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Abstract. Interaction with services provided by an execution environ-
ment forms part of the behaviours exhibited by instruction sequences
under execution. Mechanisms related to the kind of interaction in ques-
tion have been proposed in the setting of thread algebra. Like thread,
service is an abstract behavioural concept. The concept of a functional
unit is similar to the concept of a service, but more concrete. A state
space is inherent in the concept of a functional unit, whereas it is not
inherent in the concept of a service. In this paper, we establish the exis-
tence of a universal computable functional unit for natural numbers and
related results.
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1 Introduction

We take the view that sequential programs are in essence sequences of instruc-
tions, and that interaction with services provided by an execution environment
forms part of the behaviours exhibited by instruction sequences under execution
(see e.g. [1, 8]). The interaction in question is concerned with the processing of
instructions. In earlier work, mechanisms that have a direct bearing on this kind
of interaction have been proposed in the setting of basic thread algebra (see
e.g. [4, 3]). Both thread and service are abstract behavioural concepts.

We experienced recently limitations of the concept of a service because a
state space is not inherent in this concept. This forms the greater part of our
motivation for introducing and studying the concept of a functional unit in this
paper. This concept is similar to the concept of a service, but it is at a lower
level of abstraction. In the concept of a functional unit, a state space is inherent.
Rather than first considering functional units in general for an arbitrary state
space, we first consider the special case where the state space is the set of natural
numbers. This case is arguably the simplest significant case. We establish general
results concerning functional units for natural numbers. The main result is the
existence of a universal computable functional unit for natural numbers. Results
like this one are outside the scope of the concept of a service.

The work presented in this paper belongs to a line of research whose working
hypothesis is that instruction sequence is a central notion of computer science.



In this line of research, program algebra [1] is the setting used for investigating
issues in which instruction sequences are involved. Instruction sequences are also
involved in the issues concerning functional units investigated in this paper. The
starting-point of program algebra is the perception of a program as a single-pass
instruction sequence, i.e. a finite or infinite sequence of instructions of which
each instruction is executed at most once and can be dropped after it has been
executed or jumped over. This perception is simple, appealing, and links up with
practice. Moreover, basic thread algebra [1] is the setting used for modelling the
behaviours exhibited by instruction sequences under execution.1 In this paper,
we use a program notation rooted in program algebra, instead of program algebra
itself.

This paper is organized as follows. First, we give a survey of the program
notation used in this paper (Section 2) and define its semantics using basic
thread algebra (Section 3). Next, we extend basic thread algebra with operators
that are related to the processing of instructions by services (Section 4). Then,
we introduce the concept of a functional unit and related concepts (Section 5).
After that, we investigate functional units for natural numbers (Section 6). We
also make some remarks about functional units for finite state spaces (Section 7).
Finally, we make some concluding remarks (Section 8).

2 PGLB with Boolean Termination

In this section, we give a survey of the program notation PGLBbt. This program
notation is a variant of the program notation PGLB, which belongs to a hierarchy
of program notations rooted in program algebra presented in [1]. PGLBbt is
PGLB with the Boolean termination instructions !t and !f from [3] instead of
the termination instruction ! from [1]. PGLB and PGLBbt are close to existing
assembly languages and have relative jump instructions.

In PGLBbt, it is assumed that a fixed but arbitrary finite set A of basic

instructions has been given. The intuition is that the execution of a basic in-
struction may modify a state and produces t or f at its completion.

PGLBbt has the following primitive instructions:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a forward jump instruction #l;
– for each l ∈ N, a backward jump instruction \#l;
– a positive termination instruction !t;
– a negative termination instruction !f.

PGLBbt programs have the form u1 ; . . . ; uk, where u1, . . . , uk are primitive
instructions of PGLBbt.

On execution of a PGLBbt program, these primitive instructions have the
following effects:

1 In [1], basic thread algebra is introduced under the name basic polarized process
algebra.
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– the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction if t

is produced and otherwise the next primitive instruction is skipped and
execution proceeds with the primitive instruction following the skipped one
– if there is no primitive instruction to proceed with, deadlock occurs;

– the effect of a negative test instruction −a is the same as the effect of +a,
but with the role of the value produced reversed;

– the effect of a plain basic instruction a is the same as the effect of +a,
but execution always proceeds as if t is produced;

– the effect of a forward jump instruction #l is that execution proceeds with
the lth next instruction of the program concerned – if l equals 0 or there is
no primitive instruction to proceed with, deadlock occurs;

– the effect of a backward jump instruction \#l is that execution proceeds with
the lth previous instruction of the program concerned – if l equals 0 or there
is no primitive instruction to proceed with, deadlock occurs;

– the effect of the positive termination instruction !t is that execution termi-
nates and in doing so delivers the Boolean value t;

– the effect of the negative termination instruction !t is that execution termi-
nates and in doing so delivers the Boolean value f.

3 Thread Extraction

In this section, we make precise in the setting of BTAbt (Basic Thread Alge-
bra with Boolean termination) which behaviours are exhibited on execution by
PGLBbt programs. We start by reviewing BTAbt.

In BTAbt, it is assumed that a fixed but arbitrary set A of basic actions,
with tau 6∈ A, has been given. We write Atau for A∪{tau}. The members of Atau

are referred to as actions.
A thread is a behaviour which consists of performing actions in a sequential

fashion. Upon each basic action performed, a reply from an execution environ-
ment determines how it proceeds. The possible replies are the Boolean values t

(standing for true) and f (standing for false). Performing the action tau leads
always to the reply t.

BTAbt has one sort: the sort T of threads. We make this sort explicit because
we will extend BTAbt with additional sorts in Section 4. To build terms of sort
T, BTAbt has the following constants and operators:

– the deadlock constant D : T;
– the positive termination constant S+ : T;
– the negative termination constant S− : T;
– for each a ∈ Atau, the binary postconditional composition operator EaD :

T × T → T.

We assume that there is a countably infinite set of variables of sort T which
includes x, y, z. Terms of sort T are built as usual. We use infix notation for
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Table 1. Axiom of BTAbt

x E tauD y = x E tauD x T1

Table 2. Defining equations for thread extraction operation

|i, u1 ; . . . ; uk| = D if not 1 ≤ i ≤ k

|i, u1 ; . . . ; uk| = a ◦ |i + 1, u1 ; . . . ; uk| if ui = a

|i, u1 ; . . . ; uk| = |i + 1, u1 ; . . . ; uk| E aD |i + 2, u1 ; . . . ; uk| if ui = +a

|i, u1 ; . . . ; uk| = |i + 2, u1 ; . . . ; uk| E aD |i + 1, u1 ; . . . ; uk| if ui = −a

|i, u1 ; . . . ; uk| = |i + l, u1 ; . . . ; uk| if ui = #l

|i, u1 ; . . . ; uk| = |i .− l, u1 ; . . . ; uk| if ui = \#l

|i, u1 ; . . . ; uk| = S+ if ui = !t

|i, u1 ; . . . ; uk| = S− if ui = !f

postconditional composition. We introduce action prefixing as an abbreviation:
a ◦ p, where p is a term of sort T, abbreviates p EaD p.

The thread denoted by a closed term of the form p EaD q will first perform
a, and then proceed as the thread denoted by p if the reply from the execution
environment is t and proceed as the thread denoted by q if the reply from the
execution environment is f. The threads denoted by D, S+ and S− will become
inactive, terminate with Boolean value t and terminate with Boolean value f,
respectively.

BTAbt has only one axiom. This axiom is given in Table 1.
Each closed BTAbt term of sort T denotes a thread that will become inactive

or terminate after it has performed finitely many actions. Infinite threads can be
described by linear recursion. A linear recursive specification over BTAbt is a set
of recursion equations E = {x = tx | x ∈ V }, where V is a set of variables of sort
T and each tx is a BTAbt term of the form D, S+, S− or y EaDz with y, z ∈ V .
We are only interested in models of BTAbt in which linear recursive specifications
have unique solutions. Regular threads, i.e. threads that can only be in a finite
number of states, are solutions of finite linear recursive specifications.

The behaviours exhibited on execution by PGLBbt programs are considered
to be regular threads, with the basic instructions taken for basic actions. The
thread extraction operation | | defines, for each PGLBbt program, the behaviour
exhibited on execution by that PGLBbt program. The thread extraction opera-
tion is defined by |u1 ; . . . ; uk| = |1, u1 ; . . . ; uk|, where the auxiliary operation
| , | is defined by the equations given in Table 2 (for a ∈ A and l, i ∈ N) and
the rule that |i, u1 ; . . . ;uk| = D if ui is the beginning of an infinite jump chain.2

2 This rule can be formalized, cf. [2].
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4 Interaction between Threads and Services

A thread may perform a basic action for the purpose of requesting a service to
process a method and to return a reply value at completion of the processing of
the method. In this section, we extend BTAbt with two operators that relate to
this kind of interaction between threads and services, resulting in TAtsi

bt .
It is assumed that a fixed but arbitrary set M of methods has been given.

Methods play the role of commands. A service is able to process certain methods.
The processing of a method by a service may involve a change of state of the
service and at completion of the processing of the method the service produces
a reply value. The set R of reply values is the set {t, f, d}.

The following is assumed with respect to services:

– a set S of services has been given together with:
• for each m ∈ M, a total function ∂

∂m
: S → S;

• for each m ∈ M, a total function ̺m : S → R;
satisfying the condition that there exists a unique S ∈ S with ∂

∂m
(S) = S

and ̺m(S) = d for all m ∈ M;
– a signature ΣS has been given that includes the following sort:

• the sort S of services;
and the following constant and operators:
• the empty service constant δ : S;
• for each m ∈ M, the derived service operator ∂

∂m
: S → S;

– S and ΣS are such that:
• each service in S can be denoted by a closed term of sort S;
• the constant δ denotes the unique S ∈ S such that ∂

∂m
(S) = S and

̺m(S) = d for all m ∈ M;
• if closed term t denotes service S, then ∂

∂m
(t) denotes service ∂

∂m
(S).

Moreover, it is assumed that a fixed but arbitrary set F of foci has been given.
Foci play the role of names of services provided by an execution environment.

The two kinds of operators related to the interaction between threads and
services introduced below are called apply operators and reply operators. Apply
operators are concerned with the effects of threads on services and therefore
produces services. Reply operators are concerned with the effects of services on
the Boolean values that threads deliver at their termination. Reply operators do
not only produce Boolean values: they produce a special value in cases where no
termination takes place.

For the set A of basic actions, we take the set {f.m | f ∈ F ,m ∈ M}. Both
kinds of operators mentioned above relate to the processing of methods by ser-
vices provided by an execution environment in pursuance of basic actions per-
formed by a thread. The service involved in the processing of a method is the
service whose name is the focus of the basic action in question.

TAtsi
bt has the sorts, constants and operators of BTAbt and in addition the

following sort:

– the sort R of replies;
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Table 3. Axioms for apply operators

S+ •f H = H SA1

S− •f H = H SA2

D •f H = δ SA4

(tau ◦ x) •f H = x •f H SA5

(x E g.mD y) •f H = δ if f 6= g SA6

(x E f.mD y) •f H = x •f
∂

∂m
(H) if ̺m(H) = t SA7

(x E f.mD y) •f H = y •f
∂

∂m
(H) if ̺m(H) = f SA8

(x E f.mD y) •f H = δ if ̺m(H) = d SA9

Table 4. Axioms for reply operators

S+ !f H = t SR1

S− !f H = f SR2

D !f H = d SR4

(tau ◦ x) !f H = x !f H SR5

(x E g.mD y) !f H = d if f 6= g SR6

(x E f.mD y) !f H = x !f
∂

∂m
(H) if ̺m(H) = t SR7

(x E f.mD y) !f H = y !f
∂

∂m
(H) if ̺m(H) = f SR8

(x E f.mD y) !f H = d if ̺m(H) = d SR9

and the following constants and operators:

– the reply constants t, f, d : R;
– for each f ∈ F , the binary apply operator •f : T × S → S;
– for each f ∈ F , the binary reply operator !f : T × S → R.

We use infix notation for the apply and reply operators.
The service denoted by a closed term of the form p •f C is the service that

results from processing the method of each basic action with focus f that the
thread denoted by p performs by the service denoted by C. When the method
of a basic action performed by a thread is processed by a service, the service
changes in accordance with the method concerned, and affects the thread as
follows: the two ways to proceed reduces to one on the basis of the reply value
produced by the service. The reply denoted by a closed term of the form p !f C
is the reply that results from processing the method of each basic action with
focus f that the thread denoted by p performs by the service denoted by C. The
reply is the Boolean value that the thread denoted by p delivers at termination
if it terminates and the value d (standing for divergent) if it does not terminate.

The axioms of TAtsi
bt are the axioms of BTAbt and the axioms given in Tables 3

and 4. In these tables, f and g stand for arbitrary foci from F , m stands for an
arbitrary method from M, and H stands for an arbitrary term of sort S. The
axioms simply formalize the informal explanation given above and in addition
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stipulate what is the result of apply and reply if inappropriate foci or methods
are involved.

5 Functional Units

In this section, we introduce the concept of a functional unit and related concepts
such as a functional unit degree.

It is assumed that a non-empty set S of states has been given. It is also
assumed that a non-empty set M of method names has been given.

A method operation on S is a total function from S to B×S . A partial method

operation on S is a partial function from S to B × S . We write MO(S ) for the
set of all method operations on S . We write Mr and Me, where M ∈ MO(S ),
for the unique functions R : S → B and E : S → S , respectively, such that
M(s) = (R(s), E(s)) for all s ∈ S .

A functional unit for S is a finite subset H of M × MO(S ) such that
(m,M) ∈ H and (m,M ′) ∈ H implies M = M ′. We write FU(S ) for the
set of all functional units for S . We write I(H), where H ∈ FU(S ), for the set
{m ∈ M | ∃M ∈ MO(S ) • (m,M) ∈ H}. We write mH, where H ∈ FU(S ) and
m ∈ I(H), for the unique M ∈ MO(S ) such that (m,M) ∈ H.

The following is a simple illustration of the use of functional units. A variation
of a Turing machine tape can be modelled by a functional unit for {0, 1}∗×{0, 1}∗

with one method operation for testing the first bit of the second bit sequence,
two method operations for overwriting the first bit of the second bit sequence,
one method operation for moving the last bit of the first bit sequence to the
second bit sequence, and one method operation for moving the first bit of the
second bit sequence to the first bit sequence.

We look upon the set I(H), where H ∈ FU(S ), as the interface of H. It looks
to be convenient to have a notation for the restriction of a functional unit to a
subset of its interface. We write (I,H), where H ∈ FU(S ) and I ⊆ I(H), for
the functional unit {(m,M) ∈ H | m ∈ I}.

According to the definition of a functional unit, ∅ ∈ FU(S ). By that we have
a unique functional unit with an empty interface, which is not very interesting
in itself. However, when considering services that behave according functional
units, ∅ is exactly the functional unit according to which the empty service δ
(the service that is not able to process any method) behaves.

The method names attached to method operations in functional units should
not be confused with the names used to denote specific method operations in
describing functional units. Therefore, we will comply with the convention to use
names beginning with a lower-case letter in the former case and names beginning
with an upper-case letter in the latter case.

We will use PGLBbt programs to derive partial method operations from the
method operations of a functional unit. We write L(f.I), where I ⊆ M, for
PGLBbt with the set {f.m | m ∈ I} taken as the set A of basic instructions.

The derivation of partial method operations from the method operations
of a functional unit involves services whose processing of methods amounts to
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replies and state changes according to corresponding method operations of the
functional unit concerned. These services can be viewed as the behaviours of a
machine, on which the processing in question takes place, in its different states.
We take the set FU(S ) × S as the set S of services. We write H(s), where
H ∈ FU(S ) and s ∈ S , for the service (H, s). The functions ∂

∂m
and ̺m are

defined as follows:

∂
∂m

(H(s)) =

{

H(me
H

(s)) if m ∈ I(H)

∅(0) if m /∈ I(H) ,

̺m(H(s)) =

{

mr
H

(s) if m ∈ I(H)

d if m /∈ I(H) .

We assume that each H(s) ∈ S can be denoted by a closed term of sort S. In
this connection, we use the following notational convention: for each H(s) ∈ S,
H(s) stands for an arbitrary closed term of sort S that denotes H(s).

Let H ∈ FU(S ), and let I ⊆ I(H). Then an instruction sequence x ∈ L(f.I)
produces a partial method operation |x|H as follows:

|x|H(s) = (|x|r
H

(s), |x|e
H

(s)) if |x| !f H(s)= t ∨ |x| !f H(s)= f ,

|x|H(s) is undefined if |x| !f H(s)= d ,

where

|x|r
H

(s) = |x| !f H(s) ,

|x|e
H

(s) = the unique s′ ∈ S such that |x| •f H(s)=H(s′) .

If |x|H is total, then it is called a derived method operation of H.
The binary relation ≤ on FU(S ) is defined by H ≤ H′ iff for all (m,M) ∈ H,

M is a derived method operation of H′. The binary relation ≡ on FU(S ) is
defined by H ≡ H′ iff H ≤ H′ and H′ ≤ H.

Theorem 1.

1. ≤ is transitive;

2. ≡ is an equivalence relation.

Proof. Property 1: We have to prove that H ≤ H′ and H′ ≤ H′′ implies H ≤ H′′.
It is sufficient to show that we can obtain instruction sequences in L(f.I(H′′))
that produce the method operations of H from the instruction sequences in
L(f.I(H′)) that produce the method operations of H and the instruction se-
quences in L(f.I(H′′)) that produce the method operations of H′. Without loss
of generality, we may assume that all instruction sequences are of the form
u1;. . .;uk ;!t;!f, where, for each i ∈ [1, k], ui is a positive test instruction, a forward
jump instruction or a backward jump instruction. Let m ∈ I(H), let M be such
that (m,M) ∈ H, let Pm ∈ L(f.I(H′)) be such that M = |Pm|H′ . Suppose that
I(H′) = {m′

1, . . . ,m
′
n}. For each i ∈ [1, n], let M ′

i be such that (m′
i,M

′
i) ∈ H′,
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let Pm′

i
= ui

1 ; . . . ; ui
ki

; !t ; !f ∈ L(f.I(H′′)) be such that M ′
i = |Pm′

i
|H′′ . Consider

the P ′
m ∈ L(f.I(H′′)) obtained from Pm as follows: for each i ∈ [1, n], (i) first

increase each jump over the leftmost occurrence of +f.m′
i in Pm with ki + 1,

and next replace this instruction by ui
1 ; . . . ; ui

ki
; (ii) repeat the previous step as

long as their are occurrences of +f.m′
i. It is easy to see that M = |P ′

m|H′′ .
Property 2: It follows immediately from the definition of ≡ that ≡ is sym-

metric and from the definition of ≤ that ≤ is reflexive. From these properties,
Property 1 and the definition of ≡, it follows immediately that ≡ is symmetric,
reflexive and transitive. ⊓⊔

The members of the quotient set FU(S )/≡ are called functional unit degrees.
Let H ∈ FU(S ) and D ∈ FU(S )/≡. Then D is a functional unit degree below H
if there exists an H′ ∈ D such that H′ ≤ H.

6 Functional Units for Natural Numbers

In this section, we investigate functional units for natural numbers. The main
consequences of considering the special case where the state space is N are the
following: (i) N is infinite, (ii) there is a notion of computability known which
can be used without further preparations.

An example of a functional unit in FU(N) is an unbounded counter. The
method names involved are setzero, succ, pred, and iszero. The method operations
involved are the functions Setzero, Succ, Pred , Iszero : N → B × N defined as
follows:

Setzero(x) = (t, 0) ,

Succ(x) = (t, x + 1) ,

Pred(x) =

{

(t, x − 1) if x > 0 ,

(f, 0) if x = 0 ,

Iszero(x) =

{

(t, x) if x = 0 ,

(f, x) if x > 0 .

The functional unit Counter is defined as follows:

Counter = {(setzero,Setzero), (succ,Succ), (pred,Pred), (iszero, Iszero)} .

Proposition 1. There are infinitely many functional unit degrees below

({pred, iszero} ,Counter).

Proof. For each n ∈ N, we define a functional unit Hn ∈ FU(N) such that
Hn ≤ ({pred, iszero} ,Counter) as follows:

Hn = {(pred:n,Pred :n), (iszero, Iszero)} ,

where

9



Pred :n =

{

(t, x − n) if x ≥ n

(f, 0) if x < n .

Let n,m ∈ N be such that n < m. Then Pred :n(m) = (t,m−n). However, there
does not exist a P ∈ L(f.I(Hm)) such that |P |Hm

(m) = (t,m − n) because
Pred :m(m) = (t, 0). Hence, Hn 6≤ Hm for all n,m ∈ N with n < m. ⊓⊔

A method operation M ∈ MO(N) is computable if there exist computable
functions F,G : N → N such that M(n) = (Z(F (n)), G(n)) for all n ∈ N, where
Z :N → B is inductively defined by Z(0) = t and Z(n+1) = f. A functional unit
H ∈ FU(N) is computable if, for each (m,M) ∈ H, M is computable.

Theorem 2. Let H,H′ ∈ FU(N) be such that H ≤ H′. Then H is computable

if H′ is computable.

Proof. We will show that all derived method operations of H′ are computable.
Take an arbitrary P ∈ L(f.I(H′)) such that |P |H′ is a derived method op-

erations of H′. It follows immediately from the definition of thread extraction
that |P | is the solution a finite linear recursive specification over BTAbt. Let E
be a finite linear recursive specification over BTAbt of which the solution for x1

is |P |. Because |P |H′ is total, it may be assumed without loss of generality that
D does not occur as the right-hand side of an equation in E. Suppose that

E =
{

xi = xl(i) E f.mi D xr(i) | i ∈ [1, n]
}

∪ {xn+1 = S+, xn+2 = S−} .

From this set of equations, using the relevant axioms and definitions, we obtain
a set of equations of which the solution for F1 is |P |e

H′ :
{

Fi(s) = Fl(i)(mi
e
H′(s)) · sg(χi(s)) + Fr(i)(mi

e
H′(s)) · sg(χi(s)) | i ∈ [1, n]

}

∪ {Fn+1(s) = s, Fn+2(s) = s} ,

where, for every i ∈ [1, n], the function χi : N → N is such that for all s ∈ N:

χi(s) = 0 ⇔ mi
r
H′(s) = t ,

and the functions sg, sg : N → N are defined as usual:

sg(0) = 0 ,

sg(n + 1) = 1 ,

sg(0) = 1 ,

sg(n + 1) = 0 .

It follows from the way in which this set of equations is obtained from E, the
fact that mi

e
H′ and χi are computable for each i ∈ [1, n], and the fact that sg and

sg are computable, that this set of equations is equivalent to a set of equations
by which |P |e

H′ is defined recursively in the sense of Kleene (see [6]). This means
that |P |e

H′ is general recursive, and hence computable.
In a similar way, it is proved that |P |r

H′ is computable. ⊓⊔

A computable H ∈ FU(N) is universal if for each computable L ∈ FU(N),
we have L ≤ H. There exists a universal computable functional unit for natural
numbers.
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Theorem 3. There exists a computable H ∈ FU(N) that is universal.

Proof. We will show that there exists a computable H ∈ FU(N) with the prop-
erty that each computable M ∈ MO(N) is a derived method operation of H.

As a corollary of Theorem 10.3 from [9],3 we have that each computable
M ∈ MO(N) can be computed by means of a register machine with six registers,
say r0, r1, r2, r3, r4, and r5. The registers are used as follows: r0 as input register;
r1 as output register for the output in B; r2 as output register for the output in
N; r3, r4 and r5 as auxiliary registers. The content of r1 represents the Boolean
output as follows: 0 represents t and all other natural numbers represent f. For
each i ∈ [0, 5], register ri can be incremented by one, decremented by one, and
tested for zero by means of instructions ri.succ, ri.pred and ri.iszero, respectively.
We write L(RM6) for PGLBbt with the set {ri.succ, ri.pred, ri.iszero | i ∈ [0, 5]}
taken as the set of basic instructions. Clearly, L(RM6) is adequate to represent
all register machine programs using six registers.

We define a computable functional unit U ∈ FU(N) whose method opera-
tions can simulate the effects of the register machine instructions by encoding
the register machine states by natural numbers such that the contents of the reg-
isters can reconstructed by prime factorization. This functional unit is defined
as follows:

U = {(exp2,Exp2 ), (fact5,Fact5 )}

∪ {(ri:succ,Ri:succ), (ri:pred,Ri:pred), (ri:iszero,Ri:iszero) | i ∈ [0, 5]} ,

where the method operations are defined as follows:

Exp2 (x) = (t, 2x) ,

Fact5 (x) = (t,max {y | ∃z • x = 5y · z})

and, for each i ∈ [0, 5]:4

Ri:succ(x) = (t, pi · x) ,

Ri:pred(x) =

{

(t, x/pi) if pi | x

(f, x) if ¬(pi | x) ,

Ri:iszero(x) =

{

(t, x) if ¬(pi | x)

(f, x) if pi | x ,

where pi is the (i+1)th prime number, i.e. p0 = 2, p1 = 3, p2 = 5, . . . .
We define a function rml2ful from L(RM6) to L(f.I(U)), which gives,

for each instruction sequence P from L(RM6), the instruction sequence from
L(f.I(U)) by which the effect produced by P on a register machine with six
registers can be simulated on U . This function is defined as follows:

rml2ful(u1 ; . . . ; uk)

= f.exp2 ; φ(u1) ; . . . ; φ(uk) ; −f.r1:iszero ; #3 ; f.fact5 ; !t ; f.fact5 ; !f ,

3 That theorem can be looked upon as a corollary of Theorem Ia from [7].
4 As usual, we write x | y for y is divisible by x.
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where

φ(a) = ψ(a) ,

φ(+a) = +ψ(a) ,

φ(−a) = −ψ(a) ,

φ(u) = u if u is a jump or termination instruction ,

where, for each i ∈ [0, 5]:

ψ(ri.succ) = f.ri:succ ,

ψ(ri.pred) = f.ri:pred ,

ψ(ri.iszero) = f.ri:iszero .

Take an arbitrary computable M ∈ MO(N). Then there exist an instruction
sequence in L(RM6) that computes M . Let P be such an instruction sequence.
We have that |rml2ful(P )|U = M . Hence, M is a derived method operation of
U . ⊓⊔

The universal computable functional unit U defined in the proof of Theorem 3
has 20 method operations. However, three method operations suffice.

Theorem 4. There exists a computable H ∈ FU(N) with only three method

operations that is universal.

Proof. We know from the proof of Theorem 3 that there exists a computable
H ∈ FU(N) with 20 method operations, say M0, . . . , M19. We will show that
there exists a computable H′ ∈ FU(N) with only three method operations such
that H ≤ H′.

We define a computable functional unit U ′ ∈ FU(N) with only three method
operations such that U ≤ U ′ as follows:

U ′ = {(g1,G1), (g2,G2), (g3,G3)} ,

where the method operations are defined as follows:

G1(x) = (t, 2x) ,

G2(x) =















(t, 3 · x) if ¬(319 | x) ∧ ∀y • (y | x ⇒ (y = 2 ∨ y = 3))

(t, x/319) if 319 | x ∧ ¬(320 | x) ∧ ∀y • (y | x ⇒ (y = 2 ∨ y = 3))

(f, 0) if 320 | x ∨ ¬∀y • (y | x ⇒ (y = 2 ∨ y = 3)) ,

G3(x) = Mfact3(x)(fact2 (x)) ,

where

fact2 (x) = max {y | ∃z • x = 2y · z} ,

fact3 (x) = max {y | ∃z • x = 3y · z} .

12



We have that, for each i ∈ [0, 19], |g1 ; g2i ; +g3 ; !t ; !f|U ′ = Mi.
5 Hence,

M0, . . . , M19 are derived method operations of U ′. ⊓⊔

The universal computable functional unit U ′ defined in the proof of Theorem 4
has three method operations. We can show that one method operation does not
suffice.

Theorem 5. There does not exist a computable H ∈ FU(N) with only one

method operation that is universal.

Proof. We will show that there does not exist a computable H ∈ FU(N) with
one method operation such that Counter ≤ H. Here, Counter is the functional
unit introduced at the beginning of this section.

Assume that there exists a computable H ∈ FU(N) with one method opera-
tion such that Counter ≤ H. Let H′ ∈ FU(N) be such that H′ has one method
operation and Counter ≤ H′, and let m be the unique method name such that
I(H′) = {m}. Let P1, P2, P3, P4 ∈ L(f.I(H′)) be such that |P1|H′ = Setzero,
|P2|H′ = Succ, |P3|H′ = Pred , and |P4|H′ = Iszero. Then |P2|H′(0) = (t, 1) and
|P3|H′(1) = (t, 0). Instruction f.m is processed at least once if P2 is applied to
H′(0) or P3 is applied to H′(1). Let k0 be the number of times that instruction
f.m is processed on application of P2 to H′(0) and let k1 be the number of times
that instruction f.m is processed on application of P3 to H′(1) (irrespective
of replies). Then, from state 0, state 0 is reached again after f.m is processed
k0 + k1 times. Thus, by repeated application of P2 to H′(0) at most k0 + k1 dif-
ferent states can be reached. This contradicts with |P2|H′ = Succ. Hence, there
does not exist a computable H ∈ FU(N) with one method operation such that
Counter ≤ H. ⊓⊔

It is an open problem whether two method operations suffice.

7 Functional Units for Finite State Spaces

In this short section, we make some remarks about functional units for finite
state spaces.

In the special case where the state space is B, the state space consists of
only two states. Because there are four possible unary functions on B, there are
precisely 16 method operations in MO(B). There are in principle 216 different
functional units in FU(B), for it is useless to include the same method operation
more than once under different names in a functional unit. This means that 216 is
an upper bound of the number of functional unit degrees in FU(B)/≡. However,
it is straightforward to show that FU(B)/≡ has only 12 different functional unit
degrees.

In the more general case of a finite state space consisting of k states, say Sk,

there are in principle 22k
·kk

different functional units in FU(Sk). Already with

5 For each primitive instruction u, the instruction sequence un is defined by induction
on n as follows: u0 = #1, u1 = u and un+2 = u ; un+1.
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k = 3, it becomes unclear whether the number of functional unit degrees in
FU(Sk) can be determined manually. Actually, we do not know at the moment
whether it can be determined with computer support either.

8 Concluding Remarks

We have defined the concept of a functional unit for a state space and have
established general results concerning functional units for natural numbers. The
main result is the existence of a universal computable functional unit for natural
numbers. The case where the state space is the set of natural numbers is arguably
the simplest significant case. We have not yet investigated other significant cases.

An interesting case is the one where the state space is the set of all pairs of
sequences over some alphabet: the tape of a Turing machine can be modelled by
a functional unit for this state space. Each Turing machine can be simulated by
means of a functional unit that corresponds to the tape of the Turing machine
and a PGLBbt program that corresponds to the finite control of the Turing
machine. Variations of the Turing machine theme can be dealt with in this way
as well. Thus, functional units allows for many computability issues to be viewed
as issues about programs rather than machines.

In [3], we introduce an extension of program algebra with Boolean termina-
tion instructions, called PGAbt, and define a thread extraction operation for it.
PGLBbt programs can be translated into closed PGAbt terms such that thread
extraction for PGLBbt yields the same behaviours as translation followed by
thread extraction for PGAbt. In [3], we also introduce apply and reply opera-
tors on threads and service families. Service families are collections of named
services. The axioms for apply and reply operators given in that paper reduce
to the axioms for apply and reply operators given in this paper if only singleton
service families are considered.
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