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Abstract. Instruction sequences with direct and indirect jump instruc-
tions are as expressive as instruction sequences with direct jump instruc-
tions only. We show that, in the case where the number of instructions is
not bounded, there exist instruction sequences of the former kind from
which elimination of indirect jump instructions is possible without a
super-linear increase of their maximal internal delay on execution only
at the cost of a super-linear increase of their length.
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1 Introduction

We take the view that sequential programs are in essence sequences of instruc-
tions. Although instruction sequences with direct and indirect jump instructions
are as expressive as instruction sequences with direct jump instructions only
(see [2]), indirect jump instructions are widely used to implement features of
high-level programming language such as Java [6] and C# [7]. Therefore, we
consider a theoretical understanding of both direct jump instructions and indi-
rect jump instructions highly relevant to programming. In this paper, we show
that, in the case where the number of instructions is not bounded, there exist
instruction sequences with direct and indirect jump instructions from which elim-
ination of indirect jump instructions is possible without a super-linear increase
of their maximal internal delay on execution only at the cost of a super-linear
increase of their length.
The work presented in this paper belongs to a line of research whose working

hypothesis is that instruction sequence is a central notion of computer science.
The object pursued with this line of research is the development of theory from
this working hypothesis. In this line of research, program algebra [1] is the set-
ting used for investigating instruction sequences. The starting-point of program
algebra is the perception of a program as a single-pass instruction sequence, i.e.
a finite or infinite sequence of instructions of which each instruction is executed
at most once and can be dropped after it has been executed or jumped over.
This perception is simple, appealing, and links up with practice.



The perception of a program as a single-pass instruction sequence forms part
of a point of view taken in the line of research to which the work presented in
this paper belongs. It is the point of view that:

– any instruction sequence P , and more general any program P , first and for
all represents a single-pass instruction sequence as considered in program
algebra;

– this single-pass instruction sequence, found by a translation called a pro-
jection, represents in a natural and preferred way what is supposed to take
place on execution of P ;

– program algebra provides the preferred notation for single-pass instruction
sequences.

In [4], the name projectionism is coined for this point of view and its main
challenges are discussed. The result of this paper is connected with two of the
challenges of projectionism identified in that paper: explosion of size and degra-
dation of performance.
The program notation used in this paper to show that indirect jumps im-

prove instruction sequence performance is PGLBij. This program notation is a
minor variant of PGLCij, a program notation with indirect jumps instructions
introduced in [2]. Both program notations are close to existing assembly lan-
guages and have relative jump instructions. The main difference between them
is that PGLBij has an explicit termination instruction and PGLCij has not. This
difference makes the former program notation more convenient for the purpose
of this paper.
The performance measure use in this paper is the maximal internal delay

of an instruction sequence on execution. The maximal internal delay of an in-
struction sequence on execution is the largest possible delay that can take place
between successively executed instructions whose effects are observable exter-
nally. Another conceivable performance measure is the largest possible sum of
such delays on execution of the instruction sequence. In this paper, we do not
consider the latter performance measure because it looks to be less adequate to
the interactive performance of instruction sequences.
This paper is organized as follows. First, we give a survey of the program nota-

tion PGLBij (Section 2). Next, we introduce the notion of maximal internal delay
of a PGLBij program (Section 3). After that, we present the above-mentioned re-
sult concerning the elimination of indirect jump instructions (Section 4). Finally,
we make some concluding remarks (Section 5).

2 PGLB with Indirect Jumps

In this section, we give a survey of the program notation PGLBij. This program
notation is a variant of the program notation PGLB, which belongs to a hierarchy
of program notations rooted in program algebra (see [1]). PGLB and PGLBij

are close to existing assembly languages and have relative jump instructions.
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It is assumed that fixed but arbitrary numbers I and N have been given,
which are considered the number of registers available and the greatest natural
number that can be contained in a register. Moreover, it is also assumed that
fixed but arbitrary finite sets F of foci andM of methods have been given.
The set A of basic instructions is {f.m | f ∈ F ,m ∈ M}. The view is that

the execution environment of a PGLBij program provides a number of services,
that each focus plays the role of a name of a service, that each method plays
the role of a command that a service can be requested to process, and that the
execution of a basic instruction f.m amounts to making a request to the service
named f to process command m. The intuition is that the processing of the
command m may modify the state of the service named f and that the service
in question will produce T or F at its completion.
PGLBij has the following primitive instructions:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a direct forward jump instruction #l;
– for each l ∈ N, a direct backward jump instruction \#l;
– for each i ∈ [1, I] and n ∈ [1, N ], a register set instruction set:i:n;
– for each i ∈ [1, I], an indirect forward jump instruction i#i;
– for each i ∈ [1, I], an indirect backward jump instruction i\#i;
– a termination instruction !.

PGLBij programs have the form u1 ; . . . ; uk, where u1, . . . , uk are primitive
instructions of PGLBij.
On execution of a PGLBij program, these primitive instructions have the

following effects:

– the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction if T

is produced and otherwise the next primitive instruction is skipped and
execution proceeds with the primitive instruction following the skipped one
– if there is no primitive instructions to proceed with, deadlock occurs;

– the effect of a negative test instruction −a is the same as the effect of +a,
but with the role of the value produced reversed;

– the effect of a plain basic instruction a is the same as the effect of +a,
but execution always proceeds as if T is produced;

– the effect of a direct forward jump instruction #l is that execution pro-
ceeds with the l-th next instruction of the program concerned – if l equals
0 or there is no primitive instructions to proceed with, deadlock occurs;

– the effect of a direct backward jump instruction \#l is that execution pro-
ceeds with the l-th previous instruction of the program concerned – if l equals
0 or there is no primitive instructions to proceed with, deadlock occurs;

– the effect of a register set instruction set:i:n is that the contents of register
i is set to n and execution proceeds with the next primitive instruction – if
there is no primitive instructions to proceed with, deadlock occurs;
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– the effect of an indirect forward jump instruction i#i is the same as the
effect of #l, where l is the content of register i;

– the effect of an indirect backward jump instruction i\#i is the same as the
effect of \#l, where l is the content of register i;

– the effect of the termination instruction ! is that execution terminates.

PGLBij is a minor variant of PGLCij, a program notation with indirect jumps
instructions introduced in [2]. The differences between PGLBij and PGLCij are
the following:

– in those cases where deadlock occurs on execution of PGLBij programs be-
cause there is no primitive instructions to proceed with, termination takes
place on execution of PGLCij programs;

– the termination instruction ! is not available in PGLCij.

The meaning of PGLCij programs is formally described in [2] by means of a
mapping of PGLCij programs to closed terms of program algebra. In that way,
the behaviour of PGLCij programs on execution is described indirectly: the be-
haviour of the programs denoted by closed terms of program algebra on exe-
cution is formally described in several papers, including [2], using basic thread
algebra [1].1 Because PGLBij is a minor variant of PGLCij, we refrain from de-
scribing the behaviour of PGLBij programs on execution formally in the current
paper.

3 Internal Delays of PGLBij Programs

In this section, we will define the notion of maximal internal delay of a PGLBij

program.
It is assumed that a fixed but arbitrary set X ⊂ A of auxiliary basic in-

structions has been given. The view is that, in common with the effect of jump
instructions, the effect of auxiliary basic instructions is wholly unobservable ex-
ternally, but contributes to the realization of externally observable behaviour.
In [1], examples are given in which auxiliary basic instructions are useful or even
indispensable.
The maximal internal delay of a PGLBij program concerns the delays that

takes place between successive non-auxiliary basic instructions in runs of the
program. Before we define the maximal internal delay of a PGLBij program, we
describe what a run of a PGLBij program is.
A run of a PGLBij program P is a succession of primitive instructions that

may be encountered in turn on execution of P .
Because we have not formally defined the behaviour of PGLBij programs on

execution, we cannot make formally precise what a run of a PGLBij program is.
By the detailed informal description of the effects of the primitive instructions

1 In several early papers, basic thread algebra is presented under the name basic
polarized process algebra.
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of PGLBij on execution of a PGLBij program, the description given above is
considered sufficiently precise for the purpose of this paper.
The maximal internal delay of a PGLBij program P , written MID(P ), is the

largest n ∈ N for which there exist a run u1 . . . uk of P , an i ∈ [1, k], and a
j ∈ [i, k] such that ID(ui) = 0 and ID(uj) = 0 and ID(ui) + . . . + ID(uj) = n,
where ID(u) is defined as follows:

ID(a) = 0 if a /∈ X ,

ID(a) = 1 if a ∈ X ,

ID(+a) = 0 if a /∈ X ,

ID(+a) = 1 if a ∈ X ,

ID(−a) = 0 if a /∈ X ,

ID(−a) = 1 if a ∈ X ,

ID(#l) = 1 ,

ID(\#l) = 1 ,

ID(set:i:n) = 1 ,

ID(i#i) = 2 ,

ID(i\#i) = 2 ,

ID(!) = 0 .

In [5], an extension of basic thread algebra is proposed which allows for
internal delays to be described and analysed. We could formally describe the
behaviour of PGLBij programs on execution, internal delays included, using this
extension of basic thread algebra. The notion of maximal internal delay of a
PGLBij program has been defined above so as to be justifiable by such a formal
description of the behaviour of PGLBij programs on execution.
The time that it takes to execute one basic instruction is taken for the time

unit in the definition of the maximal internal delay of a PGLBij program. By
that MID(P ) can be looked upon as the number of basic instruction that can
be executed during the maximal internal delay of P . As usual, the time that it
takes to execute one basic instruction is called a step.

4 Indirect Jumps and Instruction Sequence Performance

In this section, we show that indirect jump instructions are needed for instruction
sequence performance.
It is assumed that bool:1, bool:2, . . . ∈ F and set:T, set:F, get ∈ M. The

foci bool:1, bool:2, . . . serve as names of services that act as Boolean cells. The
methods set:T, set:F, and get are accepted by services that act as Boolean cells
and their processing by such a service goes as follows:

– set:T : the contents of the Boolean cell is set to T, and T is produced;
– set:F : the contents of the Boolean cell is set to F, and F is produced;
– get : nothing is changed, but the contents of the Boolean cell is produced.

The notation ;n
i=1 Pi, where P1 = u1

1 ; . . . ;u
1
k1
, . . . , Pn = un

1 ; . . . ;u
n
kn
, is used

for u1
1 ; . . . ; u

1
k1
; . . . ; u1

n ; . . . ; u
n
kn
.

Consider the following PGLBij program:

;2k

i=1(−bool:1.get ; #3 ; set:1:2·i+1 ; #(2k−i)·4+2) ; ! ;

;2k

i=1(−bool:1.get ; #3 ; set:2:2·i+1 ; #(2k−i)·4+2) ; ! ;

i#1 ; ;2k

i=1(ai ; #(2
k−i)·2+1) ; i#2 ; ;2k

i=1(a
′

i ; !) .
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First, the program repeatedly tests the Boolean cell bool:1. If T is not returned
for 2k tests, the program terminates. Otherwise, in case it takes i tests until T

is returned, the content of register 1 is set to 2 · i + 1. If the program has not
yet terminated, it once again repeatedly tests the Boolean cell bool:1. If T is not
returned for 2k tests, the program terminates. Otherwise, in case it takes j tests
until T is returned, the content of register 2 is set to 2 · j + 1. If the program
has not yet terminated, it performs ai after an indirect jump and following this
a′

j after another indirect jump. After that, the program terminates. The length

of the program is 12 · 2k + 4 instructions and the maximal internal delay of the
program is 4 steps.
The PGLBij program presented above will be used in the proof of the result

concerning the elimination of indirect jump instructions stated below.

Theorem 1. Suppose proj is a projection from the set of PGLBij programs to

the set of PGLB programs with the property that the maximal internal delay of

each PGLBij program is increased at most linear. Moreover, suppose that the

number of basic instructions is not bounded. Then proj is a projection with the

property that the length of some PGLBij program is increased more than linear.

Proof. Let P be the PGLBij program presented above. The maximal inter-
nal delay of P is increased at most linear by proj. This means that we have
MID(proj(P )) ≤ c′ · MID(P ) + c′′ = c′ · 4 + c′′ for some c′, c′′ ∈ N. Let
c = c′ · 4 + c′′. Suppose that k is much greater than c. This supposition requires
that the number of basic instructions is not bounded. If the use of auxiliary basic
instructions (such as basic instructions working on auxiliary Boolean cells) is al-
lowed, then there are at most 2c different basic instructions reachable in c steps.
Let i ∈ [1, 2k]. Then, in proj(P ), for each j ∈ [1, 2k], some occurrence of a′

j is
reachable from each occurrence of ai without intermediate occurrences of ai and
a′

1, . . . , a
′

2k . From one occurrence of ai, at most 2
c basic instructions are reach-

able, but there are 2k different instructions to reach. Therefore, there must be
at least 2k/2c = 2k−c different occurrences of ai in proj(P ). Consequently, the
length of proj(P ) is at least 2k · 2k−c = 22·k−c instructions. This is a quadratic
increase of the length, because the length of P is 12 · 2k + 4 instructions. ut

We conclude from Theorem 1 that we are faced with super-linear increases of
maximal internal delays if we strive for acceptable increases of program lengths
on elimination of indirect jump instructions. In other words, indirect jump in-
structions are needed for instruction sequence performance. Semantically, we
can eliminate indirect jump instructions by means of a projection, but we meet
here two challenges of projectionism: explosion of size and degradation of per-
formance.

5 Conclusions

We have shown that, in the case where the number of instructions is not bounded,
there exist instruction sequences with direct and indirect jump instructions from

6



which elimination of indirect jump instructions is possible without a super-linear
increase of their maximal internal delay on execution only at the cost of a super-
linear increase of their length. It is an open problem whether this result goes
through in the case where the number of instructions is bounded.
Instruction sequences with direct jump instructions, indirect jump instruc-

tions and register transfer instructions are as expressive as instruction sequences
with direct jump instructions and indirect jump instructions without register
transfer instructions. We surmise that a projection that eliminates the register
transfer instructions yields a result comparable to Theorem 1. However, we have
not yet been able to provide a proof for that case. On the face of it, a proof for
that case is much more difficult than the proof for the case treated in this paper.
For completeness, we mention that, in the line of research to which the work

presented in this paper belongs, work that is mainly concerned with direct jump
instructions includes the work presented in [3].
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