) = comm(c, s)
for c in CONNECTION, s in DATA

end ArchitecturePrimitives

Note that we do not specify a particular kind of connection. In our belief the choice of the

kind of connection should not be made on the architecture level, but on a lower level.

We now specify the architecture environment parameterized with the architecture

specification.

process module Architecture
begin

parameters
System
begin

processes
System

end System
exports
begin

processes
Architecture

end
imports

ArchitecturePrimitives
atoms

rec-quit
quit
snd-shutdown

100

9.1 PSF Architecture Library

rec-shutdown
shutdown

processes
ArchitectureControl
ArchitectureShutdown

sets
of atoms

H = {
snd(c, s), rec(c, s) | c in CONNECTION, s in DATA

}
ArchitectureH = {

snd-quit, rec-quit,
snd-shutdown, rec-shutdown

}
communications

snd-quit | rec-quit = quit
snd-shutdown | rec-shutdown = shutdown

definitions
Architecture =

encaps(ArchitectureH,
disrupt(

encaps(H, System),
ArchitectureShutdown

)
|| ArchitectureControl
)

ArchitectureControl =
rec-quit .
snd-shutdown

ArchitectureShutdown = rec-shutdown
end Architecture

PSF does not have a single action to end all processes. Such an action is actually a

communication with the environment in which the processes run and this environment has

to end all processes. We hav e specified this behaviour with the processes

ArchitectureControl as the environment, ArchitectureShutdown to disrupt the running of the

processes, and splitting up the actions quit and shutdown in a send and receive part.

9.2 Example

For showing the use of the PSF Architecture library we consider the same example we used

for the ToolBus and for the PSF ToolBus library (see sections 4.1 and 8.3).

We first specify a module for the data and id’s we use.

data module Data
begin

exports
begin

functions
message : → DATA
ack : → DATA
quit : → DATA

c1 : → ID
c2 : → ID

end
imports

101

Software Arc hitecture with PSF 9

ArchitectureTypes
end Data

We then specify the system of our application.

process module ApplicationSystem
begin

exports
begin

processes
ApplicationSystem

end
imports

Data,
ArchitecturePrimitives

atoms
send-message
stop

processes
Component1
Component2

definitions
Component1 =

send-message .
snd(c1 >> c2, message) .
rec(c2 >> c1, ack) .
Component1

+ stop .
snd-quit

Component2 =
rec(c1 >> c2, message) .
snd(c2 >> c1, ack) .
Component2

ApplicationSystem = Component1 || Component2
end ApplicationSystem

The snd-quit in the process definition for Component1 communicates with the

architecture environment followed by a disrupt to end all processes.

Next, we put the system in the architecture environment by means of binding the main

process to the System parameter of the environment.

process module Application
begin

imports
Architecture {

System bound by [
System → ApplicationSystem

] to ApplicationSystem
renamed by [

Architecture → Application
]

}
end Application

The generated animation of the architecture is shown in Figure 9-1. Here, Component1 has

just sent a message to Component2, which is ready to send an acknowledgement back.

Each box represents an encapsulation of the processes inside the box, and a darker ellipse is

a process which is enabled to perform an action in the given state.

102

9.2 Example

Component1

Component2

ArchitectureShutdown

ArchitectureControl

comm(c1 >> c2, message)

Figure 9-1. Animation of an example architecture

The module mechanism of PSF can be used for more complex components to hide the

internal actions and sub-processes of a component. With the use of parameterization it is

ev en possible to make sev eral instances of a component.

9.3 From Arc hitecture to ToolBus Application Design

It is only useful to invest a lot of effort in the architecture if we can relate it to a design on a

lower level. In this section we describe the techniques we use to get from an architecture

specification to a ToolBus application specification. These techniques are important in our

software engineering process as they compress a large number of algebraic law applications

into a few steps and so make the process feasible. We demonstrate these techniques with

our toy example from section 8.3.

9.3.1 Horizontal Implementation

Given two processes S and I , I is an implementation of S if I is more deterministic than (or

equivalent to) S. As the actions S and I perform belong to the same alphabet, S and I

belong to the same level of abstraction. Such an implementation relation is called

horizontal.

To achieve a horizontal implementation we use parallel composition, which can be used to

constrain a process. Consider process P = a . P, which can do action a at every moment.

We put P in parallel with the process Q = x . b . Q, where x is a local action of Q, and we

define the communication a | b = c. If we enforce the communication by encapsulation,

process P can only do action a whenever process Q has first done action x. So process P is

constrained by Q and P || Q is a horizontal implementation of P, provided Q only interacts

with P through b. This form of controlling a process is also known as superimposition [11]

or superposition [34].

9.3.2 Vertical Implementation

In [52], action refinement is used as a technique for mapping abstract actions onto concrete

processes, called vertical implementation, which is described more extensively in [53].

103

Software Arc hitecture with PSF 9

With vertical implementation we want to relate processes that belong to different levels of

abstraction, where the change of level usually comes with a change of alphabet. For such

processes we like to dev elop vertical implementation relations that, given an abstract

process S and a concrete process I , tell us if I is an implementation for the specification S.

More specifically, we want to develop a mapping of abstract actions to sequences of one or

more concrete actions so that S and I are vertical bisimilar.

We giv e a rationale of vertical implementation. Consider the processes P = a . b with a an

internal action and Q = c . d . e with internal actions c and d . If we refine abstract action a

from process P to the sequence of concrete actions c . d and rename action b to e we obtain

process Q. The processes P and Q are vertical bisimilar with respect to the mapping

consisting of the above refinement and renaming.

We can explain the notion vertical bisimilar by the following. We hide the internal action a

of process P by replacing it with the silent step τ to obtain P = τ . b. Applying the

algebraic law x . τ = x gives us P = τ . τ . b. If we now replace the first τ with c and the

second with d , and rename b into e we obtain the process Q. With H as hide operator and

R as renaming operator we can prove that R{b→e}(H{a}(P)) and H{c,d}(Q) are rooted weak

bisimilar (see Figure 9-2). So vertical bisimulation is built on rooted weak bisimulation as

horizontal implementation relation.

P = a . b

Q = c . d . e

a → c . d

b → e

τ . e

R{b→e} H{a}

τ . τ . e

H{c,d}

↔
rw

Figure 9-2. Implementation relations

9.3.3 Example

Take the process Component1 from the architecture of our toy example.

Component1 =
send-message .
snd(c1 >> c2, message) .
rec(c2 >> c1, ack) .
Component1

+ stop .

104

9.3 Fr om Arc hitecture to ToolBus Application Design

snd-quit

We can make a virtual implementation by applying the following mapping.

send-message → tb-rec-event(T1, tbterm(message))
snd(c1 >> c2, message)→ tb-snd-msg(t1, t2, tbterm(message))
rec(c2 >> c1, ack) → tb-rec-msg(t2, t1, tbterm(ack)) .

tb-snd-ack-event(T1, tbterm(message))
stop → tb-rec-event(T1, tbterm(quit))
snd-quit → snd-tb-shutdown

And renaming Component1 into PT1 gives the following result.

PT1 =
tb-rec-event(T1, tbterm(message)) .
tb-snd-msg(t1, t2, tbterm(message)) .
tb-rec-msg(t2, t1, tbterm(ack)) .
tb-snd-ack-event(T1, tbterm(message)) .
PT1

+ tb-rec-event(T1, tbterm(quit)) .
snd-tb-shutdown

In a similar way an implementation (PT2) for Component2 can be obtained.

We can show that Component1 and PT1 are vertical bisimilar. The mapping consist of

the refinements

snd(c1 >> c2, message)→ tb-snd-msg(t1, t2, tbterm(message))
rec(c2 >> c1, ack) → tb-rec-msg(t2, t1, tbterm(ack)) .

tb-snd-ack-event(T1, tbterm(message))
snd-quit → snd-tb-shutdown

and the renamings of the local actions

send-message → tb-rec-event(T1, tbterm(message))
stop → tb-rec-event(T1, tbterm(quit))

Applying the renamings on process Component1 and hiding of the to be refined actions

results in

Component1’ =
tb-rec-event(T1, tbterm(message)) . τ . τ . Component1’

+ tb-rec-event(T1, tbterm(quit)) . τ

Hiding of the actions in the refinements in process PT1 results in

PT1’ =
tb-rec-event(T1, tbterm(message)) . τ . τ . τ . PT1’

+ tb-rec-event(T1, tbterm(quit)) . τ

It follows that Component1’ ↔
rw PT1’.

We now make horizontal implementations for PT1 and PT2 by constraining them with

Tool1Adapter and Tool2 from section 8.3.1.

PTool1 = Tool1Adapter || PT1
PTool2 = Tool1 || PT1

Note that Tool1Adapter is itself a constraining of AdapterTool1 with Tool1.

105

Software Arc hitecture with PSF 9

106

Chapter 10

A New PSF Simulator

In Chapter 8 we described the PSF ToolBus library for specifying ToolBus application

specifications and in Chapter 9 we described the PSF Architecture library for specifying

software architectures. In this chapter we develop a new implementation for the simulator

of the PSF Toolkit using these PSF libraries together with the refinement techniques that

were also introduced in Chapter 9. From the requirements for the new simulator we

develop an architecture specification, starting with a specification for a simple simulator

and extending it with the necessary features. We dev elop a ToolBus application

specification from the architecture specification using the refinement techniques. The

ToolBus application specification serves as a base for the implementation of the simulator

as a ToolBus application. The development process is depicted in Figure 10-1.

requirements
architecture

specification

ToolBus application

specification

ToolBus application

PSF Architecture

library

PSF ToolBus

library
refine

Figure 10-1. Development process for the simulator

107

A New PSF Simulator 10

The purpose of this case study is to obtain experience with the use of PSF in software

engineering and to improve the implementation of the simulator.

In section 10.1 we describe the requirements for the new simulator. We dev elop an

architecture specification for the new simulator in section 10.2. We refine the architecture

specification into a ToolBus application specification in section 10.3 and in section 10.4 we

describe the implementation of the new simulator. In section 10.5 we describe how to

aggregate the graphical user interfaces for the different components of the new simulator

into a single graphical user interface. In section 10.6 we extend the new simulator with a

history mechanism showing the impact of a software evolution process iteration on the

design process. We describe the coupling of animation to the new simulator in section 10.7.

We discuss some of the functionality for the old simulator that is not implemented in the

new simulator in section 10.8 and in section 10.9 we compare the old simulator with the

new simulator.

10.1 Requirements

Although the existing version of the simulator from the PSF Toolkit is satisfactory, we think

its implementation can be improved a lot. Its interface is outdated and the internal

complexity can be lifted from the kernel of the simulator and pushed to separate

components and their interaction. We giv e in this section the requirements for the new

simulator without going into much detail, merely to give an idea of what the simulator

should be capable of and what we expect from the new design.

10.1.1 Functional Requirements

The functional requirements we list here stem from the functionality of the old simulator.

Some features have been left out because they are rarely used and can be established in a

different way, such as reloading of specifications and argument selection of start processes.

The simulator should be able to simulate PSF specifications (or rather a compiled form of

these) according to the semantics, and it must at least fulfill the following requirements.

• Selection of a process to start the simulation with from a list of possible processes.

• Simple interaction with the user for choosing an action to be executed from a list of

possible executable actions at a certain state. Simple means that the actions are

presented in a single unordered list.

• Show on request the status of processes currently being simulated in a way that their

correlation is visible and how the list of possible actions is determined from them.

• Make it possible to trace certain actions as they are executed. These actions must be

selected from all actions in an easy manner.

• Be able to run randomly and stop this whenever one or more breakpoints are

encountered. That moment can be on execution of an action on which a breakpoint is

set, when one or more actions with breakpoints set on them appear in the list of

possible action, or when all actions in the list have breakpoints on them

(synchronization). Selection of breakpoints should be made easy, preferably in a

108

10.1 Requirements

similar way of selecting actions to be traced.

• A history mechanism that not only makes it possible to undo or redo a step, but also

to go to a previously marked state.

10.1.2 Non-functional Requirements

The non-functional requirements we list here represent our wishes as opposed to the

implementation of the old simulator.

• A modular design with easy to replace components. Especially, the simulator should

have a separate kernel which can be used in other applications than the simulator.

• Can be used as a framework for simulating other languages similar to PSF, or variants

of PSF.

• The user interface should be less dependent on the X Window System than the old

simulator, and should be easy to adapt to changes in environment, application, or user

demands.

• Easy coupling of the simulator with animation.

10.2 Architecture Specification

We specify the architecture in several steps, starting with the architecture of a simple

simulator to which we add the features. The architecture specification as presented here is

the result of common software development processes incorporated with an architecture

phase.5 In these processes there is feedback from successive phases, and so also the

architecture phase gets this feedback.

10.2.1 A Simple Simulator

Our simple simulator consists of four system components.

kernel does the actual simulation.

startprocess takes care of choosing a process to start the simulating with.

actionchooser takes care of choosing an action from a list of possible actions it

receives from the kernel.

display displays the information the other components wish to communicate to

the user.

We first specify the id’s for the four components and the data (in an abstract form) that are

used in the communication between components in a separate module.

data module SimulatorData
begin

exports

5. See [56] for an overview of software development processes.

109

A New PSF Simulator 10

begin
functions

kernel : → ID
startprocess : → ID
actionchooser : → ID
display : → ID

start-process : → DATA
action-choose-list : → DATA
action : → DATA
halt : → DATA
reset : → DATA

end
imports

ArchitectureTypes
end SimulatorData

The kernel can be in two states. One in which it actually simulates, and one in which it is

waiting for communication with other components. This is specified using a boolean

variable wait.

process module Kernel
begin

exports
begin

processes
Kernel

end
imports

SimulatorData,
ArchitecturePrimitives,
Booleans

atoms
compute-choose-list
compute-halt

processes
Kernel : BOOLEAN

variables
wait : → BOOLEAN

definitions
Kernel = Kernel(true)
Kernel(wait) =

(
[wait = false] → (

compute-choose-list .
snd(kernel >> actionchooser, action-choose-list)

+ compute-halt .
snd(kernel >> display, halt)

) .
Kernel(true)

+ [wait = true] → (
rec(actionchooser >> kernel, action) .
Kernel(false)

+ rec(startprocess >> kernel, start-process) .
snd(kernel >> display, start-process) .
snd(kernel >> actionchooser, reset) .
Kernel(false)

)
)

end Kernel

110

10.2 Architecture Specification

If the kernel is not in the wait state, there is a choice between two internal actions. The

action compute-choose-list resembles the computation of a list of possible actions

that can occur. This list is sent to the actionchooser. The other action compute-halt

indicates that the kernel could not compute a list of possible actions, either because

simulation ended, or a deadlock occurred. In the wait state the kernel can receive a

start-process from the startprocess component, or it can receive an action from the

actionchooser.

The startprocess component is very simple, it can only select a start process for simulation

and send this process to the kernel.

process module StartProcess
begin

exports
begin

processes
StartProcess

end
imports

ArchitecturePrimitives,
SimulatorData

atoms
select-start-process

definitions
StartProcess =

(
select-start-process .
snd(startprocess >> kernel, start-process)

) * delta
end StartProcess

The actionchooser can receive an action-choose-list or a reset from the kernel.

When it receives an action-choose-list it can send an action to the kernel.

process module ActionChooser
begin

exports
begin

processes
ActionChooser

end
imports

ArchitecturePrimitives,
SimulatorData,
Booleans

atoms
choose-action

processes
Choose : BOOLEAN
Reset

variables
choose : → BOOLEAN

definitions
ActionChooser = Choose(false)
Choose(choose) =

rec(kernel >> actionchooser, action-choose-list) .
Choose(true)

+ [choose = true] → (
choose-action .

111

A New PSF Simulator 10

(
snd(actionchooser >> kernel, action) .
Choose(false)

+ Reset
)

)
+ Reset

Reset = rec(kernel >> actionchooser, reset) .
Choose(false)

end ActionChooser

The possibility for a reset after an action has been chosen is necessary, otherwise a

deadlock can occur when the kernel sends a reset caused by the receipt of a start-process.

The display can only receive data from other components. At this point in the design, it

receives only from the kernel.

process module Display
begin

exports
begin

processes
Display

end
imports

ArchitecturePrimitives,
SimulatorData

definitions
Display =

(
rec(kernel >> display, halt)

+ rec(kernel >> display, start-process)
) * delta

end Display

We combine the components to a system by merging the processes of the components.

process module SimulatorSystem
begin

exports
begin

processes
SimulatorSystem

end
imports

Kernel,
StartProcess,
ActionChooser,
Display

definitions
SimulatorSystem =

Kernel
|| StartProcess
|| ActionChooser
|| Display

end SimulatorSystem

We complete the architecture of the simple simulator by putting the system in the

architecture environment.

process module Simulator

112

10.2 Architecture Specification

begin
imports

Architecture {
System bound by [

System → SimulatorSystem
] to SimulatorSystem
renamed by [

Architecture → Simulator
]

}
end Simulator

An animation of the architecture is shown in Figure 10-2.

DisplayActionChooser

KernelArchitectureShutdown

ArchitectureControl StartProcess

Figure 10-2. Architecture of a simple simulator

10.2.2 Functions

We extend the simple simulator with two functions that can be invoked by the user, quit

and process-status.

To module SimulatorData we add the id function and data terms for the functions. And

we add a module Function.

process module Function
begin

exports
begin

processes
Function

end
imports

ArchitecturePrimitives,
SimulatorData

atoms
push-quit
push-process-status

definitions
Function =

(
push-quit .
snd(function >> kernel, quit)

+ push-process-status .
snd(function >> kernel, process-status)

) * delta

113

A New PSF Simulator 10

end Function

To module Kernel we add the following alternatives to the wait state.

+ rec(function >> kernel, quit) .
snd-quit

+ rec(function >> kernel, process-status) .
snd(kernel >> display, process-status) .
Kernel(wait)

After the kernel receives a quit it communicates with the architecture environment by

means of a snd-quit on which the environment acts with a shutdown. And on receiving

process-status it send the process status to the display (we use the same abstract data

term here).

To the module Display we add an alternative for receiving a process-status message

and in the module SimulatorSystem we merge the process Function with the other

processes. The animation of the resulting architecture is shown in Figure 10-3.

ActionChooser

StartProcess

ArchitectureControl

ArchitectureShutdown

Function

Display

Kernel

Figure 10-3. Architecture with functions

10.2.3 Tracing

We now add a component tracectrl that takes care of the tracing of actions (make them

visible to the user) the moment they are executed. Whenever an action is chosen by the

actionchooser it is send to tracectrl which decides, on indication by the user, whether it has

to be traced, in which case a message is send to display. So it acts as a filter.

To module SimulatorData we add the id tracectrl and as data terms trace-action

and done.

process module TraceCtrl
begin

exports
begin

processes
TraceCtrl

end
imports

114

10.2 Architecture Specification

SimulatorData,
ArchitecturePrimitives

atoms
trace
no-trace

definitions
TraceCtrl =

(
rec(actionchooser >> tracectrl, action) .
(

trace .
snd(tracectrl >> display, trace-action)

+ no-trace
) .
snd(tracectrl >> actionchooser, done)

) * delta
end TraceCtrl

The confirmation to the actionchooser is necessary, otherwise it is possible that the

actionchooser continues and another message is sent to the display before a trace message

is sent, and so a mix-up of the order of the messages on the display can occur.

We add the communication with tracectrl in the actionchooser directly after action is

send to the kernel, as shown below with existing code in grey.

+ [choose = true] → (
snd(actionchooser >> kernel, action) .
snd(actionchooser >> tracectrl, action) .
rec(tracectrl >> actionchooser, done) .
Choose(false)

)

To module Display we add an alternative for receiving a trace-action message and we

add TraceCtrl to SimulatorSystem. The resulting architecture is shown in Figure 10-4.

Kernel

ActionChooser

Function

ArchitectureShutdown

StartProcess

Display

TraceCtrl

ArchitectureControl

Figure 10-4. Architecture with tracing

115

A New PSF Simulator 10

10.2.4 Random

At this moment it is of no concern whether the user wants to let the actionchooser choose

actions randomly, so this can be kept implicit with the actionchooser. But when we

introduce breakpoints in order to stop the simulator from running randomly at certain

moments, we need to know whether the simulator is running randomly explicitly. So we

add a control state to the Choose process of the actionchooser and the possibility to switch

random on and off.

process module ActionChooser
begin

exports
begin

processes
ActionChooser

end
imports

ArchitecturePrimitives,
SimulatorData,
Booleans

atoms
choose-action
random-on
random-off

processes
Choose : BOOLEAN # BOOLEAN
Reset : BOOLEAN

variables
random : → BOOLEAN
choose : → BOOLEAN

definitions
ActionChooser = Choose(false, false)
Choose(random, choose) =

rec(kernel >> actionchooser, action-choose-list) .
Choose(random, true)

+ [choose = true] → (
choose-action .
(

snd(actionchooser >> kernel, action) .
snd(actionchooser >> tracectrl, action) .
rec(tracectrl >> actionchooser, done) .
Choose(random, false)

+ Reset(random)
)

)
+ Reset(random)
+ [random = true] → (

random-off .
Choose(false, choose)

)
+ [random = false] → (

random-on .
Choose(true, choose)

)
Reset(random) =

rec(kernel >> actionchooser, reset) .
Choose(random, false)

end ActionChooser

116

10.2 Architecture Specification

10.2.5 Breakpoints

In order to stop the simulator from running randomly at certain moments we add

breakpoints. There are two type of breakpoints. One is when an action (indicated by the

user) gets executed, and the other is when the list of possible actions contains one or more

actions on which the user has set a breakpoint.

To module SimulatorData we add the id breakctrl and as data terms break-action,

break end no-break.

process module BreakCtrl
begin

exports
begin

processes
BreakCtrl

end
imports

SimulatorData,
ArchitecturePrimitives

atoms
break
no-break
break-list
no-break-list

definitions
BreakCtrl =

(
rec(actionchooser >> breakctrl, action) .
(

break .
snd(breakctrl >> display, break-action) .
snd(breakctrl >> actionchooser, break)

+ no-break .
snd(breakctrl >> actionchooser, no-break)

)
+ rec(actionchooser >> breakctrl, action-choose-list) .

(
no-break-list .
snd(breakctrl >> actionchooser, action-choose-list)

+ break-list .
snd(breakctrl >> display, break) .
snd(breakctrl >> actionchooser, break)

)
) * delta

end BreakCtrl

In module ActionChooser we replace

rec(kernel >> actionchooser, action-choose-list) .
Choose(random, true)

with

rec(kernel >> actionchooser, action-choose-list) .
(

[random = true] → (
snd(actionchooser >> breakctrl,

action-choose-list) .
(

117

A New PSF Simulator 10

rec(breakctrl >> actionchooser, break) .
force-random-off .
present-list .
Choose(false, true)

+ rec(breakctrl >> actionchooser,
action-choose-list) .

present-list .
Choose(true, true)

)
)

+ [random = false] → (
present-list .
Choose(false, true)

)
)

and

snd(actionchooser >> tracectrl, action) .
rec(tracectrl >> actionchooser, done) .
Choose(random, false)

with

(
[random = true] → (

snd(actionchooser >> breakctrl, action) .
(

rec(breakctrl >> actionchooser, break) .
force-random-off .
Choose(false, false)

+ rec(breakctrl >> actionchooser, no-break) .
snd(actionchooser >> tracectrl, action) .
rec(tracectrl >> actionchooser, done) .
Choose(true, false)

)
)

+ [random = false] → (
snd(actionchooser >> tracectrl, action) .
rec(tracectrl >> actionchooser, done) .
Choose(false, false)

)
)

We also add the introduced actions forced-random-off and present-list to the

atoms section of the module ActionChooser. The action force-random-off is

necessary because it clearly differs from random-off which is invoked by the user. The

action present-list has a more complex explanation. In the old situation this action

could be combined with the receiving of the action-choose-list, we now hav e to do

this later in the process because we first have to check on possible breakpoints in the case of

random simulation.

To module Display we add alternatives for receiving a break-action and a break

message and we add BreakCtrl to SimulatorSystem. The resulting architecture is shown in

Figure 10-5.

118

10.2 Architecture Specification

Kernel

ArchitectureShutdownTraceCtrl

Display

Function StartProcess

ArchitectureControlActionChooser

BreakCtrl

Figure 10-5. Architecture with breakpoints

10.3 System Specification

We take the specification of the architecture of the simulator and turn it into a specification

of a ToolBus application with the use of the techniques described in the previous chapter.

10.3.1 Refining

Here we show the mapping for the vertical implementation of the architecture specification.

We start with some default mappings that only apply when there are no other mappings to

apply.

snd($1 >> $2, $3) → tb-snd-msg($1, $2, tbterm($3))
rec($1 >> $2, $3) → tb-rec-msg($1, $2, tbterm($3))

The $n on the left hand side represent matched terms that have to be filled in on the right

hand side. Below the mappings per module are given.

Kernel

compute-choose-list →

tb-snd-eval(KERNEL, tbterm(compute-choose-list))
action-choose-list →

tb-rec-value(KERNEL, tbterm(action-choose-list))
halt → tb-rec-value(KERNEL, tbterm(halt))
rec(actionchooser >> kernel, action)→

tb-rec-msg(actionchooser, kernel, tbterm(action)) .
tb-snd-do(KERNEL, tbterm(action))

rec(function >> kernel, quit) →

tb-rec-msg(function, kernel, tbterm(quit)) .
tb-snd-do(KERNEL, tbterm(quit))

snd-quit → snd-tb-shutdown
rec(function >> kernel, process-status)→

119

A New PSF Simulator 10

tb-rec-msg(function, kernel,
tbterm(process-status)) .

tb-snd-eval(KERNEL, tbterm(process-status)) .
tb-rec-value(KERNEL, tbterm(process-status))

rec(startprocess >> kernel, start-process)→

tb-rec-msg(startprocess, kernel,
tbterm(start-process)) .

tb-snd-do(KERNEL, tbterm(start-process))

StartProcess

select-start-process →

tb-rec-event(STARTPROCESS, tbterm(start-process)) .
tb-snd-ack-event(STARTPROCESS,

tbterm(start-process))

ActionChooser

force-random-off →

tb-snd-do(ACTIONCHOOSER, tbterm(random-off))
present-list →

tb-snd-do(ACTIONCHOOSER,
tbterm(action-choose-list))

choose-action→

tb-rec-event(ACTIONCHOOSER, tbterm(action)) .
tb-snd-ack-event(ACTIONCHOOSER, tbterm(action))

rec(kernel >> actionchooser, reset)→

tb-rec-msg(kernel, actionchooser, tbterm(reset)) .
tb-snd-do(ACTIONCHOOSER, tbterm(reset))

random-off → tb-rec-event(ACTIONCHOOSER, tbterm(random-off)) .
tb-snd-ack-event(ACTIONCHOOSER, tbterm(random-off))

random-on → tb-rec-event(ACTIONCHOOSER, tbterm(random-on)) .
tb-snd-ack-event(ACTIONCHOOSER, tbterm(random-on))

Function

push-quit → tb-rec-event(FUNCTION, tbterm(quit)) .
tb-snd-ack-event(FUNCTION, tbterm(quit))

push-process-status →

tb-rec-event(FUNCTION, tbterm(process-status)) .
tb-snd-ack-event(FUNCTION, tbterm(process-status))

TraceCtrl

rec(actionchooser >> tracectrl, action)→

tb-rec-msg(actionchooser, tracectrl,
tbterm(action)) .

tb-snd-eval(TRACECTRL, tbterm(action))
trace → tb-rec-value(TRACECTRL, tbterm(trace))
no-trace → tb-rec-value(TRACECTRL, tbterm(no-trace))

BreakCtrl

rec(actionchooser >> breakctrl, action)→

tb-rec-msg(actionchooser, breakctrl,
tbterm(action)) .

tb-snd-eval(BREAKCTRL, tbterm(action))
break → tb-rec-value(BREAKCTRL, tbterm(break))

120

10.3 System Specification

no-break → tb-rec-value(BREAKCTRL, tbterm(no-break))
rec(actionchooser >> breakctrl, action-choose-list)→

tb-rec-msg(actionchooser, breakctrl,
tbterm(action-choose-list)) .

tb-snd-eval(BREAKCTRL, tbterm(action-choose-list))
break-list → tb-rec-value(BREAKCTRL, tbterm(break))
no-break-list→

tb-rec-value(BREAKCTRL, tbterm(action-choose-list))

Display

rec($1 >> display, $2)→

tb-rec-msg($1, display, tbterm($2)) .
tb-snd-do(DISPLAY, tbterm($2))

We rename all component modules and their main processes by putting a P in front of the

name, indicating a Process in the ToolBus, to distinguish them from the tools for which we

use a T in front of the name and possible adapters for which we use an A.

10.3.2 Constraining

We constrain the ToolBus processes obtained in the previous section with the specification

of the tools. We confine ourselves to the constraining of the process PKernel, since the

constraining of the other processes is rather straightforward and later we shall refine the

Kernel even further. We show the module for the Kernel below. Here the main process

PT-Kernel is the parallel composition of PKernel with the constraining process

TKernel.

process module PKernel
begin

exports
begin

processes
PT-Kernel

end
imports

SimulatorData,
ToolBusPrimitives,
ToolFunctions,
TKernel,
Booleans

processes
PKernel
Kernel : BOOLEAN

variables
wait : → BOOLEAN

definitions
PT-Kernel = PKernel || TKernel
PKernel = Kernel(true)
Kernel(wait) =

(
[wait = false] → (

tb-snd-eval(KERNEL, tbterm(compute-choose-list)) .
(

tb-rec-value(KERNEL,
tbterm(action-choose-list)) .

tb-snd-msg(kernel, actionchooser,

121

A New PSF Simulator 10

tbterm(action-choose-list))
+ tb-rec-value(KERNEL, tbterm(halt)) .

tb-snd-msg(kernel, display, tbterm(halt))
)

) .
Kernel(true)

+ [wait = true] → (
tb-rec-msg(actionchooser, kernel, tbterm(action)) .
tb-snd-do(KERNEL, tbterm(action)) .
Kernel(false)

+ tb-rec-msg(function, kernel, tbterm(quit)) .
tb-snd-do(KERNEL, tbterm(quit)) .
snd-tb-shutdown

+ tb-rec-msg(function, kernel,
tbterm(process-status)) .

tb-snd-eval(KERNEL, tbterm(process-status)) .
tb-rec-value(KERNEL, tbterm(process-status)) .
tb-snd-msg(kernel, display,

tbterm(process-status)) .
Kernel(true)

+ tb-rec-msg(startprocess, kernel,
tbterm(start-process)) .

tb-snd-do(KERNEL, tbterm(start-process)) .
tb-snd-msg(kernel, display,

tbterm(start-process)) .
tb-snd-msg(kernel, actionchooser, tbterm(reset)) .
Kernel(false)

)
)

end PKernel

Where the tool TKernel is specified as follows.

process module TKernel
begin

exports
begin

processes
TKernel

end
imports

SimulatorData,
ToolToolBusPrimitives,
ToolFunctions

atoms
action-choose-list
halt

definitions
TKernel =

tooltb-rec(tbterm(compute-choose-list)) .
(

action-choose-list .
tooltb-snd(tbterm(action-choose-list))

+ halt .
tooltb-snd(tbterm(halt))

) . TKernel
+ tooltb-rec(tbterm(action)) .

TKernel
+ tooltb-rec(tbterm(process-status)) .

tooltb-snd(tbterm(process-status)) .
TKernel

122

10.3 System Specification

+ tooltb-rec(tbterm(start-process)) .
TKernel

+ tooltb-rec(tbterm(quit))
end TKernel

10.3.3 The ToolBus Application

We show how the processes for the tools are imported and put in parallel in the module

SimulatorSystem.

process module SimulatorSystem
begin

exports
begin

processes
SimulatorSystem

end
imports

⋅
⋅

⋅
NewTool {

Tool bound by [
Tool → PT-Kernel

] to PKernel
renamed by [

TBProcess → Kernel
]

},

⋅
⋅

⋅
definitions

SimulatorSystem =
Kernel

|| StartProcess
|| ActionChooser
|| Function
|| TraceCtrl
|| BreakCtrl
|| Display

end SimulatorSystem

And finally we put this in the ToolBus environment.

process module Simulator
begin

imports
NewToolBus {

Application bound by [
Application → SimulatorSystem

] to SimulatorSystem
renamed by [

ToolBus → Simulator
]

}
end Simulator

10.3.4 Further Specification of the Kernel Tool

We want to split the Kernel tool into a separate adapter and tool, so that a final

implementation of the kernel can be used in other applications. We do this again by

123

A New PSF Simulator 10

applying the refining and constraining techniques. We take the specification of the Kernel

tool as given in section 10.3.2 and apply the following mapping, where the first rule is a

default mapping.

tooltb-rec(tbterm($1)) →

tooltb-rec(tbterm($1)) .
tooladapter-snd($1)

action-choose-list →

tooladapter-rec(action-choose-list)
halt → tooladapter-rec(halt)
tooltb-rec(tbterm(process-status))→

tooltb-rec(tbterm(process-status)) .
tooladapter-snd(process-status) .
tooladapter-rec(process-status)

By renaming TKernel into AKernel we obtain the adapter of the Kernel as shown below.

process module AKernel
begin

exports
begin

processes
AKernel

end
imports

SimulatorData,
ToolAdapterPrimitives,
ToolToolBusPrimitives,
ToolFunctions

definitions
AKernel =

tooltb-rec(tbterm(compute-choose-list)) .
tooladapter-snd(compute-choose-list) .
(

tooladapter-rec(action-choose-list) .
tooltb-snd(tbterm(action-choose-list))

+ tooladapter-rec(halt) .
tooltb-snd(tbterm(halt))

) . AKernel
+ tooltb-rec(tbterm(action)) .

tooladapter-snd(action) .
AKernel

+ tooltb-rec(tbterm(process-status)) .
tooladapter-snd(process-status) .
tooladapter-rec(process-status) .
tooltb-snd(tbterm(process-status)) .
AKernel

+ tooltb-rec(tbterm(start-process)) .
tooladapter-snd(start-process) .
AKernel

+ tooltb-rec(tbterm(quit)) .
tooladapter-snd(quit)

end AKernel

Now we specify the new Kernel tool.

process module TKernel
begin

exports
begin

atoms

124

10.3 System Specification

snd : Tterm
rec : Tterm

processes
TKernel

end
imports

SimulatorData
definitions

TKernel =
rec(compute-choose-list) .
(

snd(action-choose-list)
+ snd(halt)
) . TKernel

+ rec(action) .
TKernel

+ rec(process-status) .
snd(process-status) .
TKernel

+ rec(start-process) .
TKernel

+ rec(quit)
end TKernel

We constrain the adapter with the tool as follows.

process module TA-Kernel
begin

imports
NewToolAdapter {

Tool bound by [
tool-snd → snd,
tool-rec → rec,
Tool → TKernel

] to TKernel
Adapter bound by [

Adapter → AKernel
] to AKernel
renamed by [

ToolAdapter → TA-Kernel
]

}
end TA-Kernel

And we change in the module PKernel the constraining by TKernel into TA-Kernel. A

generated animation of the complete specification of the simulator as ToolBus application is

shown in Figure 10-66.

10.4 Implementation

The specification of the tools in the ToolBus application specification of the simulator is

detailed enough to proceed with the implementation of the simulator. Although the

specification of the kernel is far too simple for such a complex tool, it is satisfactory here

because we use the old simulator as base for the new implementation.

6. Generated with a left to right orientation instead of top to bottom

125

A New PSF Simulator 10

TBreakCtrl

ToolBusControl

PFunction

TStartProcess

TKernel

TDisplay

TTraceCtrl

PActionChooser

PTraceCtrl

PBreakCtrl

PStartProcess

PDisplay

PKernel

TFunction

ToolBusShutdown

AKernel

TActionChooser

Figure 10-6. System design of the simulator

10.4.1 Kernel

Using the code of the old simulator as base we obtain an implementation of the kernel by

doing the following

• remove the graphical user interface

• take out the embedded state machine

• add a component interface for communication with the outside world.

Of course the above three items are strongly related. An event originates from the gui and

handling this event can cause a change of state in the state machine.

In the implementation of the kernel an event is received through the component interface.

This event is handled and if necessary a reply is sent back through the component interface.

The component interface actually is an extension of the interface used in the coupling of the

simulator with the animation. The function of the state machine is lifted from the kernel

and is now served by the ToolBus.

The adapter of the kernel is implemented in Perl [67] on top of the general Perl adapter

126

10.4 Implementation

provided with the ToolBus. Perl is chosen because of its powerful regular expression

matching and environment interaction.

10.4.2 Other Tools

The other tools are small and simple, and easy to implement. We therefore do not give a

further description of their implementation. We hav e chosen to implement them in Tcl/Tk,

mainly because of the ease to build a gui within this language, and its widespread

availability.

10.4.3 ToolBus Script

The ToolBus script for controlling the separate tools of the simulator can be derived from

the ToolBus processes in the specification of the simulator as ToolBus application. This

transformation is done by hand mainly because in the specification recursion is used to hold

the state of a process and in a ToolBus script this has to be done with iteration and state

variables.

10.4.4 Simulator

To control the execution of the ToolBus we use a Perl script that sets up the environment in

which the ToolBus and all the tools that make up our application run. This environment is

needed to distribute arguments given on the command line to the different tools.

10.5 Aggregation of GUIs

Except for the kernel, each tool has its own graphical user interface (gui). Because having

several windows on the screen belonging to one application does not look very appealing

and some of the windows can easily be obscured by windows from other applications, it is

better to have a monolithic gui for the simulator. When implementing the gui as a separate

tool all communications with this gui and the other tools have to be done over the ToolBus,

increasing the complexity of the ToolBus script. These communications interfere with the

protocol we specified and validated for the simulator as ToolBus application.

Tcl/Tk, the implementation language we use for the gui’s, has a feature to indicate that a

frame window is to serve as a container of another application and that a toplevel window is

to be used as the child of such a container window. We can use this feature to aggregate the

various gui’s seemingly working as a monolithic gui, without interfering with the protocol

we have specified for the simulator. When doing this, we actually make use of the window

manager for the integration of the gui’s as pictured in Figure 10-7. For a toplevel to act as a

child of a container window, it needs the window id of the parent. So the aggregated gui

implementation has to communicate a window id to each child. The ToolBus script must be

supplied with an initialization phase that receives all the id’s of the container windows from

the aggregated gui and distributes them over the tools. Each tool now first receives its

parent id before doing anything else. From there on, the ToolBus script operates as we have

specified.

127

A New PSF Simulator 10

ToolBus

GUI
tool

gui

tool

gui

tool
. . .

Window Manager

Figure 10-7. Aggregation of gui’s and window manager interaction

Following this scheme, we have implemented a separate tool that does the layout of several

container windows. This layout can be resized as a whole and some windows can be

resized in relation to each other through the use of paned windows.7 The resulting gui is

shown in Figure 10-8. A user preferring a different layout can implement another version

similar to this.

The aggregation of gui’s can be generalized to a plug-in architecture where a main gui

manages the other gui’s according to some scheme. Such a plug-in architecture for gui’s is

used in the implementation of the Meta-Environment (Chapter 6 of [31]).

10.6 Extension with History Mechanism

In this section we describe the extension of the simulator with a history mechanism. The

changes that have to be made to all levels of the design process are dealt with. This will

show the impact of a software evolution process iteration on our design process.

10.6.1 Architecture Specification

The history actions consist of undo, redo, mark, and goto mark. The logical place for

keeping a history is the kernel. We can let the kernel save the current state after every

action it has done, but when running randomly this can use a lot of memory and usually

with an undo the user wants to jump directly to the state before random mode was started.

Since the kernel does not know when the simulator is running randomly, it has to be

informed when to save the current state. The action undo, redo, and goto mark, can all be

seen as a goto to a certain state. So it suffices to add only a save and goto request to the

7. A paned window consists of two horizontal or vertical panes separated by a movable sash, and each pane

containing a window.

128

10.6 Extension with History Mechanism

Figure 10-8. Aggregation of gui’s

kernel. Below we show the changes for the kernel with existing code in grey.

Kernel = Kernel(true)
Kernel(wait) =

(
[wait = false] → (

compute-choose-list .
(

action-choose-list .
snd(kernel >> actionchooser, action-choose-list)

+ halt .
snd(kernel >> actionchooser, halt) .
snd(kernel >> display, halt)

)
) .
Kernel(true)

+ [wait = true] → (

⋅
⋅

⋅
+ rec(actionchooser >> kernel, save) .

Kernel(true)
+ rec(actionchooser >> kernel, goto) .

Kernel(false)
)

)

Note that we also send a halt to the actionchooser now. Previously, in this case there was

nothing to do for the actionchooser, but now a history action can take place.

A history action can be seen as just another action that the user can choose from all possible

129

A New PSF Simulator 10

actions, so the logical place for such an action is in the actionchooser.

ActionChooser = Choose(false, false)
Choose(random, choose) =

rec(kernel >> actionchooser, action-choose-list) .

⋅
⋅

⋅
+ rec(kernel >> actionchooser, halt) .

force-random-off .
Choose(false, true)

+ [choose = true] → (
choose-action .
snd(actionchooser >> kernel, action) .

⋅
⋅

⋅
+ snd(actionchooser >> kernel, save) .

Choose(random, true)
+ [random = false] → (

snd(actionchooser >> kernel, goto) .
Choose(false, false)

)
)

+ rec(kernel >> actionchooser, reset) .
Choose(random, false)

+ [random = true] → (
random-off .
Choose(false, choose)

)
+ [random = false] → (

random-on .
Choose(true, choose)

)

We hav e to turn off the random mode on a halt so that a history action can be chosen. Note

that the actionchooser can do a save also in random mode, what makes other history saving

schemes possible, for instance every n steps.

10.6.2 ToolBus Application Specification

To obtain a ToolBus Application specification with added history mechanism from the

architecture specification, we extend the mapping from section 10.3.1 with the following

rules.

module Kernel

rec(actionchooser >> kernel, save)→

tb-rec-msg(actionchooser, kernel, tbterm(save)) .
tb-snd-do(KERNEL, tbterm(save))

rec(actionchooser >> kernel, goto)→

tb-rec-msg(actionchooser, kernel, tbterm(goto)) .
tb-snd-do(KERNEL, tbterm(goto))

module ActionChooser

save → tb-rec-event(ACTIONCHOOSER, tbterm(save)) .
tb-snd-ack-event(ACTIONCHOOSER, tbterm(save))

goto → tb-rec-event(ACTIONCHOOSER, tbterm(goto)) .
tb-snd-ack-event(ACTIONCHOOSER, tbterm(goto))

The adapter and the kernel tool can simply be extended with alternatives for handling a save

130

10.6 Extension with History Mechanism

and goto as follows.

AKernel =

⋅
⋅

⋅
+ tooltb-rec(tbterm(save)) .

tooladapter-snd(save) .
AKernel

+ tooltb-rec(tbterm(goto)) .
tooladapter-snd(goto) .
AKernel

TKernel =

⋅
⋅

⋅
+ rec(save) .

TKernel
+ rec(goto) .

TKernel

The adaptation of the actionchooser tool is slightly more complicated because we have to

distinguishing the cases when there is a list of actions available to choose from and when

there is not.

TActionChooser = Choose(false)
Choose(random) =

tooltb-rec(tbterm(action-choose-list)) .
(

[random = true] → (

⋅
⋅

⋅
)

+ [random = false] → (
tooltb-snd-event(tbterm(save)) .
tooltb-rec-ack-event(tbterm(save)) .
(

tooltb-snd-event(tbterm(random-on)) .
tooltb-rec-ack-event(tbterm(random-on)) .
tooltb-snd-event(tbterm(action)) .
tooltb-rec-ack-event(tbterm(action)) .
Choose(true)

+ tooltb-snd-event(tbterm(action)) .
tooltb-rec-ack-event(tbterm(action)) .
Choose(random)

+ tooltb-rec(tbterm(reset)) .
Choose(random)

+ History
)

)
)

+ [random = false] → (

⋅
⋅

⋅
)

+ [random = true] → (

⋅
⋅

⋅
)

+ tooltb-rec(tbterm(reset)) .
Choose(random)

+ [random = false] → (
History

131

A New PSF Simulator 10

)
History =

tooltb-snd-event(tbterm(goto)) .
tooltb-rec-ack-event(tbterm(goto)) .
Choose(false)

The actionchooser tool only does a save when random mode is off, and so constrains the

ToolBus process.

10.6.3 Implementation

In order to distinguish the different saves of history we need a unique id for every save.

Then a goto sent by the actionchooser can be supplied with an id so that the kernel can

jump to the right saved history.

The actionchooser needs to generate these id’s. We hav e implemented the id’s as natural

numbers and use ordering for easy lookups by the kernel. A mark of a saved history is

done in the actionchooser by pairing this mark with the id of that save.

The history mechanism in the kernel is based on the history mechanism of the old simulator

with only a few adaptations since some functionality is taken over by the actionchooser.

The gui of the history mechanism is implemented as a separate part of the actionchooser as

shown in Figure 10-9.

Figure 10-9. Aggregation of gui’s with history

10.7 Coupling to Animation

The implementation of the old simulator coupled to the animation was done through the

ToolBus as described in [19]. With that implementation the user could switch between

choosing actions through the animation or from a list of actions. For our new

implementation we have a choice from three possibilities:

• replacement of the actionchooser with the animation,

• use of two choosers controlled by the ToolBus,

• combination of the two choosers in one tool.

We choose to combine the two choosers, because both are implemented in Tcl/Tk and

therefore the animation can be implemented as a toplevel window in the actionchooser with

132

10.7 Coupling to Animation

easy control of both choosers, and without change in the graphical user interface. With this

choice there is no need for adaptation of the architecture either.

10.8 Features Not Implemented

Here we mention the features of the old simulator that are not implemented by the new

simulator because they are seldom used. We giv e some indications on how these features

can be implemented.

weighted random

Normally all actions have equal chance to be picked randomly. With weighted

random the position of an action in the process tree is taken into account. For

instance, an action in parallel with a process that spans many actions gets a very

low chance to be chosen because of all these actions, but with weighted random

its chance stays the same, and the actions of the parallel process get a combined

weight equal to the weight of that one action.

This can easily be implemented by letting the kernel send weights with each

action in the action-choose-list.

(re)load specification

Because of the very short start up time of the old simulator, this feature is seldom

used. The start up time of the new simulator does not differ much.

It can be implemented by letting the kernel do a clean up and start with a new

specification or by shooting off the kernel and starting a new one.

trace to standard output / from standard input

With trace to standard output every step of the simulator can be recorded and

played back with trace from standard input. This can be used for demo’s or for

testing starting at a certain point every time, which also can be done with a mark

on a saved history. Although these features are seldom used, they can be very

convenient. Especially trace from standard input, because with that we can build

applications with a stateless kernel for not too large simulations where a complete

trace is fed to the kernel everytime together with a new action, such as a demo on

the world wide web.

Trace to standard output can be implemented by embedding a monitor in the

ToolBus that records all necessary actions, and trace from standard input can be

put in place of the actionchooser.

10.9 Comparison of Implementations

In Table 10-1 we show the lines of code for the two implementations. The new

implementation takes considerably less lines of code mainly because Tcl/Tk and Perl code

as TB scripts are very expressive, but it is also caused by the reduction of the complexity of

the code. The left out features also play a role here but not by a large amount.

The new implementation should be easier to maintain because of the reduction in lines of

code and complexity, although it requires the knowledge of several more implementation

languages. The specifications of the architecture and the simulator as ToolBus application

133

A New PSF Simulator 10

Table 10-1. Lines of code for the implementations

lines of code

old new
language

C 21076 13884

Tcl/Tk 1550

Perl 179

ToolBus script 281

total 21076 15894

play an important role here, since they can be used not only to get familiar with the design

but also for testing changes and new features.

The graphical user interface has improved a lot, but it can also easily be altered. It should

not be difficult to make an implementation that can be customized according to the

preferences of each user.

The division in components has made reuse of parts of the implementation far more easier.

It can even be used as a framework for simulation of other languages similar to PSF or new

versions of PSF by only providing a different kernel.

The trade-off is that the new implementation is considerably slower, about a factor of thirty.

This is due to the fact that this implementation consists of many processes running at the

same time and the context switching together with the inter-process communications take

up a lot of time. For working interactively this is not a problem, but for large random

simulations, for instance validation testing, it is too slow. This can be partly solved by

running the new simulator on multiple cpu’s, lowering the number of context switches

considerably.

134

Chapter 11

An IDE for PSF

In Chapters 8 and 10 we gained experience on software (re-)engineering with the use of

PSF for existing tools. It is possible that our knowledge of the existing tools has played a

role in the (re-)engineering process. To find out if we are able to develop new tools without

problems with the use of the PSF libraries for architecture and ToolBus application together

with the refinement techniques, we develop an integrated development environment (IDE)

for PSF. The main purpose for the IDE is to provide easy access to tools in the PSF Toolkit

for users not familiar with the Toolkit, and users preferring an IDE to the command-line

interface (CLI).

We use the same development process for the IDE as that described in Chapter 10 for the

new implementation of the simulator. For the development of the architecture specification

we use scenario’s. We start with an architecture specification for a simple scenario and

adapt this specification to incorporate other scenario’s in a stepwise manner.

In section 11.1 we describe the requirements for the IDE. We dev elop an architecture

specification for the IDE in section 11.2 and we refine this architecture specification into a

ToolBus application specification in section 11.3 In section 11.4 we describe the

implementation for the IDE.

11.1 Requirements for the IDE

Every user of the PSF Toolkit has his or her own preferences concerning the way the tools

are applied. Some prefer to be in full control and use a command line approach, or

automate the execution of the tools with script or make-like facilities. Others prefer the

integration of the tools into one larger tool which automates the execution and provides

control through a graphical user interface. The purpose of the IDE for PSF is to support the

last group.

135

An IDE for PSF 11

Functional Requirements

• Integration of editing facilities, compiler, simulator, and animation generator.

• Simple interaction with the user through a consistent graphical user interface.

• Providing clear information on the status of the development process.

• Hiding of the interaction between the tools.

Non-functional Requirements

• Modular design with easy to replace components.

• Use of existing tools in the PSF Toolkit. Any modifications necessary for the

interaction between the tools should be as small as possible and should not alter the

command-line interface of the tools.

• Extendible with other tools.

11.2 Architecture Specification of the IDE

We specify software architecture in PSF with the use of a PSF library providing architecture

primitives. The primitives are snd and rec actions for communication, each taking a

connection and a data term as argument. A connection can be build up with a connection

function >> with two identifiers as arguments, each indicating a component. Processes

describing the software architecture with these primitives can be set in an architecture

environment, also provided by the PSF library. The architecture environment takes care of

encapsulation to enforce the communication between the processes.

To dev elop a specification of the architecture for the IDE, we start with a simple scenario

and try to specify an architecture for just this scenario. We adapt the specification step by

step to incorporate other scenario’s.

11.2.1 Scenario: one module specification

In this scenario our specification consist of only one module. The module can be edited

and compiled until the IDE is stopped.

We need four components, a component for functions on the specification, an editor, a

compiler, and a viewer for possible errors from compilation of the specification. We first

specify the component identifiers and the data we use in our architecture.

data module IDEData
begin

exports
begin

functions
function : → ID
editor : → ID
compiler : → ID
errorviewer : → ID

136

11.2 Architecture Specification of the IDE

edit-module : → DATA
close-module : → DATA
module-closed : → DATA
module-written : → DATA
compile : → DATA
errors : → DATA
no-errors : → DATA

end
imports

ArchitectureTypes
end IDEData

The functions that can be invoked are to edit, close, and compile the module, and to quit the

IDE. We specify the behaviour of this component as follows

process module Function
begin

exports
begin

processes
Function

end
imports

IDEData,
ArchitecturePrimitives

atoms
edit-module
close-module
compile
push-quit

definitions
Function =

(
edit-module .
snd(function >> editor, edit-module)

+ close-module .
snd(function >> editor, close-module)

+ rec(editor >> function, module-closed)
+ rec(editor >> function, module-written)
+ compile .

snd(function >> compiler, compile) . (
rec(compiler >> function, errors)

+ rec(compiler >> function, no-errors)
)

) *
push-quit .
snd-quit

end Function

The editor can receive requests for starting and closing an editing session, and has user

actions for writing and closing the module. We specify the Editor component as below. In

the remainder we restrict ourselves to show the process definition only and leaving out

other sections and the modular structure unless we think it is necessary for better

understanding of the specification.

Editor =
rec(function >> editor, edit-module) .
start-editor .
Edit

Edit =

137

An IDE for PSF 11

rec(function >> editor, close-module) .
close-editor .
Editor

+ editor-close .
snd(editor >> function, module-closed) .
Editor

+ editor-write .
snd(editor >> function, module-written) .
Edit

The Compiler component reports either successful compilation or unsuccessful compilation

and with the latter also reports the errors encountered.

Compiler =
rec(function >> compiler, compile) . (

snd(compiler >> function, errors) .
snd(compiler >> errorviewer, errors)

+ snd(compiler >> function, no-errors)
) * delta

The ErrorViewer component just displays the errors from compilation.

ErrorViewer =
(

rec(compiler >> errorviewer, errors)
) * delta

We specify the system consisting of the components in parallel as follows.

process module IDESystem
begin

exports
begin

processes
IDESystem

end
imports

Function,
Editor,
Compiler,
ErrorViewer

definitions
IDESystem =

Function
|| Editor
|| Compiler
|| ErrorViewer

end IDESystem

We put this system in the architecture environment by means of binding the main process to

the System parameter of the Architecture module from the Architecture library.

process module IDE
begin

imports
Architecture {

System bound by [
System → IDESystem

] to IDESystem
renamed by [

Architecture → IDE
]

138

11.2 Architecture Specification of the IDE

}
end IDE

The generated animation of this system is shown in Figure 11-1.

ErrorViewer

Compiler Function

ArchitectureShutdown

ArchitectureControl

Editor

Figure 11-1. Animation of architecture for single module specifications

11.2.2 Scenario: multiple module specification

In the next scenario, we deal with a specification consisting of more than one module. To

manage the modules we split the Function component into a new Function component with

only a quit action and a module manager.

Function =
push-quit .
snd(function >> module-manager, quit)

The quit action is sent to the module manager, which can decide on what actions to take

before the actual quitting of the system.

ModuleManager =
(

edit-module .
(

EventsEditorManager *
snd(module-manager >> editor-manager, edit-module)

)
+ close-module .

(
EventsEditorManager *
snd(module-manager >> editor-manager, close-module)

)
+ EventsEditorManager
+ compile .

snd(module-manager >> compiler, compile) . (
rec(compiler >> module-manager, errors)

+ rec(compiler >> module-manager, no-errors)
)

+ rec(function >> module-manager, quit) .
snd-quit

) * delta

139

An IDE for PSF 11

EventsEditorManager =
rec(editor-manager >> module-manager, module-closed)

+ rec(editor-manager >> module-manager, module-written)

We use the construction with the process EventsEditorManager to prevent deadlocks, which

otherwise can occur when the module manager and the editor manager want to send

messages to each other at the same time.

We also introduce an editor manager for dealing with multiple editors.

EditorManager =
(

rec(module-manager >> editor-manager, edit-module) .
start-editor

+ editor-close .
snd(editor-manager >> module-manager, module-closed)

+ editor-write .
snd(editor-manager >> module-manager, module-written)

+ rec(module-manager >> editor-manager, close-module) .
close-editor

) * delta

At any time, the module manager can request to start or to close an editor for a module. An

editor is expected to report on a closure and on writing of the module. We do not keep

track on how many editors there are open at a certain moment, that is up to the

implementation of the editor manager.

Our changes of the architecture to accommodate the scenario result in the generated

animation as shown in Figure 11-2.

EditorManagerModuleManager

ArchitectureControl

ArchitectureShutdown

Compiler

ErrorViewer

Function

Figure 11-2. Animation of architecture for multi module specifications

11.2.3 Scenario: partial compilation

With the previous scenario, we compile the specification as a whole on every compile

request. The PSF compiler however, only applies its steps (parsing, normalizing, flattening)

if necessary for a module, based on the time stamps of the PSF module and the intermediate

files. We want to make it possible for the module manager to issue parse, compile, and

flatten requests whenever it wants. At the same time, we not only want the compiler to

140

11.2 Architecture Specification of the IDE

respond to the request of the module manager, but also to act on its own. This scheme will

be restricted by the implementation of the module manager and compiler (see section

11.3.2, page 149).

We alter the module manager and the compiler components to provide the described

behaviour.

ModuleManager =

⋅
⋅

⋅
+ parse .

(
EventsCompiler *
snd(module-manager >> compiler, parse)

)
+ compile .

(
EventsCompiler *
snd(module-manager >> compiler, compile)

)
+ flatten .

(
EventsCompiler *
snd(module-manager >> compiler, flatten)

)
+ EventsCompiler

⋅
⋅

⋅

We replaced the previous compile action with separate parse, compile, and flatten actions.

In the same manner as with events from the editor manager, we make a construction for

dealing with events from the compiler in order to prevent deadlocks.

EventsCompiler =
rec(compiler >> module-manager, parse-ok)

+ rec(compiler >> module-manager, parse-uptodate)
+ rec(compiler >> module-manager, parse-error)
+ rec(compiler >> module-manager, compile-ok)
+ rec(compiler >> module-manager, compile-uptodate)
+ rec(compiler >> module-manager, compile-error)
+ rec(compiler >> module-manager, flatten-ok)
+ rec(compiler >> module-manager, flatten-uptodate)
+ rec(compiler >> module-manager, flatten-error)

The compiler receives parse, compile, and flatten requests from the module manager and

sends results of parse, compile, and flatten action to the module manager.

Compiler =
(

rec(module-manager >> compiler, parse)
+ parse-ok .

snd(compiler >> module-manager, parse-ok)
+ parse-uptodate .

snd(compiler >> module-manager, parse-uptodate)
+ parse-error .

snd(compiler >> module-manager, parse-error) .
snd(compiler >> errorviewer, errors)

+ rec(module-manager >> compiler, compile)
+ compile-ok .

snd(compiler >> module-manager, compile-ok)

141

An IDE for PSF 11

+ compile-uptodate .
snd(compiler >> module-manager, compile-uptodate)

+ compile-error .
snd(compiler >> module-manager, compile-error) .
snd(compiler >> errorviewer, errors)

+ rec(module-manager >> compiler, flatten)
+ flatten-ok .

snd(compiler >> module-manager, flatten-ok)
+ flatten-uptodate .

snd(compiler >> module-manager, flatten-uptodate)
+ flatten-error .

snd(compiler >> module-manager, flatten-error) .
snd(compiler >> errorviewer, errors)

) * delta

As mentioned above, we want the compiler to honour the requests of the module manager

and also the possibility to act on its own. Therefore, we did not specify a relation between

a request and sending the result of an action here.

11.2.4 Scenario: import modules from a library

Some of the modules which are imported may come from a library. We introduce a library

manager for adding, deleting and re-ordering a list of libraries. Every time a change of this

list occurs the list has to be sent to the compiler, so that it knows where to look for imported

modules.

We specify the library manager as follows.

LibraryManager =
(

set-libraries .
snd(library-manager >> compiler, set-libraries)

) * delta

To the specification of the compiler we add the following alternative.

+ rec(library-manager >> compiler, set-libraries)

11.2.5 Scenario: simulation

Next to compilation, an IDE should also support tools to act on the compiled specification,

such as a simulator. These tools can act on a TIL (Tool Interface Language) specification.

A TIL specification is the result of compilation of a PSF specification.

To the module manager we add the alternatives to send new and delete notifications on TIL

specifications.

+ new-tilspecification .
snd(module-manager >> simulator, new-tilspecification)

+ delete-tilspecification .
snd(module-manager >> simulator, delete-tilspecification)

We add a simulator component to our specification.

Simulator =
(

rec(module-manager >> simulator, new-tilspecification)

142

11.2 Architecture Specification of the IDE

+ rec(module-manager >> simulator, delete-tilspecification)
) * delta

The actual running of a simulator is an internal action of this component that we will

specify on a lower level of our design.

The resulting animation is shown in Figure 11-38.

Function

ArchitectureShutdown

ErrorViewerSimulator

CompilerModuleManager

ArchitectureControl

EditorManagerLibraryManager

Figure 11-3. Animation of architecture with simulator

11.2.6 Scenario: simulation and animation

Simulation can be run together with an animation. Such an animation can be generated

from a TIL specification by the animation generator of the PSF Toolkit. To use the

animation generator in the IDE, the module manager also has to send new and delete

notifications to a animation generator component. We specify the animation generator as

follows.

AnimationGenerator =
(

rec(module-manager >> animation-generator,
new-tilspecification)

+ rec(module-manager >> animation-generator,
delete-tilspecification)

+ new-animation .
snd(animation-generator >> simulator, new-animation)

+ animationgeneration-error .
snd(animation-generator >> simulator,

animationgeneration-error) .
snd(animation-generator >> errorviewer, errors)

) * delta

We also add alternatives to the simulator for receiving the notifications from the animation

generator.

8. The layout of the components in the animation is generated by the program dot, which is part of the graph

visualization software package Graphviz [22]. It is not always the best layout possible.

143

An IDE for PSF 11

11.3 System Specification of the IDE

We derive a specification of the IDE as a ToolBus application from the specification of the

architecture of the IDE by applying the implementation techniques action refinement and

process constraining.

11.3.1 Action Refinement

We show the refinements for a vertical implementation of the architecture specification. We

start with some default mappings, which are to be applied when there are no other

mappings to apply.

snd($1 >> $2, $3) → tb-snd-msg($1, $2, tbterm($3))
rec($1 >> $2, $3) → tb-rec-msg($1, $2, tbterm($3))

The $n on the left hand side represent matched terms that have to be filled in on the right

hand side. Below the mappings per module (component) are given.

Function

push-quit → tb-rec-event(MODULEMANAGER, tbterm(quit)) .
tb-snd-ack-event(MODULEMANAGER, tbterm(quit))

ModuleManager

edit-module →

tb-rec-event(MODULEMANAGER, tbterm(edit-module)) .
tb-snd-ack-event(MODULEMANAGER,

tbterm(edit-module))
close-module →

tb-rec-event(MODULEMANAGER, tbterm(close-module)) .
tb-snd-ack-event(MODULEMANAGER,

tbterm(close-module))
parse → tb-rec-event(MODULEMANAGER, tbterm(parse)) .

tb-snd-ack-event(MODULEMANAGER, tbterm(parse))
compile → tb-rec-event(MODULEMANAGER, tbterm(compile)) .

tb-snd-ack-event(MODULEMANAGER, tbterm(compile))
flatten → tb-rec-event(MODULEMANAGER, tbterm(flatten)) .

tb-snd-ack-event(MODULEMANAGER, tbterm(flatten))
new-tilspecification →

tb-rec-event(MODULEMANAGER,
tbterm(new-tilspecification)) .

tb-snd-ack-event(MODULEMANAGER,
tbterm(new-tilspecification))

delete-tilspecification →

tb-rec-event(MODULEMANAGER,
tbterm(delete-tilspecification)) .

tb-snd-ack-event(MODULEMANAGER,
tbterm(delete-tilspecification))

rec(compiler >> module-manager, $1) →

tb-rec-msg(compiler, module-manager, tbterm($1)) .
tb-snd-do(MODULEMANAGER, tbterm($1))

rec(editor-manager >> module-manager, $1) →

tb-rec-msg(editor-manager, module-manager,
tbterm($1)) .

tb-snd-do(MODULEMANAGER, tbterm($1))

144

11.3 System Specification of the IDE

snd-quit → snd-tb-shutdown

EditorManager

start-editor →

tb-snd-do(EDITORMANAGER, tbterm(start-editor))
editor-close →

tb-rec-event(EDITORMANAGER, tbterm(editor-close)) .
tb-snd-ack-event(EDITORMANAGER,

tbterm(editor-close))
editor-write →

tb-rec-event(EDITORMANAGER, tbterm(editor-write)) .
tb-snd-ack-event(EDITORMANAGER,

tbterm(editor-write))
close-editor →

tb-snd-do(EDITORMANAGER, tbterm(close-editor))

Compiler

rec(module-manager >> compiler, parse) →

tb-rec-msg(module-manager, compiler,
tbterm(parse)) .

tb-snd-eval(COMPILER, tbterm(parse))
parse-ok → tb-rec-value(COMPILER, tbterm(parse-ok))
parse-uptodate →

tb-rec-value(COMPILER, tbterm(parse-uptodate))
parse-error →

tb-rec-value(COMPILER, tbterm(parse-error))
rec(module-manager >> compiler, compile) →

tb-rec-msg(module-manager, compiler,
tbterm(compile)) .

tb-snd-do(COMPILER, tbterm(compile))
compile-ok → tb-rec-event(COMPILER, tbterm(compile-ok)) .

tb-snd-ack-event(COMPILER, tbterm(compile-ok))
compile-uptodate →

tb-rec-event(COMPILER, tbterm(compile-uptodate)) .
tb-snd-ack-event(COMPILER,

tbterm(compile-uptodate))
compile-error→

tb-rec-event(COMPILER, tbterm(compile-error)) .
tb-snd-ack-event(COMPILER, tbterm(compile-error))

rec(module-manager >> compiler, flatten) →

tb-rec-msg(module-manager, compiler,
tbterm(flatten)) .

flatten-ok → tb-rec-event(COMPILER, tbterm(flatten-ok)) .
tb-snd-ack-event(COMPILER, tbterm(flatten-ok))

flatten-uptodate →

tb-rec-event(COMPILER, tbterm(flatten-uptodate)) .
tb-snd-ack-event(COMPILER,

tbterm(flatten-uptodate))
flatten-error→

tb-rec-event(COMPILER, tbterm(flatten-error)) .
tb-snd-ack-event(COMPILER, tbterm(flatten-error))

ErrorViewer

rec(compiler >> errorviewer, errors) →

tb-rec-msg(compiler, errorviewer, tbterm(errors)) .
tb-snd-do(ERRORVIEWER, tbterm(errors))

145

An IDE for PSF 11

rec(animation-generator >> errorviewer, errors) →

tb-rec-msg(animation-generator, errorviewer,
tbterm(errors)) .

tb-snd-do(ERRORVIEWER, tbterm(errors))

LibraryManager

set-libraries→

tb-rec-event(MODULEMANAGER,
tbterm(set-libraries)) .

tb-snd-ack-event(MODULEMANAGER,
tbterm(set-libraries))

Simulator

rec(module-manager >> simulator, new-tilspecification) →

tb-rec-msg(module-manager, simulator,
tbterm(new-tilspecification)) .

tb-snd-do(SIMULATOR, tbterm(new-tilspecification))
rec(module-manager >> simulator, delete-tilspecification) →

tb-rec-msg(module-manager, simulator,
tbterm(delete-tilspecification)) .

tb-snd-do(SIMULATOR,
tbterm(delete-tilspecification))

rec(animation-generator >> simulator, new-animation) →

tb-rec-msg(animation-generator, simulator,
tbterm(new-animation)) .

tb-snd-do(SIMULATOR, tbterm(new-animation))
rec(animation-generator >> simulator, animationgeneration-error)

→ tb-rec-msg(animation-generator, simulator,
tbterm(animationgeneration-error)) .

tb-snd-do(SIMULATOR,
tbterm(animationgeneration-error))

AnimationGenerator

rec(module-manager >> animation-generator, new-tilspecification)
→ tb-rec-msg(module-manager, animation-generator,

tbterm(new-tilspecification)) .
tb-snd-do(ANIMATIONGENERATOR,

tbterm(new-tilspecification))
rec(module-manager >> animation-generator,

delete-tilspecification)
→ tb-rec-msg(module-manager, animation-generator,

tbterm(delete-tilspecification)) .
tb-snd-do(ANIMATIONGENERATOR,

tbterm(delete-tilspecification))
new-animation→

tb-rec-event(ANIMATIONGENERATOR,
tbterm(new-animation)) .

tb-snd-ack-event(ANIMATIONGENERATOR,
tbterm(new-animation))

animationgeneration-error →

tb-rec-event(ANIMATIONGENERATOR,
tbterm(animationgeneration-error)) .

tb-snd-ack-event(ANIMATIONGENERATOR,
tbterm(animationgeneration-error))

We rename all component modules and their main processes by putting a P in front of the

146

11.3 System Specification of the IDE

original names, indicating a Process in the ToolBus, to distinguish them from the tools for

which we prefix with a T. For possible adapters to be used with a tool we use an A as

prefix.

11.3.2 Constraining

We constrain the ToolBus processes obtained in the previous section with the specification

of the tools. The specification of the tools is given in separate modules and each

constraining of a ToolBus process is done as shown below for the module manager.

process module PT-ModuleManager
begin

exports
begin

processes
PT-ModuleManager

end
imports

PModuleManager,
TModuleManager

definitions
PT-ModuleManager = PModuleManager || TModuleManager

end PT-ModuleManager

In the following we give the specification of tools.

Function

TFunction =
tooltb-snd-event(tbterm(quit)) .
tooltb-rec-ack-event(tbterm(quit))

Module Manager

We decide that the module manager is responsible for the parsing of all modules, and that a

compile request for a particular module is also a flatten request for this module. The

compiler is responsible for compiling other modules this particular module depends on.

A compilation request for a module results in a series of messages on compilation results of

the modules it depends on, ending in an error result or the result of the flattening of the

module.

TModuleManager =
(

new-module
+ delete-module
+ tooltb-snd-event(tbterm(edit-module)) .

tooltb-rec-ack-event(tbterm(edit-module))
+ tooltb-snd-event(tbterm(close-module)) .

tooltb-rec-ack-event(tbterm(close-module))
+ tooltb-rec(tbterm(module-closed))
+ tooltb-rec(tbterm(module-written))
+ tooltb-snd-event(tbterm(parse)) .

tooltb-rec-ack-event(tbterm(parse)) .
(

tooltb-rec(tbterm(parse-ok))

147

An IDE for PSF 11

+ tooltb-rec(tbterm(parse-uptodate))
+ tooltb-rec(tbterm(parse-error))
)

+ tooltb-snd-event(tbterm(compile)) .
tooltb-rec-ack-event(tbterm(compile)) .
(

(
tooltb-rec(tbterm(compile-ok))

+ tooltb-rec(tbterm(compile-uptodate))
) * (

tooltb-rec(tbterm(compile-error))
+ tooltb-rec(tbterm(flatten-ok))
+ tooltb-rec(tbterm(flatten-uptodate))
+ tooltb-rec(tbterm(flatten-error))
)

)
+ tooltb-snd-event(tbterm(new-tilspecification)) .

tooltb-rec-ack-event(tbterm(new-tilspecification))
+ tooltb-snd-event(tbterm(delete-tilspecification)) .

tooltb-rec-ack-event(tbterm(delete-tilspecification))
) * delta

Editor Manager

For the editor manager we use recursion to keep track on the number of open editor

sessions. This is necessary for internal actions of the manager to act on open sessions.

TEditorManager = TEditorManager(nat(ˆ0))
TEditorManager(n) =

tooltb-rec(tbterm(start-editor)) .
TEditorManager(succ(n))

+ [gt(n, nat(ˆ0)) = true] → (
tooltb-snd-event(tbterm(editor-close)) .
tooltb-rec-ack-event(tbterm(editor-close)) .
TEditorManager(pred(n))

+ tooltb-snd-event(tbterm(editor-write)) .
tooltb-rec-ack-event(tbterm(editor-write)) .
TEditorManager(n)

)
+ tooltb-rec(tbterm(close-editor)) .

TEditorManager(pred(n))

Compiler

On a compile request for a particular module the compiler has to compile all the modules

this particular module depends on. The compiler sends result messages for the compilation

of each module separately. Compilation of modules is stopped immediately on an error

result. When there is no compilation error, the module of the request is flattened and a

result message of the flattening is send.

Note that we expect separate requests for parsing each module before a compile request.

The compilation process sends an error result when it needs a module for which the parsing

resulted in an error.

TCompiler =
(

tooltb-rec(tbterm(compile)) . (
(

148

11.3 System Specification of the IDE

compile-ok .
tooltb-snd-event(tbterm(compile-ok)) .
tooltb-rec-ack-event(tbterm(compile-ok))

+ compile-uptodate .
tooltb-snd-event(tbterm(compile-uptodate)) .
tooltb-rec-ack-event(tbterm(compile-uptodate))

) * (
compile-error .
tooltb-snd-event(tbterm(compile-error)) .
tooltb-rec-ack-event(tbterm(compile-error))

+ flatten-ok .
tooltb-snd-event(tbterm(flatten-ok)) .
tooltb-rec-ack-event(tbterm(flatten-ok))

+ flatten-uptodate .
tooltb-snd-event(tbterm(flatten-uptodate)) .
tooltb-rec-ack-event(tbterm(flatten-uptodate))

+ flatten-error .
tooltb-snd-event(tbterm(flatten-error)) .
tooltb-rec-ack-event(tbterm(flatten-error))

)
)

+ tooltb-rec(tbterm(parse)) . (
parse-ok .
tooltb-snd(tbterm(parse-ok))

+ parse-uptodate .
tooltb-snd(tbterm(parse-uptodate))

+ parse-error .
tooltb-snd(tbterm(parse-error))

)
) * delta

Error Viewer

TErrorViewer =
(

tooltb-rec(tbterm(errors))
) * delta

Library Manager

TLibraryManager =
(

tooltb-snd-event(tbterm(set-libraries)) .
tooltb-rec-ack-event(tbterm(set-libraries))

) * delta

Simulator

We use recursion to keep track on whether simulation is going on.

TSimulator = TSimulator(false)
TSimulator(simulating) =

tooltb-rec(tbterm(new-tilspecification)) .
TSimulator(simulating)

+ tooltb-rec(tbterm(delete-tilspecification)) .
TSimulator(simulating)

+ tooltb-rec(tbterm(new-animation)) .
TSimulator(simulating)

+ tooltb-rec(tbterm(animationgeneration-error)) .

149

An IDE for PSF 11

TSimulator(simulating)
+ [simulating = false] → (

simulator-start .
TSimulator(true)

)
+ [simulating = true] → (

simulator-stop .
TSimulator(false)

+ simulator-quit .
TSimulator(false)

)

Animation Generator

TAnimationGenerator =
(

tooltb-rec(tbterm(new-tilspecification))
+ tooltb-rec(tbterm(delete-tilspecification))
+ tooltb-snd-event(tbterm(new-animation)) .

tooltb-rec-ack-event(tbterm(new-animation))
+ tooltb-snd-event(tbterm(animationgeneration-error)) .

tooltb-rec-ack-event(tbterm(animationgeneration-error))
) * delta

11.3.3 The ToolBus Application

We compose the system by importing the constrained ToolBus processes as instances of the

NewTool module from the ToolBus library, and merging them into the system process.

process module IDESystem
begin

exports
begin

processes
IDESystem

end
imports

⋅
⋅

⋅
NewTool {

Tool bound by [
Tool → PT-ModuleManager

] to PT-ModuleManager
renamed by [

TBProcess → ModuleManager
]

},

⋅
⋅

⋅
definitions

IDESystem =
ModuleManager

|| EditorManager
|| Compiler
|| ErrorViewer
|| Simulator
|| AnimationGenerator

end IDESystem

We put the system in the ToolBus application environment by importing the system as

150

11.3 System Specification of the IDE

instance of the NewToolBus module from the ToolBus library.

process module IDE
begin

imports
NewToolBus {

Application bound by [
Application → IDESystem

] to IDESystem
renamed by [

ToolBus → IDE
]

}
end IDE

The resulting animation is shown in Figure 11-4.

ToolBusShutdownToolBusControl

TCompiler

TAnimationGenerator

PErrorViewer

PEditorManager TEditorManager

TErrorViewer

TLibraryManager

TModuleManager

TSimulatorPSimulator

PCompiler

TFunction

PAnimationGenerator

PModuleManager

PFunction

PLibraryManager

Figure 11-4. Animation of the IDE as ToolBus application

11.4 Implementation of the IDE

In the previous section we gav e specifications of the tools which together make up the IDE.

Although these specifications are rough, we consider them detailed enough to proceed with

the implementation of these tools.

151

An IDE for PSF 11

11.4.1 Implementation of the Tools

Function

We implemented the Function component in the language Tcl/Tk [50]. It consists of a

single button for requesting to quit the IDE. We added another button to select a type of

editor, since the implementation of the editor manager makes a choice of editor possible

(see below). We updated the specifications to reflect this possibility.

Module Manager

The module manager controls the operation of the command issued by the user and gives

information on the state of the partial compilation of the modules through a table. Tcl/tk is

used as implementation language.

A PSF module must have a header and a trailer containing the module-name. This seems

superfluous, since a file can only contain one module in the setting of the IDE. However,

we have decided not to alter the module structure. Instead, we generate the header and

trailer whenever the user requests a new module.

Editor Manager

An editor manager has to execute an editor on request, and to manage open sessions and

directing interaction with the editors. Most development environments force an editor upon

the user. It is possible that the user is not familiar with this editor and even has to know

several editors if working with different development environments. Ideally, the user can

choose an editor with which a development environment should interact.

We hav e chosen to reuse the work of de Jong and Kooiker [32]. They implemented an

editor manager which supports interactive editing with the popular editors GNU Emacs [57]

and Vim9 [44]. The manager is implemented as a ToolBus tool and can be integrated in the

IDE without any modifications. It is implemented in the C programming language [33].

Compiler

The compiler acts as a controller for the parser, compiler, and flattener from the PSF

Toolkit. It keeps track of imports by extracting imported modules from a parsed module.

The imports are used to decide on the order of compilation steps of the (intermediate)

modules. The compiler is implemented in Perl [67].

In the setting of the IDE, the parser allows only one module per file and the name of the

module and file must match. Instead of altering the parser to check on this, we

implemented a separate check routine that the compiler invokes prior to the parser.

9. Vim is an improved version of vi, an editor distributed with most Unix-like operating systems.

152

11.4 Implementation of the IDE

Error Viewer

We implemented the error viewer in Tcl/Tk. It consists of a display and a button to clear

the display.

Simulator

The simulator is a wrapper for the simulator from the PSF Toolkit and is implemented in

Tcl/Tk.

Animation Generator

The animation generator is a wrapper for the animation from the PSF Toolkit that provides

control over the many command-line options. It is implemented in Tcl/Tk.

11.4.2 ToolBus Script

The ToolBus script for controlling the separate tools of the simulator can be derived from

the ToolBus processes in the specification of the simulator as ToolBus application. This

transformation is done by hand mainly because in the specification recursion is used to hold

the state of a process and in a ToolBus script this has to be done with iteration and state

variables. Also the data terms have to be refined to contain arguments necessary for

identifying the module the message relates to.

11.4.3 Aggregated GUI

Except for the editor manager and compiler, each tool has its own graphical user interface

(gui). We aggregate these gui’s in the same way we used with the new implementation for

the simulator (see section 10.5). Integrating editor sessions in this gui is not a good idea,

since we make use of existing editors, of which the gui’s do not fit in the gui of the IDE

very well. The resulting gui is shown in Figure 11-5.

153

An IDE for PSF 11

Figure 11-5. Aggregation of gui’s

154

Chapter 12

A Process Algebra Software

Engineering Workbench

In the previous chapters we (re-)engineered some tools for the PSF Toolkit. As part of the

software development process we specified systems on higher levels of abstraction with the

use of PSF and the PSF libraries for Architecture and ToolBus level design. We used the

simulator in combination with the animation facilities of the PSF Toolkit for validating the

specifications. Furthermore, we presented techniques to refine an architecture specification

into a ToolBus specification using horizontal and vertical implementation relations.

In this chapter we describe our software development process more formally by presenting

the tools we use in the development process in a Computer-Aided Software Engineering

(CASE) setting. Furthermore, we generalize the refine step in the development process so

that it can be applied on different levels of design. Several instances of the generalized

refine step can be combined to form a software engineering environment.

We start with an introduction on CASE and the terminology we use in section 12.1,

followed by the presentation of an environment based on the development of architecture

and ToolBus specifications in section 12.2. In the sections 12.3, 12.4, and 12.5 we

generalize the refine step in this environment towards a process algebra software

engineering workbench that can be used to form software engineering environments. We

end with some comments in section 12.6.

12.1 Computer-Aided Software Engineering

Since the early days of developing software, tools are used to assist in the development

process. Initially these were the tools provided by the operating system, such as editors,

compilers, and debuggers. With the demand for larger software systems, the development

process became more complex and expensive, and a need to improve and control the

development process arose. One of the technologies to achieve this is computerized

155

A Process Algebra Software Engineering Workbench 12

applications supporting and (partially) automating software-production activities. This

resulted in many tools for all kinds of activities in the software development process, from

editing and testing tools to management and documentation tools.

With the growth in development and use of these tools also the terminology to denote the

function and activities of these tools has increased. This terminology is often confusing or

misleading. To reason on CASE technology it is necessary to use a fixed terminology. We

use the terminology as proposed by Fuggetta in [21] which has since then been used by

many others. The following three categories are used for classifying CASE technology.

Tools

support individual process tasks.

Workbenches

support process phases or activities and normally consist of a set of tools with

some degree of integration.

Environments

support at least a substantial part of the software process and normally include

several integrated workbenches.

12.2 The PSF-ToolBus Software Engineering Environment

Development of a software system starts with the specification of the architecture for the

software system. This architecture specification consists of components that communicate

with each other. We make use of the PSF Architecture library that provides the primitives

we use in the architecture specification. The system consists of the components put

together in parallel. The system is then put in an architecture environment. Since the

system and the environment are always built in the same way, we can easily generate them.

So specification of an architecture is limited to specification of the components. This gives

an architecture workbench as shown in Figure 12-1. Objects to be specified are presented

as bold boxes, workbench tools as ellipses, and generated objects as slanted boxes.

PSF Arch Lib Components System Env
Architecture

specification

generate Arch

Figure 12-1. The Architecture Workbench

For specification at the ToolBus application level we can make a similar workbench, shown

in Figure 12-2. Again we only need to specify the components, now with the use of the

PSF ToolBus library, and the system and environment are again generated. To derive a

ToolBus application specification from an architecture specification we refine the abstract

actions in the architecture specification to sequences of actions on the ToolBus application

156

12.2 The PSF-ToolBus Software Engineering Environment

PSF TB Lib Components System Env
ToolBus application

specification

generate TB

Figure 12-2. The ToolBus Workbench

level. The refinement can be done automatically by applying a set of mappings on the

specification of the components, resulting in the specification of a set of ToolBus processes.

We constrain these ToolBus processes with (abstract) specifications of the tools.

Constraining can also be done automatically and results in the specification of the

components for the ToolBus application specification.

We hav e implemented tools for automatic application of refinements and constraints. Their

implementations are ad hoc, based on regular expression matching and a standard layout of

the specifications. They definitely need to be improved in order to operate in a more

general way.

Combining the workbenches for architecture level and ToolBus level design and integrating

the refine and constrain steps, we get the PSF-ToolBus software engineering environment

shown in Figure 12-3. We see that the components for the ToolBus application are

generated, so we only have to specify the components on the architecture level and give

proper mappings and constraints (the tools) to obtain a ToolBus application specification.

Also shown in Figure 12-3 is a generation step of a ToolBus-script from the components of

the ToolBus application specification. This step is still to be made by hand since PSF

specifications use recursion for setting the state of a process, and the ToolBus cannot handle

recursive processes. ToolBus scripts use iteration with variable assignment for keeping

track of the state of a process.

12.3 A Generalized PSF Software Engineering Workbench

The Tools in Figure 12-3 can also be ToolBus application specifications developed in a

similar way. Howev er, the refining of architecture specifications is not limited to the level

of ToolBus application specifications. Other levels of design, and even sev eral levels of

refinement connected in series are possible.

We can generalize the refine step in the PSF-ToolBus software engineering environment

resulting in the workbench shown in Figure 12-4. The refine and constrain tools are general

enough to work on the different levels of the design. The generate LevelX tool and PSF

LevelX Library can only be applied at level X .

157

A Process Algebra Software Engineering Workbench 12

PSF Arch Lib Components System Env
Architecture

specification

generate Arch

PSF TB Lib Components System Env
ToolBus application

specification

generate TB

refinemappings

TB Processes

constrainTools

generate TB-script

TB-script

Figure 12-3. The PSF-ToolBus SE Environment

12.4 A Process Algebra Software Engineering Workbench

So far, we used PSF as process algebra language with the workbenches. However, similar

workbenches can be set up for variants of PSF or process algebra based languages similar

to PSF. By generalizing from PSF we obtain a Process Algebra Software Engineering

Workbench.

If this process algebra language can be translated to TIL code, the simulator and animation

tools from the PSF Toolkit can be used. If another intermediate language (or the process

algebra language itself) is used, then a simulator and animation tool for this intermediate

language have to be dev eloped.

When using a different intermediate language, reuse of the simulator from the PSF Toolkit

is possible. In the implementation of the simulator we only need to replace the kernel with

a kernel for the intermediate language, thus reusing the design of the PSF simulator as

158

12.4 A Process Algebra Software Engineering Workbench

PSF LevelX Lib Components System Env
LevelX

specification

generate LevelX

...

refinemappings

LevelX processes

constrainconstraints

...

Figure 12-4. The PSF SE Workbench

presented in Chapter 10.

12.5 Forming an Environment

Several instances of the generalized workbench can be combined to form a software

engineering environment. The instances can be connected in series. The specifications of

the constraining processes can also be developed using instances of the generalized

workbench, leading to an environment in which the workbenches are connected in parallel

as well as in series.

12.6 Comments

Using several levels for design of software systems has some advantages, of which the most

important one is that maintenance becomes easier. Adjustments and changes can be made

at an appropriate abstract level of design and be worked down the lower levels. The

influence of an adjustment or change on design decisions at the lower levels becomes clear

in this process, and can be dealt with at the right level of abstraction. Also, the

specifications are part of the documentation of the software system. Simulation of the

specifications gives a good understanding of the design of the system, certainly in

combination with animations generated from the specifications.

Another advantage is that not only parts of the implementation can be reused for other

159

A Process Algebra Software Engineering Workbench 12

systems, but also the design can be reused. This is especially useful in an environment

where similar products are being made or incorporated in other products.

Using workbenches in the engineering of software systems increases the advantages

mentioned above, since it improves the understanding of the design process. It also gives

the opportunity to reason about the design process in a more abstract setting.

A disadvantage is that the design process can be more time consuming than strictly

necessary for smaller software systems and for systems that are relatively easy to

implement. However, software systems that are used over a long period of time need

maintenance and evolve into larger and more complex systems. Re-engineering the design

of such systems is far more work than a durable design right from the start.

160

Chapter 13

Related Work

In this chapter we briefly discuss some of the work that is related to software engineering

with process algebra. There is much work done in this area, so we limit the description to

work often referred to by others.

13.1 Architecture Description

In the literature several architecture description languages have been proposed, we mention

Aesop [24], C2 [41], Darwin [36], MetaH [9], PADL [7], Rapide [35], SADL [45][46],

UniCon [55], and Wright [3]. A comparison of several ADLs can be found in [42] (January

2000). Some of the ADLs are based on a process algebra, such as Wright, Darwin, and

PADL. A more recent example is π -ADL [47], which is based on the higher-order typed

π -calculus. ACME [25] is an architecture interchange language intended to support the

mapping of architectural specifications from one ADL to another and, hence, enable

integration of support tools across ADLs.

In the comparison from [42] it is argued that an ADL must explicitly model components,

connectors, and their configurations. Here, a component is a unit of computation, a

connector models interaction among components, and a configuration is the compostion of

components and connectors. PSF is not an ADL in that it provides a concrete syntax and a

formal, or semi-formal, semantics for specifying software architecture. The PSF

Architecture Library however, makes it possible to specify software architecture in a certain

style, in which the connectors are specified in-line, that is as arguments of the snd and rec

actions in the specification of the components. A more explicit specification of connectors

can be established by parameterizing the components and binding these parameters with the

actual connectors on merging of the components, making the configuration more explicit as

well.

LOTOS [10], a specification language based on (early versions of) the process algebras

Calculus of Communicating Systems (CCS) [43] and Communicating Sequential Processes

(CSP) [28] and that is comparable to PSF, is used in [27] for the formal description of

161

Related Work 13

architectural styles as LOTOS patterns, and in [54] it is used as an ADL for the

specification of middleware behaviour. In [8], an approach for checking deadlock freedom

of software architectures, specified in PADL, is described using a mixture of the process

algebras CCS and CSP.

13.2 Refinement

Refinement is a key issue in formal development of software. Support for refinement is

essential in order to prevent mistakes in the development of a concrete specification from an

abstract one. Most of the ADLs support architecture decomposition, but only a few support

architecture refinement through different abstraction levels (see [42]).

SADL has been especially designed for supporting architecture refinement. In SADL,

different levels of specifications are related by refinement mappings, but the refinement is

only structural. Rapide is used to define architectures based on event processing.

Refinement in Rapide is only behavioural, i.e. relating two architectures by mapping

abstract events and concrete events.

π -ARL [48] is an architecture refinement language (ARL) based on rewriting logic. It

enables the stepwise refinement of software architectures modelled with π -ADL and

supports structural and behavioural refinement.

Our approach supports both structural and behavioural refinement in the form of the

techniques for horizontal and vertical implementation presented in section 9.3. We hav e not

defined a specific language to describe the refinements. However, the mappings of abstract

actions have to be in a particular syntactic form in order to be applied automatically.

13.3 Formal Methods

Formal methods aim to provide full support for formal specification, analysis, and

development of software systems and refer to mathematically based techniques to

accomplish this. Formal development techniques such as B [2], VDM [20], and Z [15]

provide refinement mechanisms, but they do not have support for architecture descriptions.

FOCUS [60] does not address refinement itself, however a variant based on FOCUS

proposes to refine Data-Flow Architectures (FOCUS/DFA) [51]. It is based on the addition

and removal of connections and components.

The π -Method [49] has been built from scratch to support architecture-centric formal

software engineering. It is based on the higher-order typed π -calculus and mainly built

around the architecture description language π -ADL and the architecture refinement

language π -ARL. Tool support comes in the form of a visual modeler, animator, refiner,

and code synthesiser. The aim of this formal method is to provide full support for formal

description and development.

13.4 Workbenches and Environments

To our knowledge there is no work done on generalizing software engineering workbenches

and creating software engineering environments from instances of the generalized

162

13.4 Workbenches and Environments

workbenches. Such workbenches can easily be designed for the π -Method with the use of

its supporting tools.

There are many meta software development environments with which an environment can

be created by integrating a set of existing tools. Such integration can easily be developed

with the PSF-ToolBus software engineering environment as is shown in Chapter 11. Here,

an integrated development environment for PSF is created from the tools of the PSF Toolkit

using the ToolBus to control the communication between the tools.

163

Part IV

Evaluation

Chapter 14

Conclusions

In Part I we set out the aims and scope for this thesis. We introduced the process algebra

based language PSF, and its accompanying toolkit. Furthermore, we introduced the

ToolBus which we use as coordination architecture for the software we develop.

In Part II we have extended the PSF Toolkit with an animation facility coupled to the

simulator. Animations can be built up from standard objects provided by a library. These

animations can be controlled by the simulator or by the animation itself, which means that a

user can select actions to be executed by the simulator through the animation. We also

developed a tool to generate an animation from a specification. Processes are presented by

ellipses and communications between processes by arrows. Although all processes and

communications are visualized in the same way, a generated animation still reflects the

specification in that the nodes and arrows represent (parallel) processes and their

communications in the specification. Therefore it can be very useful in the testing of the

specification.

In Part III we experimented with applying PSF in the field of software engineering. From

an existing specification for the PSF compiler we developed a ToolBus application

specification making use of a PSF library. This PSF ToolBus library has been especially

developed for the specification of ToolBus applications. We used the ToolBus application

specification of the compiler to extract a specification of the architecture of the compiler by

using abstraction. Furthermore, we built a parallel compiler by developing a specification

of the architecture, a refined specification, and an implementation, with maximal reuse of

the specification and implementation for the compiler as ToolBus application.

To support the specification of software architecture we developed a PSF library. We used

this library to develop a new implementation for the simulator from the PSF Toolkit,

starting with an architecture specification and refining this specification to obtain a

specification of the simulator as ToolBus application. This refinement is based on vertical

and horizontal implementation techniques. From the ToolBus application specification an

implementation of the simulator was developed as ToolBus application. We extended the

167

Conclusions 14

new implementation with a history mechanism, illustrating that adding functionality to the

finished product need not lead to any problems in our software development process.

So far we (re-)engineered existing tools. To fully test our software development process we

engineered an IDE for PSF. Because we could make use of the existing implementation of

the tools to be integrated, the focus was completely on the design phase for the IDE. For

this integration, the tools needed no modifications at all. The components that make up the

control of the IDE are kept small and are easily replaceable due to the use of the ToolBus as

coordination architecture. In engineering the IDE we encountered no problems with the use

of the PSF libraries for architecture specification and ToolBus application specification.

The result of our research is a software development process consisting of making an

architecture specification, refining the specification into a ToolBus application specification,

and making an implementation from the ToolBus application specification using the

ToolBus as coordination architecture. We described our software development process

more formally by presenting it in a CASE setting, resulting in the PSF-ToolBus Software

Engineering Environment. We generalized the refinement step in this environment to the

PSF Software Engineering Workbench. Several instances of this workbench can be used to

form a software engineering environment. Generalizing from the specification language in

the PSF Software Engineering Workbench we obtained the Process Algebra Software

Engineering Workbench suitable to form software engineering environments for process

algebra based languages similar to PSF.

14.1 PSF in the Field of Software Engineering

We showed that we can develop software architecture specifications with the use of the PSF

Architecture library. The use of scenario’s enabled a stepwise development. By applying

vertical and horizontal implementation techniques we obtained ToolBus application

specifications based on the PSF ToolBus library. From the ToolBus application

specifications we developed implementations with the use of the ToolBus as coordination

architecture.

We validated the specifications with the use of the simulator from the PSF Toolkit

combined with animation. We think this is the strongest argument for using PSF in

software engineering, because now it is possible to test already in the design phase instead

of having to wait until the implementation phase.

The modular structure of PSF makes it possible to use and develop libraries. The libraries

made it possible to develop workbenches for specifying architectures and ToolBus

applications. The combination of the two workbenches with application of vertical and

horizontal implementation tools resulted in the PSF-ToolBus Software Engineering

Environment.

14.2 Support for Validation of Specifications

In the past we validated many specifications with the use of the PSF Toolkit. The simulator

was heavily used in the validation, but for larger specifications it was difficult to keep track

of the current state. The animation facility improved this a lot, especially the active

168

14.2 Support for Validation of Specifications

animation that shows which action belongs to which process. It was very helpful in the

validation of the design specifications and in playing with ideas for the design.

The use of the PSF Toolkit in the development of tools for the PSF Toolkit shows that it is

very useful, and the addition of an IDE made it more appealing to users that prefer a

graphical user interface to a command line interface.

Because the compiler supports the use of libraries we could use the developed libraries for

architectures and ToolBus applications as standard libraries. This makes it easier to use the

same library for specification instead of a local copy, preventing inconsistencies between

local copies. This also made the development of the workbenches easier.

14.3 Software Engineering

From our experience in software engineering with PSF we can list some advantages of this

approach. We already mentioned the validation of design, that can reveal conceptual and

logical errors in an early phase instead of only in the implementation phase. The validation

of design is also useful in later adaptation and evolution of the software. Changes can be

tested at a higher level of abstraction, giving insight into the impact of the change on the

design and on the effort needed to implement the change.

The animation of the specification can be used in communication to the stakeholders, not

only by showing a boxes-and-lines diagram but also by bringing it to live through

simulation and animation of the specification. In that respect, the animation serves as a

very abstract prototype. It is also useful for showing the design to new members of the

design team. The animation of the specification in fact adds a dimension to the

documentation of the system.

The validation of design gives an immediate feedback in the development process which

can save a lot of effort and costs. Feedback from a later phase in the software development

process can lead to redesign. In the redesign parts from the old design can be used. The

reuse of parts of a design shows which parts in later phases need to be changed and which

do not have to be changed. Of course, design decisions in a later phase can always lead to

new implementation of parts.

The scenario’s used in the design phase can be used as a base for developing test scenario’s

for testing the implementation. They can be seen as an abstract form of test scenario’s.

A disadvantage can be that a thorough knowledge of process algebra is needed by the

design team. However, the animation can help users with insufficient knowledge of process

algebra. It could be of value if a user can build specifications with a visual language that

hides some of the underlying process algebra.

14.4 Usage

Recently (June 2008), software engineering with PSF as described in this thesis has been

used in a case study on a domotics (home automation) application [58]. In this work, a

simulated hardware interface to be controlled through several user interfaces in parallel is

designed and validated. This project was done as a thesis project by a Bachelor student in

169

Conclusions 14

Computer Science who had little knowledge of process algebra. It seemed that due to the

simulation and animation tools for design specifications the project progressed easily. In

particular, the validation of early designs provided sufficient information for improving

these. After a first implementation of the domotics application it was extended with more

features encountering no problems in the various stages of the development process. The

simulation and animation of the architecture specification also appeared to be very

convenient in the presentation of this work. It was concluded that the software engineering

development process described in this thesis was useful. However, it was also concluded

that the workbench tool for constraining needs some further work (see also section 16.4)

because this tool is not capable of handling parameterized processes as used in the

architecture specification of this particular domotics application.

170

Chapter 15

Industrial Application of Software

Engineering with Process Algebra

We concluded that PSF is useful in software engineering and can even improve software

engineering in the design phase. The question arises how to promote its use in industry. In

the article Ten Commandments of Formal Methods [12] by Bowen and Hinchey (1995), it is

concluded that it is difficult to get formal methods accepted by industry. That this is still

true is concluded in the Ten Years Later version of this paper [13]. It must be said that over

the last couple of years formal methods are being applied in industry, but mostly these are

used by people from academia working (temporarily) in industry and not by their co-

workers. Although that is a start and the industry gets acquainted with formal methods, it is

not enough to give formal methods a regular base in industry.

The problem with introducing formal methods in industry is that users do not have

sufficient training to understand the methods and often lack the experience in applying

formal methods. Most of the formal methods and their tools are difficult to use. Another

problem is to show the advantages of formal methods to an industrial audience. Below we

address these problems with respect to software engineering with process algebra.

15.1 Design

A strong point of software engineering with PSF is the validation of design. It allows for

stepwise development of the design by using scenario’s. The scenario’s together with the

animations can be used to show the design decisions in the development process. The

animation of design is very convenient in communication to stakeholders and can be used

to show the advantages of this method.

15.2 Consistency of Design and Implementation

We think that validation of design is a necessity. Without it, faults in the design or poor

171

Industrial Application of Software Engineering with Process Algebra 15

design decisions will find their way into the implementation phase. Fixing these faults in

that stage by going back to the design phase can be very costly. In most cases this is fixed

by altering the implementation without any alteration of the design. This makes

maintenance more difficult (if not hardly possible) and even more costly. In this context,

the increasing use of open source software [1] raises some concerns. All changes in open

source software are made only on the implementation level since there is no design

(available). In some cases there is a maintainer that decides which change gets into the

main version, and thus can keep an eye on the design. In our opinion open source software

needs to have an open design. Validation of design can help in keeping the design

consistent with the implementation.

15.3 Training

We can conclude that in order to get process algebra being applied in industrial software

engineering, the users need some training in process algebra and get experience with its

application. The best way to establish that is to make process algebra part of the

programmes for computer science education, although it will take sev eral years to reach

industry. A short course is necessary to impart people with some knowledge of process

algebra. Animation can be a convenient tool in this course to show the behaviour of

process algebra specifications.

15.4 Tools

For process algebra to be applied in industry, the tools can be a problem. The tools

supporting process algebra need to be made more accessible and need to hide as much as

possible from the details and complexities of process algebra in order to be used by people

without a thorough knowledge of process algebra. At the moment of writing this thesis the

user has to make a specification from which an animation is generated. The other way

around could be better. A user starts with a box-and-line diagram and gives meaning to the

boxes and lines in the form of a small specifications. From these small specifications a full-

blown specification and animation can be generated on which the existing tools can work.

In this way not only the result is appealing, also the way to get to the result might be

appealing.

172

Chapter 16

Further Work

In this chapter we describe our thoughts on further work. Some of these thoughts are on

extension of existing tools but also a proposal for a visual specification tool is made. Other

thoughts are on the extension of the Software Engineering with Process Algebra process.

16.1 Animation

Larger animations can become quite cluttered. Possible reasons for this problem are the

large number of processes and the communications between them, and the size of the

animation that does not fit on the screen. With generated animations, part of this problem is

due to the automatically generated layout, which is not always satisfactory. This is partially

solved by clustering encapsulated processes (surrounded by a rectangle in the animations),

but this usually takes more space. A solution might be to collapse such a cluster to a single

process. All actions inside this cluster can then be considered local actions of this

subsystem process and all communications of processes outside this cluster with processes

inside the cluster become communications with the subsystem process. Typically this can

be done for encapsulated clusters of processes that are also hidden. If during animation the

user likes to see the internals of the subsystem process it can be expanded in the animation

or in a different window.

All processes in the animation are the result of static analysis of the specification. This is

sufficient for most specifications, but sometimes dynamic generation of (a part of) the

animation is necessary in order to do justice to the intended behaviour of the specification.

It can be quite some work to implement this feature, but we believe it is feasible.

16.2 PSF ToolBus Library

The current version of the PSF ToolBus Library only partly implements the actions in the

ToolBus. A possible extension of the library may be the specification of notes, which are

used in the ToolBus for the broadcast of messages and for asynchronous communication.

173

Further Work 16

In order to be able to fully specify ToolBus scripts in PSF the functions and predicates have

to be added to the library. To do this, the terms used in the ToolBus have to be specified in

detail. These are now handled only symbolically.

16.3 System Models

In our research we used only the ToolBus as a target system model. We think that there are

no problems using other models. To really convince ourselves of this and to support

software development with process algebra for other models we have to dev elop PSF

libraries for the specification of these models. Some of these models can be intermixed

allowing for implementation of parts of the system in different models, but they can also be

refinements of other models allowing for more levels of design.

Examples of other system models that we can think of are service oriented architectures

(SOAs) and thread models for making efficient use of multi-core processors. In these

models parallelism plays a role, but also models for non-parallel applications are possible,

such as a function call mechanism. A function call mechanism consists after all of

communication of the arguments to an object capable of performing a particular function,

function execution, and communication of a return value back to the caller of the function.

16.4 Workbench Tools

In the PSF-ToolBus Software Engineering Environment we use a refine and a constrain

tool. At the moment these are ad hoc tools based on matching of regular expressions and a

standard layout of the specifications. These tools are automatically applied in the

development of the tools described in this thesis, without the need for modification by hand.

For general use however, certainly in industry, they hav e to be made more robust. The tools

should accept any layout, be capable of handling all features of PSF, and be more flexible

with the naming of processes. Possibly, tools for making the input (mappings and

constraints) are needed to aid in the development process.

16.5 Visual Specification Language

Up to now we dev eloped specifications and generated animations from these. As

mentioned in section 15.4, for users with little knowledge of process algebra it can be

convenient to start with a box-and-line diagram and give meaning to the boxes and lines in

the form of small specifications. From the diagram and specifications a full-blown

specification may be generated on which the current tools can work. To do this, a visual

specification language is needed and a tool for editing specifications in this language. The

full-blown specification can be hidden from the user by integrating the editing tool in a

development environment.

174

16.5 Visual Specification Language

175

Bibliography

[1] Open Source Initiative, url: http://www.opensource.org/.

[2] J.R. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge University

Press, 1996.

[3] R. Allen and D. Garlan, ‘‘A Formal Basis for Architectural Connection,’’ ACM

Tr ansaction on Software Engineering and Methodology, no. 6, pp. 213-249, 1997.

[4] J.A. Bergstra and J.W. Klop, ‘‘Process algebra for synchronous communication,’’

Information and Control, vol. 60, pp. 109-137, 1984.

[5] J.A. Bergstra, J. Heering, and P. Klint (eds.), ‘‘The Algebraic Specification Formalism

ASF,’’ in Algebraic Specification, ACM Press Frontier Series, pp. 1-66, Addison-

Wesley, 1989.

[6] J.A. Bergstra and P. Klint, ‘‘The discrete time ToolBus,’’ Science of Computer

Programming, vol. 31, no. 2-3, pp. 205-229, July 1998.

[7] M. Bernardo, P. Ciancarini, and L. Donatiello, ‘‘Architecting Families of Software

Systems with Process Algebras,’’ ACM Transactions on Software Engineering and

Methodology, vol. 11, no. 4, pp. 386-426, 2002.

[8] M. Bernardo, P. Ciancarini, and L. Donatiello, ‘‘Detecting Architectural Mismatches

in Process Algebra Descriptions of Software Systems,’’ in Proceeedings 2nd Working

IEEE/IFIP Conference on Software Arc hitecture (WICSA’01), 2001.

[9] P. Binns, M. Engelhart, M. Jackson, and S. Vestal, ‘‘Domain-Specific Software

Architectures for Guidance, Navigation, and Control,’’ International Journal of

Software Engineering and Knowledge Engineering, vol. 6, no. 2, 1996.

[10] T. Bolognesi and E. Brinksma, ‘‘Introduction to the ISO specification language

LOTOS,’’ Computer Networks and ISDN Systems, vol. 14, pp. 25-59, 1987.

[11] L. Bouge and N. Francez, ‘‘A Compositional Approach to Superimposition,’’ in Proc.

of the 14th ACM POPL’88, pp. 240-249, 1988.

[12] J.P. Bowen and M.G. Hinchey, ‘‘Ten Commandments of Formal Methods,’’ IEEE

Computer, vol. 28, no. 4, pp. 56-63, 1995.

177

Bibliography

[13] J.P. Bowen and M.G. Hinchey, ‘‘Ten Commandments of Formal Methods ... Ten Years

Later,’’ IEEE Computer, vol. 39, no. 1, pp. 40-48, 2006.

[14] P. Combes, F. Dubois, and B. Renard, ‘‘An Open Animation Tool: Application to

Telecommunication Systems,’’ Computer Networks, vol. 40, no. 5, pp. 599-620.

[15] J. Davies and J. Woodcock, Using Z: Specification Refinement and Proof,

International Series in Computer Science, Prentice Hall, 1996.

[16] B. Diertens, PSF Home Page, url: http://www.science.uva.nl/˜psf/.

[17] B. Diertens, ‘‘New Features in PSF I - Interrupts, Disrupts, and Priorities,’’ report

P9417, Programming Research Group - University of Amsterdam, June 1994.

[18] B. Diertens and A. Ponse, ‘‘New Features in PSF II - Iteration and Nesting,’’ report

P9425, Programming Research Group - University of Amsterdam, October 1994.

[19] B. Diertens, ‘‘Simulation and Animation of Process Algebra Specifications,’’ report

P9713, Programming Research Group - University of Amsterdam, September 1997.

[20] J. Fitzgerald and P. Larsen, Modelling Systems: Practical Tools and Techniques for

Software Development, Cambridge University Press, 1998.

[21] A. Fuggetta, ‘‘A Classification of CASE Technology,’’ IEEE Computer, vol. 26, no.

12, pp. 25-38, 1993.

[22] E.R. Gansner and S.C. North, ‘‘An Open Graph Visualization System and its

Applications to Software Engineering,’’ Software -- Practice and Experience, vol. 30,

no. 11, pp. 1203-1233, 2000.

[23] H. Garavel, F. Lang, and R. Mateescu, ‘‘An overview of CADP 2001,’’ report 0254,

INRIA, 2001.

[24] D. Garlan, R. Allen, and J. Ockerbloom, ‘‘Exploiting Style in Architectural Design

Environments,’’ in Proceedings SIGSOFT’94: Foundations of Software Engineering,

pp. 175-188, 1994.

[25] D. Garlan, R. Monroe, and D. Wile, ‘‘A CME: An Architecture Description

Interchange Language,’’ in Proceedings of CASCON’97, 1997.

[26] J.F. Groote and A. Ponse, ‘‘Syntax and semantics of µCRL,’’ in Proceeedings 1st

Workshop on the Algebra of Communicating Processes (ACP’94), pp. 26-62, Springer,

1995.

[27] M. Heisel and M. Levy, ‘‘Using LOTOS Patterns to Characterize Architectural

Styles,’’ in Proc. of the 7th International Conference on Algebraic Methodology and

Software Technology, LNCS, 1999.

[28] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

[29] International Organization for Standardization, Information processing systems - Open

systems interconnection - LOTOS - A Formal Description Technique based on the

Temporal Ordering of Observational Behaviour, ISO, 1989.

178

Bibliography

[30] ITU, ‘‘Message Sequence Chart (MSC),’’ ITU-T Z.120, International

Telecommunications Union, Geneva, Switzerland, 2000.

[31] H.A. de Jong, ‘‘Flexible Heterogeneous Software Systems,’’ Ph.D. thesis, University

of Amsterdam, 2007.

[32] H.A. de Jong and A.T. Kooiker, My Favorite Editor Anywhere, Lecture Notes in

Computer Science, 3475, pp. 122-131, Springer-Verlag, 2005.

[33] B.W. Kernighan and D.M. Ritchie, The C Programming Language, second edition,

Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[34] A. Lopes and J.L. Fiadeiro, ‘‘Superposition: Composition vs Refinement of Non-

deterministic, Action-Based Systems,’’ Electronic Notes in Theoretical Computer

Science, vol. 70, no. 3, pp. 352-366, 2002.

[35] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, and W. Mann,

‘‘Specification and Analysis of System Architecture Using Rapide,’’ IEEE

Tr ansactions on Software Engineering, vol. 21, no. 4, pp. 336-355, 1995.

[36] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, ‘‘Specifying Distributed Software

Architectures,’’ in Proc. of the 5th European Software Engineering Conf. (ESEC ’95),

pp. 137-153, LNCS, 1995.

[37] S. Mauw, ‘‘PSF - A Process Specification Formalism,’’ Ph.D. thesis, University of

Amsterdam, 1991.

[38] S. Mauw and G.J. Veltink (eds.), Algebraic Specification of Communication Protocols,

Cambridge Tracts in Theoretical Computer Science 36, Cambridge University Press,

1993.

[39] S. Mauw and G.J. Veltink, ‘‘A Tool Interface Language for PSF,’’ report P8912,

Programming Research Group - University of Amsterdam, October 1989.

[40] S. Mauw and J.C. Mulder, ‘‘A PSF Library of Data Types,’’ in Proceedings of the

ASF+SDF95 Workshop, pp. 53-64, 1995.

[41] N. Medvidovic and D.S. Rosenblum, ‘‘A Language Environment for Architecture-

Based Software Development and Evolution,’’ in Proceedings 21st International

Conference on Softwware Engineering (ICSE’99), pp. 44-53, 1999.

[42] N. Medvidovic and R. Taylor, ‘‘A Classification and Comparison Framework for

Architecture Description Languages,’’ IEEE Transactions on Software Engineering,

vol. 26, no. 1, pp. 70-93, 2000.

[43] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[44] B. Molenaar, Vim the editor, url: http://www.vim.org/.

[45] M. Moriconi, X. Qian, and R.A. Riemenschneider, ‘‘Correct Architecture

Refinement,’’ IEEE Transactions on Software Engineering, vol. 21, no. 4, 1995.

179

Bibliography

[46] M. Moriconi and R.A. Riemenschneider, ‘‘Introduction to SADL 1.0: A Language for

Specifying Software Architecture Hierarchies,’’ technical report SRI-CSL-97-01,

Computer Science Laboratory - SRI international, March 1997.

[47] F. Oquendo, ‘‘π -ADL: An Architecture Description Language based on the Higher

Order Typed π -Calculus for Specifying Dynamic and Mobile Software

Architectures,’’ ACM Software Engineering Notes, vol. 20, no. 3, 2004.

[48] F. Oquendo, ‘‘π -ARL: An Architecture Refinement Language for Formally Modelling

the Stepwise Refinement of Software Architectures,’’ ACM Software Engineering

Notes, vol. 29, no. 5, 2004.

[49] F. Oquendo, ‘‘π -Method: A Model-Driven Formal Method for Architecture-Centric

Software Engineering,’’ ACM Software Engineering Notes, vol. 31, no. 3, 2006.

[50] J.K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.

[51] J. Philipps and B. Rumpe, ‘‘Refinement of Pipe and Filter Architectures,’’ in Proc. of

FM’99, LNCS, 1999.

[52] A. Rensink and R. Gorrieri, ‘‘Action Refinement,’’ in Handbook of Process Algebra,

ed. J.A. Bergstra, A. Ponse, S.A. Smolka, pp. 1047-1147, Elsevier Science, 2001.

[53] A. Rensink and R. Gorrieri, ‘‘Vertical Implementation,’’ Information and

Computation, vol. 170, no. 1, pp. 95-133, 2001.

[54] N.S. Rosa and P.R.F. Cunha, ‘‘A Software Architecture-Based Approach for

Formalising Middleware Behaviour,’’ Electronic Notes in Theoretical Computer

Science, vol. 108, pp. 39-51, 2004.

[55] M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young, and G. Zelesnik,

‘‘Abstractions for Software Architecture and Tools to Support Them,’’ IEEE

Tr ansactions on Software Engineering, vol. 21, no. 4, pp. 314-335, 1995.

[56] I. Sommerville, Software Engineering, 7th edition, Pearson Education, 2004.

[57] R.M. Stallman, ‘‘Emacs the Extensible, Customizable Self-Documenting Display

Editor,’’ Proceedings of the ACM SIGPLAN SIGOA symposium on Text manipulation,

pp. 147-156, 1981.

[58] D. Staudt, ‘‘Engineering a Domotics Application with PSF,’’ bachelor thesis,

Programming Research Group - University of Amsterdam, June 2008.

[59] B. Stepien and L. Logrippo, ‘‘Graphic Visualization and Animation of LOTOS

Execution Traces,’’ Computer Networks, vol. 40, no. 5, pp. 665-681.

[60] K. Stolen and M. Broy, Specification and Development of Interactive Systems,

Monographs in Computer Science, Springer-Verlag, 2001.

[61] K.J. Turner and I.A. Robin, ‘‘An interactive visual protocol simulator,’’ Computer

Standards & Interfaces, vol. 23, pp. 279-310, 2001.

180

Bibliography

[62] G.J. Veltink, ‘‘The PSF Toolkit,’’ Computer Networks and ISDN Systems 25, pp.

875-898, 1993.

[63] G.J. Veltink, ‘‘Tools for PSF,’’ Ph.D. thesis, University of Amsterdam, 1995.

[64] G.J. Veltink, ‘‘From PSF to TIL,’’ report P9009, Programming Research Group -

University of Amsterdam, 1990.

[65] S.F.M. van Vlijmen, P.N. Vriend, and A. van Wav eren, ‘‘Control and Data Transfer in

the Distributed Editor of the ASF+SDF Meta-environment,’’ report P9415,

Programming Research Group - University of Amsterdam, May 1994.

[66] S.F.M. van Vlijmen and A. van Wav eren, ‘‘On Generating Synchronous Interworkings

from PSF Process Traces,’’ report P9304, Programming Research Group - University

of Amsterdam, 1993.

[67] L. Wall, T. Christiansen, and R.L. Schwartz, Programming Perl, O’Reilly &

Associates, Inc., 1996.

[68] J.J. van Wamel, ‘‘A Library for PSF,’’ report P9301, Programming Research Group -

University of Amsterdam, 1993.

181

Appendix A

PSF Specifications

A.1 Alternating Bit Protocol

The Alternating Bit Protocol (ABP) is a simple communication protocol that is often used

as a test case, either for some algebraic formalism or for some tool for the analysis or

verification of concurrent systems. Although it is simple, it contains many interesting

ingredients from concurrency theory. ABP consists of a Sender, a Receiver, and the

channels K and L.

First, Sender reads a message at its input port. This message is extended with a control bit

to form a frame and this frame is sent along channel K . The sending of the frame proceeds

until Sender receives an acknowledgement of a succesful transmission (the control bit) over

channel L. After a succesful transmission Sender flips the control bit and starts all over

again.

Channel K transmits frames from Sender to Receiver. There are two situations that can

occur. The frame is properly transmitted, or the frame is corrupted during transmission.

Receiver reads a frame from channel K . It is assumed that Receiver is able to tell, e.g. by

performing a checksum control, whether or not the frame has been corrupted. When the

frame is correct, Receiver checks the control bit in the frame. If this bit matches the

internal control bit of Receiver, the message in the frame is sent to the output port, and

Receiver sends an acknowledgement with the control bit to Sender over channel L.

Receiver then flips his internal control bit and waits for another frame. In all other cases,

Receiver sends a negative acknowledgement (with a flipped control bit), and waits for a

retransmission of the frame.

Channel L is used to transmit acknowledgements from Receiver to Sender. Like channel

K , it is able to corrupt data. It is assumed that Sender can tell whether an acknowledgement

has been corrupted.

ABP can be specified in PSF as follows.

183

PSF Specifications A

data module Bits
begin

exports
begin

sorts
BIT

functions
0 :→ BIT
1 :→ BIT
flip : BIT → BIT

end
equations
[B1] flip(0) = 1
[B2] flip(1) = 0

end Bits

data module Data
begin

exports
begin

sorts
DATA

functions
’a :→ DATA
’b :→ DATA
’c :→ DATA
’d :→ DATA
’e :→ DATA

end
end Data

data module Frames
begin

exports
begin

sorts
FRAME

functions
frame : BIT # DATA → FRAME
frame-error :→ FRAME

end
imports

Data, Bits
end Frames

data module Acknowledgements
begin

exports
begin

sorts
ACK

functions
ack : BIT → ACK
ack-error :→ ACK

end
imports

Bits
end Acknowledgements

process module ABP
begin

184

A.1 Alternating Bit Protocol

imports
Bits, Data, Frames, Acknowledgements

atoms
input : DATA
send-frame : FRAME
receive-ack-or-error : ACK
receive-frame : FRAME
send-frame-or-error : FRAME
receive-frame-or-error : FRAME
output : DATA
send-ack : ACK
receive-ack : ACK
send-ack-or-error : ACK
frame-comm : FRAME
frame-or-error : FRAME
ack-comm : ACK
ack-or-error : ACK

processes
Sender
Receive-Message : BIT
Send-Frame : BIT # DATA
Receive-Ack : BIT # DATA
K
K : BIT # DATA
Receiver
Receive-Frame : BIT
Send-Ack : BIT
Send-Message : BIT # DATA
L
L : BIT
ABP

sets
of atoms

H = { send-frame(f), receive-frame(f) | f in FRAME }
+ { send-frame-or-error(f), receive-frame-or-error(f)

| f in FRAME }
+ { send-ack(a), receive-ack(a) | a in ACK }
+ { send-ack-or-error(a), receive-ack-or-error(a)

| a in ACK }
I = { frame-comm(f), frame-or-error(f) | f in FRAME }

+ { ack-comm(a), ack-or-error(a) | a in ACK }
of BIT

Bit-Set = { 0, 1 }
communications

send-frame(f) | receive-frame(f) = frame-comm(f)
for f in FRAME

send-frame-or-error(f) | receive-frame-or-error(f) =
frame-or-error(f) for f in FRAME

send-ack(a) | receive-ack(a) = ack-comm(a) for a in ACK
send-ack-or-error(a) | receive-ack-or-error(a) =

ack-or-error(a) for a in ACK
variables

f :→ FRAME
b :→ BIT
d :→ DATA
a :→ ACK

definitions
Sender = Receive-Message(0)
Receive-Message(b) =

sum(d in DATA, input(d) . Send-Frame(b,d))
Send-Frame(b,d) = send-frame(frame(b,d)) . Receive-Ack(b,d)

185

PSF Specifications A

Receive-Ack(b,d) = (
receive-ack-or-error(ack(flip(b)))

+ receive-ack-or-error(ack-error)
) . Send-Frame(b,d)

+ receive-ack-or-error(ack(b)) .
Receive-Message(flip(b))

K = sum(d in DATA, sum(b in Bit-Set,
receive-frame(frame(b,d)) . K(b,d)))

K(b,d) = (
skip . send-frame-or-error(frame(b,d))

+ skip . send-frame-or-error(frame-error)
) . K

Receiver = Receive-Frame(0)
Receive-Frame(b) = (

sum(d in DATA,
receive-frame-or-error(frame(flip(b),d)))

+ receive-frame-or-error(frame-error)
) . Send-Ack(flip(b))

+ sum(d in DATA, receive-frame-or-error(frame(b,d)) .
Send-Message(b,d)

)
Send-Ack(b) = send-ack(ack(b)) . Receive-Frame(flip(b))
Send-Message(b,d) = output(d) . Send-Ack(b)

L = sum(b in Bit-Set, receive-ack(ack(b)) . L(b))
L(b) = (

skip . send-ack-or-error(ack(b))
+ skip . send-ack-or-error(ack-error)
) . L

ABP = hide(I, encaps(H, Sender || Receiver || K || L))
end ABP

A.2 Factory

The factory consist of an input and output, some stations and conveyer belts. It produces

the products A and B, which take slightly different routes through the factory.

data module Products
begin

exports
begin

sorts
PRODUCT

functions
A : → PRODUCT
B : → PRODUCT

end
end Products

data module Stations
begin

exports
begin

sorts
STATION

functions
1 : → STATION

186

A.2 Factory

2 : → STATION
3 : → STATION
4 : → STATION
5 : → STATION
6 : → STATION
eq-stat : STATION # STATION → BOOLEAN
next : STATION # PRODUCT → STATION

end
imports

Booleans, Products
variables

x : → STATION
y : → STATION
p : → PRODUCT

equations
[1] eq-stat(x, x) = true
[2] not(eq-stat(x, y)) = true
[3] next(1, p) = 2
[4] next(2, p) = 3
[5] next(3, A) = 4
[6] next(3, B) = 5
[7] next(4, p) = 5
[8] next(5, p) = 6

end Stations

process module Factory
begin

imports
Stations

atoms
input : PRODUCT
output : PRODUCT
read-input : PRODUCT
send-input : PRODUCT
comm-input : PRODUCT
read-output : PRODUCT
send-output : PRODUCT
comm-output : PRODUCT
to-belt : STATION # STATION # PRODUCT
from-belt : STATION # PRODUCT
comm-belt : STATION # STATION # PRODUCT

processes
Start
Input
Stations
Station : STATION
Output

sets
of PRODUCT

PRODUCT-set = { A, B }
of STATION

STATION-set = { 1, 2, 3, 4, 5, 6 }
of atoms

H = { send-input(p), read-input(p),
send-output(p), read-output(p),
to-belt(x, y, p), from-belt(y, p) | p in PRODUCT,
x in STATION, y in STATION }

communications
send-input(p) | read-input(p) = comm-input(p)

for p in PRODUCT
send-output(p) | read-output(p) = comm-output(p)

187

PSF Specifications A

for p in PRODUCT
to-belt(s1, s2, p) | from-belt(s2, p) = comm-belt(s1, s2, p)

for s1 in STATION, s2 in STATION, p in PRODUCT
variables

s : → STATION
definitions

Start = encaps(H, Input || Stations || Output)
Input = sum(p in PRODUCT-set, input(p) . send-input(p)) .

Input
Stations = merge(s in STATION-set, Station(s))
Station(s) =

[eq-stat(s, 1) = true] → (
sum(p in PRODUCT,

read-input(p) . to-belt(s, next(s, p), p)
) . Station(s)

)
+ [eq-stat(s, 6) = true] → (

sum(p in PRODUCT,
from-belt(s, p) . send-output(p)

) . Station(s)
)

+ [and(not(eq-stat(s, 1)), not(eq-stat(s, 6))) = true] →

(
sum(p in PRODUCT,

from-belt(s, p) . to-belt(s, next(s, p), p)
) . Station(s)

)
Output = sum(p in PRODUCT, read-output(p) . output(p)) .

Output
end Factory

A.3 Scheduled Factory

The modules Products and Stations are the same as for the factory without scheduler.

process module Scheduler
begin

exports
begin

atoms
send-request : STATION # PRODUCT
rec-request : STATION # PRODUCT
comm-request : STATION # PRODUCT
send-next : STATION # STATION
rec-next : STATION # STATION
comm-next : STATION # STATION
send-start : PRODUCT
rec-start : PRODUCT
comm-start : PRODUCT
send-end
rec-end
comm-end

processes
Scheduler

sets
of atoms

HS = { send-request(s1, p), rec-request(s1, p),
send-next(s1, s2), rec-next(s1, s2),
send-start(p), rec-start(p), send-end, rec-end
| s1 in STATION, s2 in STATION, p in PRODUCT }

188

A.3 Scheduled Factory

end
imports

Stations
processes

Next : STATION # PRODUCT # STATION
SubScheduler : STATION # PRODUCT

communications
send-request(s, p) | rec-request(s, p) = comm-request(s, p)

for s in STATION, p in PRODUCT
send-next(s1, s2) | rec-next(s1, s2) = comm-next(s1, s2)

for s1 in STATION, s2 in STATION
send-start(p) | rec-start(p) = comm-start(p)

for p in PRODUCT
send-end | rec-end = comm-end

variables
s : → STATION
n : → STATION
p : → PRODUCT

definitions
Scheduler =

sum(p in PRODUCT,
rec-start(p) .
(

SubScheduler(1, p)
|| Scheduler
)

)
SubScheduler(s, p) =

[not(eq-stat(s, 6)) = true] → (
rec-request(s, p) .
Next(s, p, next(s, p))

)
+ [s = 6] →

rec-end
Next(s, p, n) =

send-next(s, n) .
SubScheduler(n, p)

end Scheduler

process module Factory
begin

imports
Stations,
Scheduler

atoms
input : PRODUCT
output : PRODUCT
read-input : PRODUCT
send-input : PRODUCT
comm-input : PRODUCT
read-output : PRODUCT
send-output : PRODUCT
comm-output : PRODUCT
to-belt : STATION # STATION # PRODUCT
from-belt : STATION # PRODUCT
comm-belt : STATION # STATION # PRODUCT

processes
Start
Input
Stations
Station : STATION

189

PSF Specifications A

Output
sets

of PRODUCT
PRODUCT-set = { A, B }

of STATION
STATION-set = { 1, 2, 3, 4, 5, 6 }

of atoms
H = { send-input(p), read-input(p),

send-output(p), read-output(p),
to-belt(x, y, p), from-belt(y, p) | p in PRODUCT,
x in STATION, y in STATION }

communications
send-input(p) | read-input(p) = comm-input(p)

for p in PRODUCT
send-output(p) | read-output(p) = comm-output(p)

for p in PRODUCT
to-belt(s1, s2, p) | from-belt(s2, p) = comm-belt(s1, s2, p)

for s1 in STATION, s2 in STATION, p in PRODUCT
variables

s : → STATION
definitions

Start = encaps(HS,
Scheduler || encaps(H, Input || Stations || Output))

Input =
sum(p in PRODUCT-set,

input(p) .
send-start(p) .
send-input(p)

) . Input
Stations = merge(s in STATION-set, Station(s))
Station(s) =

[eq-stat(s, 1) = true] → (
sum(p in PRODUCT,

read-input(p) .
send-request(s, p) .
sum(n in STATION,

rec-next(s, n) .
to-belt(s, n, p)

)
) . Station(s)

)
+ [eq-stat(s, 6) = true] → (

sum(p in PRODUCT,
from-belt(s, p) .
send-output(p)

) . Station(s)
)

+ [and(not(eq-stat(s, 1)), not(eq-stat(s, 6))) = true] →

(
sum(p in PRODUCT,

from-belt(s, p) .
send-request(s, p) .
sum(n in STATION,

rec-next(s, n) .
to-belt(s, n, p)

)
) . Station(s)

)
Output =

sum(p in PRODUCT,
read-output(p) .

190

A.3 Scheduled Factory

send-end .
output(p)

) . Output
end Factory

191

Summary

I Introduction

This thesis describes the project of applying process algebra as a formalism in software

engineering and software re-engineering. As specification language the process algebra

based language PSF (Process Specification Formalism) is used. This language is based on

ACP (Algebra of Communicating Processes) and ASF (Algebraic Specification

Formalism). PSF is accompanied by a Toolkit containing amongst other components a

compiler and a simulator. The tools operate around the Tool Interface Language (TIL). As

target software application architecture the ToolBus is used. The ToolBus is a coordination

architecture developed at the University of Amsterdam and CWI. It utilizes a scripting

language based on process algebra to describe the communication between software tools.

The work described in this thesis is motivated by applications of process algebra in

software and software engineering. In software the ToolBus is used for the coordination of

components using scripts. These scripts can get quite large and complex for larger software

systems and the ToolBus provides limited possibilities for debugging the scripts.

Specification of the ToolBus scripts in PSF makes it possible to use the PSF Toolkit to

validate the specifications of the scripts. For specifying software architecture several

Architecture Description Languages (ADLs) exist, some of which are based on a form of

process algebra. Using PSF for the specification of software architecture makes it possible

to validate the software architecture with the use of the PSF Toolkit.

II Animation of Process Algebra Specifications

Validation of specifications is done by simulation. Although the simulator from the PSF

Toolkit is perfectly capable of simulating the behaviour of specifications, for complex

specifications it can be difficult to keep track of what is going on. Visualization of the

current state and of transitions between states is useful for a better understanding. For this

reason, the PSF Toolkit is extended with an animation facility coupled to the simulator.

Animations can be build up from standard objects provided by a library. These animations

can be controlled by the simulator or by the animation itself, which means that a user can

select actions to be executed by the simulator through the animation.

Animations created by hand have the disadvantage that whenever the specification changes,

the animation has to be adapted. This makes animation difficult to use for testing,

193

Summary

especially for larger specifications. To overcome this problem, a tool is developed that

generates an animation from a specification. Processes are presented by ellipses and

communications between processes by arrows. Although all processes and

communications are visualized in the same way, a generated animation still reflects the

specification in that the ellipses and arrows can directly be related to (parallel) processes

and their communications in the specification.

III Software Engineering with PSF

An existing specification for the PSF compiler is used as start-point of the experimentation

with applying PSF in software engineering. From this specification a ToolBus application

specification has been developed making use of a PSF library especially developed for the

specification of ToolBus applications. From the ToolBus application specification of the

compiler a specification of the architecture is extracted by using abstraction. This

architecture specification served as the base for building a parallel compiler, which consists

of developing a specification of the architecture, a refined specification, and an

implementation, with maximal reuse of the specification and implementation for the

compiler as ToolBus application.

To support the specification of software architecture a PSF library has been developed.

This library is used to develop a new implementation for the simulator from the PSF

Toolkit, starting with an architecture specification and refining this specification to obtain a

specification of the simulator as ToolBus application. This refinement is based on

implementation techniques for refinement and constraining. From the ToolBus application

specification an implementation of the simulator has been developed as ToolBus

application. The new implementation has been extended with a history mechanism,

illustrating that adding functionality to the finished product need not lead to any problems

in our software development process.

So far existing tools have been (re-)engineered. To fully test the software development

process an Integrated Development Environment (IDE) for PSF has been engineered.

Because use of the existing implementation of the tools to be integrated could be made, the

focus was completely on the design phase for the IDE. For this integration, the tools

needed no modifications at all. The components that make up the control of the IDE are

kept small and are easily replaceable due to the use of the ToolBus as coordination

architecture. In engineering the IDE there were no problems encountered with the use of

the PSF libraries for architecture specification and ToolBus application specification.

The result of the research is a software development process consisting of making an

architecture specification, refining the specification into a ToolBus application specification,

and making an implementation from the ToolBus application specification using the

ToolBus as coordination architecture. This software development process has been

described more formally by presenting it in a Computer-Aided Software Engineering

(CASE) setting, resulting in the PSF-ToolBus Software Engineering Environment. The

refinement step in this environment has been generalized to the PSF Software Engineering

Workbench. Several instances of this workbench can be used to form a software

engineering environment. Generalizing from the specification language in the PSF

Software Engineering Workbench the Process Algebra Software Engineering Workbench

194

Summary

can be obtained. This workbench is suitable to form software engineering environments for

process algebra based languages similar to PSF.

IV Evaluation

This thesis shows that software architecture specifications can be developed using the PSF

Architecture library. Furthermore, it shows that ToolBus application specifications can be

obtained based on the PSF ToolBus library from these architecture specifications by

applying refining and constraining as implementation techniques. From the ToolBus

application specifications implementations can be developed with the use of the ToolBus as

coordination architecture. The advantage of this process is that the specifications can be

validated with the use of the simulator of the PSF Toolkit combined with animation. This

can reveal conceptual and logical errors in an early phase of the software development

process instead of only in the implementation phase. Another advantage is that animation

of specifications can be used in communication to the stakeholders. It is also useful in

showing the design to new members of the design team. A disadvantage can be that a

thorough knowledge of process algebra is needed by the design team.

Although over the last couple of years formal methods are applied in industry, it is difficult

to get formal methods accepted by industry. The problem is that users do not have

sufficient training to understand the formal methods and that the tools are difficult to use.

Another problem is to show the advantages of formal methods to an industrial audience.

The strong point of software engineering with PSF is the validation of design. The

animation of design is convenient in communication to stakeholders. Faults in the design or

poor design decision can be very costly when they find their way into the implementation

phase. Mostly these are fixed by altering the implementation but not the design, making

maintenance more difficult and costly. Validation of design can help in keeping the design

consistent with the implementation. The best way to give users experience with process

algebra is to make it part of the programmes for computer science education, although it

will take sev eral years to reach industry. Animation can be a convenient tool in the

education. The tools supporting process algebra need to hide as much as possible from the

details and complexities of process algebra.

Further work can be done on the animations as they can become quite cluttered for large

specifications. A solution might be to collapse sub-systems to a single process making all

actions inside a sub-system local actions. The only system model used in this thesis is the

ToolBus. Support for other system models in the form of PSF libraries has to be developed.

Other system models can be Service Oriented Architectures (SOAs), thread models for

making efficient use of multi-core processors, and function call mechanisms. The tools for

refinement and constraining in the PSF-ToolBus Software Engineering Environment have to

be made more robust for general application and tools can be developed to support the

making of the refinements and constraints. To make software engineering with process

algebra more attractive for users with little knowledge of process algebra a visual

specification language can be of use.

195

Summary

196

Samenvatting

I Introductie

Dit proefschrift beschrijft het project van de toepassing van procesalgebra als formalisme in

programmatuur-constructie en re-constructie. Als specificatietaal wordt de op

procesalgebra gebaseerde taal PSF (Proces Specificatie Formalisme) gebruikt. Deze taal is

gebaseerd op ACP (Algebra van Communicerende Processen) en ASF (Algebraische

Specificatie Formalisme). PSF is voorzien van een Gereedschapsset die onder andere een

compiler en een simulator bevat. De gereedschappen opereren rond de Gereedschap

Verbindings Taal. Als doel voor de architectuur van de programmatuurapplicatie wordt de

GereedschapsBus gebruikt. De GereedschapsBus is een coordinatie-architectuur

ontwikkeld aan de Universiteit van Amsterdam en het CWI. Het gebruikt een op

procesalgebra gebaseerde scripttaal om de communicatie tussen programmatuur-

componenten te beschrijven.

Het beschreven werk in dit proefschrift vindt zijn motivatie in toepassingen van

procesalgebra in programmatuur en programmatuurconstructie. In programmatuur wordt

de GereedschapsBus gebruikt voor de coordinatie van componenten door middel van

scripts. Deze scripts kunnen vrij groot en complex worden voor grotere programmatuur-

systemen en de GereedschapsBus biedt slechts minimale middelen voor het foutvrij maken

van de scripts. Specificatie van de GereedschapsBus-scripts in PSF maakt het mogelijk om

de PSF-Gereedschapsset te gebruiken voor de validatie van de specificaties van de scripts.

Voor het specificeren van programmatuurarchitectuur bestaan verschillende Architectuur

Beschrijvings Talen, waarvan sommigen gebaseerd zijn op procesalgebra. Het gebruik van

PSF voor de specificatie van programmatuurarchitectuur maakt het mogelijk om de

programmatuurarchitectuur te valideren met behulp van de PSF-Gereedschapsset.

II Animatie van Procesalgebra Specificaties

Validatie van specificaties vindt plaats door middel van simulatie. De simulator uit de PSF-

Gereedschapsset is zeker in staat om het gedrag van de specificaties te simuleren, maar bij

complexe specificaties kan het moeilijk zijn de simulatie te volgen. Visualisatie van de

huidige toestand en de overg angen tussen de toestanden kunnen bijdragen aan een beter

begrip. Om deze reden werd de PSF-Gereedschapsset uitgebreid met een animatiefaciliteit

die gekoppeld kan worden aan de simulator. Animaties kunnen worden opgebouwd uit

standaardobjecten uit een bibliotheek. Deze animaties kunnen onder controle staan van de

197

Samenvatting

simulator of van de animatie zelf. Het laatste betekent dat een gebruiker een door de

simulator te executeren actie kan selecteren via de animatie.

Met de hand gecreeerde animaties hebben als nadeel dat wanneer de specificatie gewijzigd

wordt, de animatie ook gewijzigd moet worden. Dit maakt het moeilijk om animatie te

gebruiken voor testen, in het bijzonder voor grotere specificaties. Om dit probleem te

verhelpen is er een gereedschap ontwikkeld dat een animatie genereert vanuit een

specificatie. Hierbij worden processen afgebeeld als ellipsen en communicaties tussen de

processen als pijlen. Ofschoon alle processen en communicaties op dezelfde wijze worden

afgebeeld weerspiegelt de animatie toch de specificatie doordat de ellipsen en pijlen direct

gerelateerd kunnen worden aan de (parallele) processen en hun communicaties in de

specificatie.

III Programmatuurconstructie met PSF

Een bestaande specificatie voor de PSF-compiler werd gebruikt als startpunt voor het

experimenteren met de toepassing van PSF in programmatuurconstructie. Vanuit deze

specificatie werd een specificatie voor de GereedschapsBus-applicatie ontwikkeld waarbij

gebruik werd gemaakt van een PSF-bibliotheek die speciaal ontwikkeld is voor de

specificatie van GereedschapsBus-applicaties. Vanuit de specificatie voor de compiler als

GereedschapsBus-applicatie werd de architectuur geëxtraheerd door gebruik te maken van

abstractie. Deze architectuurspecificatie werd gebruikt als basis voor het bouwen van een

parallelle compiler, wat bestaat uit het ontwikkelen van een specificatie van de architectuur,

een verfijnde specificatie en een implementatie met maximaal hergebruik van de

specificatie en implementatie voor de compiler als GereedschapsBus-applicatie.

Voor de ondersteuning van de specificatie van programmatuurarchitectuur werd een PSF-

bibliotheek ontwikkeld. Deze bibliotheek werd gebruikt voor het ontwikkelen van een

nieuwe implementatie voor de simulator uit de PSF-Gereedschapsset, beginnend met een

specificatie van de architectuur en een verfijning hiervan om een specificatie van de

simulator als GereedschapsBus-applicatie te verkrijgen. Deze verfijning is gebaseerd op

implementatietechnieken voor verfijning en beperking. Vanuit de specificatie van de

GereedschapsBus-applicatie werd een implementatie voor de simulator als

GereedschapsBus-applicatie ontwikkeld. De nieuwe implementatie werd uitgebreid met

een mechanisme voor historie om te illustreren dat toevoegen van functionaliteit aan een

voltooid produkt niet tot problemen hoeft te leiden in ons ontwikkelingsproces voor

programmatuur.

Tot dusverre werden bestaande gereedschappen ge(re)construeerd. Om het ontwikkelings-

proces voor programmatuur volledig te testen werd een Geintegreerde Ontwikkelings

Omgeving (GOO) voor PSF geconstrueerd. Omdat gebruik kon worden gemaakt van de

bestaande implementaties van de te integreren gereedschappen kwam de focus op de

ontwerp fase voor de GOO te liggen. Voor de integratie was geen aanpassing van de

gereedschappen noodzakelijk. De componenten die de controle over de GOO vormen zijn

klein gehouden en zijn gemakkelijk vervangbaar door het gebruik van de GereedschapsBus

als coordinatie-architectuur. In de ontwikkeling van de GOO traden er geen problemen op

met het gebruik van de PSF-bibliotheken voor specificatie van architectuur en

GereedschapsBus-applicatie.

198

Samenvatting

Het resultaat van dit onderzoek is een ontwikkelingsproces voor programmatuur bestaande

uit het maken van een architectuurspecificatie, verfijning van de specificatie naar een

specificatie van de GereedschapsBus-applicatie en het maken van een implementatie vanuit

de specificatie van de GereedschapsBus-applicatie gebruikmakend van de GereedschapsBus

als coordinatie-architectuur. Dit ontwikkelingsproces voor programmatuur is formeler

beschreven door het te presenteren in een Computer Geassisteerde Programmatuur

Constructie kader, resulterend in de PSF-GereedschapsBus Programmatuur Constructie

Omgeving. De verfijnings stap in deze omgeving werd gegeneraliseerd tot de PSF

Programmatuur Constructie Werkbank. Verscheidene instanties van deze werkbank kunnen

worden gebruikt om een constructie-omgeving voor programmatuur te vormen.

Generalisatie van de specificatietaal in de PSF Programmatuur Constructie Werkbank levert

een Proces-Algebra Programmatuur Constructie Werkbank op. Deze werkbank is geschikt

voor het vormen van constructie-omgevingen voor programmatuur van op procesalgebra

gebaseerde talen vergelijkbaar met PSF.

IV Evaluatie

Dit proefschrift toont aan dat specificaties van programmatuurarchitectuur kunnen worden

ontwikkeld met behulp van de PSF-bibliotheek voor architectuur. Verder toont het aan dat

vanuit deze architectuurspecificaties door het toepassen van verfijning en beperking als

implementatietechnieken specificaties van GereedschapsBus-applicaties verkregen kunnen

worden gebaseerd op de PSF-bibliotheek voor deze GereedschapsBus-applicaties. Vanuit

de specificaties van GereedschapsBus-applicaties kunnen implementaties ontwikkeld

worden die gebruik maken van de GereedschapsBus als coordinatie-architectuur. Het

voordeel van dit proces is dat de specificaties gevalideerd kunnen worden met behulp van

de simulator uit de PSF-Gereedschapsset gecombineerd met animatie. Dit kan conceptuele

en logische fouten onthullen in een vroege fase van het ontwikkelingsproces voor

programmatuur in plaats van pas in de implementatiefase. Een ander voordeel is dat

animatie van specificaties gebruikt kan worden in de communicatie met belanghebbenden.

Animatie is ook bruikbaar in de presentatie van het ontwerp aan nieuwe leden van een

ontwikkelingsteam. Een nadeel zou kunnen zijn dat degelijke kennis van procesalgebra

nodig is bij het ontwikkelingsteam.

Hoewel in de laatste jaren formele methoden worden toegepast in de industrie, is het

moeilijk om formele methoden geaccepteerd te krijgen door de industrie. Het probleem is

dat gebruikers niet voldoende getraind zijn om de formele methoden te begrijpen en dat de

gereedschappen moeilijk in het gebruik zijn. Een ander probleem is de voordelen van

formele methoden duidelijk te maken aan een industrieel publiek. Het sterke punt van

programmatuurconstructie met PSF is de validatie van ontwerp. De animatie van ontwerp

is geschikt in de communicatie met belanghebbenden. Fouten in het ontwerp of slechte

ontwerpbeslissingen kunnen zeer kostbaar worden als zij hun weg vinden naar de

implementatiefase. Meestal worden deze hersteld door de implementatie aan te passen

maar niet het ontwerp, wat onderhoud moeilijker en kostbaarder maakt. Validatie van

ontwerp kan helpen in het consistent houden van ontwerp en implementatie. De beste

manier om gebruikers vertrouwd te maken met procesalgebra is om het onderdeel te maken

van de informatica studieprogramma’s, hoewel het dan enige jaren duurt voordat het de

industrie bereikt. Animatie kan een handig tool zijn bij de educatie. De gereedschappen

199

Samenvatting

die procesalgebra ondersteunen dienen zo veel mogelijk de details en gecompliceerdheid

van procesalgebra te verbergen.

Er kan verder gewerkt worden aan de animaties omdat deze nogal onoverzichtelijk kunnen

worden voor grotere specificaties. Dit kan opgelost worden door het opvouwen van

onderliggende systemen tot een enkel proces waarbij alle acties binnen een onderliggend

systeem lokale acties worden. In dit proefschrift wordt alleen de GereedschapsBus gebruikt

als systeemmodel. Ondersteuning voor andere systeemmodellen in de vorm van PSF-

bibliotheken moet worden ontwikkeld. Andere systeemmodellen kunnen zijn: Service

Georienteerde Architecturen, draadmodellen voor het efficient gebruik maken van

meervoudige-kern processoren, en functie-aanroep mechanismes. De gereedschappen voor

verfijning en beperking in de PSF-GereedschapsBus Programmatuur Constructie Omgeving

dienen meer robuust gemaakt te worden voor algemene toepassing en gereedschappen

kunnen worden ontwikkeld voor het maken van afbeeldingen en beperkingen. Om

programmatuurconstructie met procesalgebra attractiever te maken voor gebruikers met

weinig kennis van procesalgebra kan een visuele specificatietaal nuttig zijn.

200

