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Abstract. An inversive meadow is a commutative ring with identity
equipped with a total multiplicative inverse operation satisfying 0−1 = 0.
Previously, inversive meadows were shortly called meadows. A divisive
meadow is an inversive meadows with the multiplicative inverse operation
replaced by a division operation. In the spirit of Peacock’s arithmetical
algebra, we introduce variants of inversive and divisive meadows without
an additive identity element and an additive inverse operation. We give
equational axiomatizations of several classes of such variants of inversive
and divisive meadows as well as of several instances of them.
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1 Introduction

The primary mathematical structure for measurement and computation is un-
questionably a field. In [8], meadows are proposed as alternatives for fields with
a purely equational specification. A meadow is a commutative ring with identity
equipped with a total multiplicative inverse operation satisfying two equations
which imply that the multiplicative inverse of zero is zero. Thus, meadows are
total algebras. As usual in field theory, the convention to consider p / q as an
abbreviation for p ·q−1 was used in subsequent work on meadows (see e.g. [2, 5]).
This convention is no longer satisfactory if partial variants of meadows are con-
sidered too, as is demonstrated in [3]. In that paper, we rename meadows into
inversive meadows and introduce divisive meadows. A divisive meadow is an in-
versive meadow with the multiplicative inverse operation replaced by the division
operation suggested by the above-mentioned abbreviation convention. Hence-
forth, we will use the name meadow whenever the distinction between inverse
meadows and divisive meadows is not important.
Peacock introduced in [15] arithmetical algebra as algebra of numbers where

an additive identity element and an additive inverse operation are not involved.
That is, arithmetical algebra is algebra of positive numbers instead of algebra
of numbers in general (see also [10]). In the spirit of Peacock, we use the name
arithmetical meadow for a meadow without an additive identity element and
an additive inverse operation. We use the name arithmetical meadow with zero



for a meadow without an additive inverse operation, but with an additive iden-
tity element. Arithmetical meadows related to the field of rational numbers are
reminiscent of Peacock’s arithmetical algebra.
In this paper, we pursue the following objectives:

1. to complement the signatures of inversive and divisive meadows with arith-
metical versions;

2. to provide equational axiomatizations of several classes of arithmetical mead-
ows and instances of them related to the field of rational numbers;

3. to state a number of outstanding questions concerning arithmetical meadows.

This paper is organized as follows. First, we go into the background of the
work presented in this paper with the intention to clarify and motivate this work
(Section 2). Next, we introduce the classes of inversive and divisive arithmetical
meadows and the classes of inversive and divisive arithmetical meadows with
zero (Section 3). After that, we introduce instances of these classes related to ra-
tional numbers (Section 4). Following this, we have for completeness an interlude
on inversive and divisive meadows (Section 5). Then, we state some outstanding
questions about arithmetical meadows (Section 6). After that, we shortly dis-
cuss partial variants of the instances of the inversive and divisive arithmetical
meadows with zero introduced before (Section 7) and an arithmetical version
of a well-known mathematical structure closely related to inversive meadows
(Section 8). Finally, we make some concluding remarks (Section 9).

2 Background on the Theory of Meadows

In this section, we go into the background of the work presented in this paper
with the intention to clarify and motivate this work.
The theory of meadows, see e.g. [2, 5, 3], constitutes a hybrid between the

theory of abstract data type and the theory of rings and fields, more specifically
the theory of von Neumann regular rings [12, 9] (all fields are von Neumann
regular rings).
It is easy to see that each meadow can be reduced to a commutative von

Neumann regular ring with a multiplicative identity. Moreover, we know from [2]
that each commutative von Neumann regular ring with a multiplicative identity
can be expanded to a meadow, and that this expansion is unique. It is easy to
show that, if φ :X → Y is an epimorphism between commutative rings with a
multiplicative identity and X is a commutative von Neumann regular ring with
a multiplicative identity, than: (i) Y is a commutative von Neumann regular ring
with a multiplicative identity; (ii) φ is also an epimorphism between meadows
for the meadows X ′ and Y ′ found by means of the unique expansions for X and
Y , respectively.
However, there is a difference between commutative von Neumann regular

rings with a multiplicative identity and meadows: the class of all meadows is
a variety and the class of all commutative von Neumann regular rings with a
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multiplicative identity is not. In particular, the class of commutative von Neu-
mann regular rings with a multiplicative identity is not closed under taking
subalgebras (a property shared by all varieties). Let Q be the ring of rational
numbers, and let Z be its subalgebra of integers. Then Q is a field and for that
reason a commutative von Neumann regular ring with a multiplicative identity,
but its subalgebra Z is not a commutative von Neumann regular ring with a
multiplicative identity.
In spite of the fact that meadows and commutative von Neumann regular

rings with a multiplicative identity are so close that no new mathematics can
be expected, there is a difference which matters very much from the perspective
of abstract data type specification. Q, the ring of rational numbers, is not a
minimal algebra, whereas Qi

0, the inversive meadow of rational numbers is a
minimal algebra. As such, Qi

0 is amenable to initial algebra specification. The
first initial algebra specification of Qi

0 is given in [8] and an improvement due to
Hirshfeld is given in [3]. When looking for an initial algebra specification of Q,
adding a total multiplicative inverse operation satisfying 0−1 = 0 as an auxiliary
function is the most reasonable solution, assuming that a proper constructor as
an auxiliary function is acceptable.
We see a theory of meadows having two roles: (i) a starting-point of a theory

of mathematical data types; (ii) an intermediate between algebra and logic.
On investigation of mathematical data types, known countable mathemati-

cal structures will be equipped with operations to obtain minimal algebras and
specification properties of those minimal algebras will be investigated. If count-
able minimal algebras can be classified as either computable, semi-computable or
co-semi-computable, known specification techniques may be applied (see [7] for
a survey of this matter). Otherwise data type specification in its original forms
cannot be applied. Further, one may study ω-completeness of specifications and
term rewriting system related properties.
It is not a common viewpoint in algebra or in mathematics at large that giving

a name to an operation, which is included in a signature, is a very significant step
by itself. However, the answer to the notorious question “what is 1 / 0” is very
sensitive to exactly this matter. Von Neumann regular rings provide a classical
mathematical perspective on rings and fields, where multiplicative inverse (or
division) is only used when its use is clearly justified and puzzling uses are
rejected as a matter of principle. Meadows provide a more logical perspective to
von Neumann regular rings in which justified and unjustified use of multiplicative
inverse cannot be easily distinguished beforehand.
Arithmetical meadows, in particular the ones related to the field of rational

numbers, provide additional insight in what is yielded by the presence of an
operator for multiplicative inverse (or division) in a signature.

3 Equational Specifications of Arithmetical Meadows

This section concerns the equational specification of several classes of arithmeti-
cal meadows.
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The signature of commutative rings with a multiplicative identity consists of
the following constants and operators:

– the additive identity constant 0;
– the multiplicative identity constant 1;
– the binary addition operator + ;
– the binary multiplication operator · ;
– the unary additive inverse operator −;

The signature of inversive meadows consists of the constants and operators from
the signature of commutative rings with a multiplicative identity and in addition:

– the unary multiplicative inverse operator −1.

The signature of divisive meadows consists of the constants and operators from
the signature of commutative rings with a multiplicative identity and in addition:

– the binary division operator / .

The signatures of inversive and divisive arithmetical meadows with zero are the
signatures of inversive and divisive meadows with the additive inverse operator
− removed. The signatures of inversive and divisive arithmetical meadows are
the signatures of inversive and divisive arithmetical meadows with zero with the
additive identity constant 0 removed. We write:

ΣCR for {0, 1, + , · ,−} ,

Σ i
Md for ΣCR ∪ {

−1} ,

Σd
Md for ΣCR ∪ { / } ,

Σ iz
AMd for Σ

i
Md \ {−} ,

Σdz
AMd for Σ

d
Md \ {−} ,

Σ i
AMd for Σ

iz
AMd \ {0} ,

Σd
AMd for Σ

dz
AMd \ {0} .

We use infix notation for the binary operators, prefix notation for the unary
operator −, and postfix notation for the unary operator −1. We use the usual
precedence convention to reduce the need for parentheses. We denote the nu-
merals 0, 1, 1 + 1, (1 + 1) + 1, . . . by 0, 1, 2, 3, . . . and we use the notation
pn for exponentiation with a natural number as exponent. Formally, we define
n inductively by 0 = 0, 1 = 1 and n+ 2 = n + 1 and we define, for each term
p over the signature of inversive meadows or the signature of divisive meadows,
pn inductively by p0 = 1 and pn+1 = pn · p.
The axioms of a commutative ring with a multiplicative identity are the

equations given in Table 1. We write:

ECR for the set of all equations in Table 1 ,

ECRaz
for ECR \ {x+ (−x) = 0} ,

ECRa
for ECRaz

\ {x+ 0 = x} .
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Table 1. Axioms of a commutative ring with a multiplicative identity

(x + y) + z = x + (y + z)

x + y = y + x

x + 0 = x

x + (−x) = 0

(x · y) · z = x · (y · z)

x · y = y · x

x · 1 = x

x · (y + z) = x · y + x · z

The equations in ECRaz
are the equations from ECR in which the additive inverse

operator − does not occur. The equations in ECRa
are the equations from ECRaz

in which the additive identity constant 0 does not occur.
To axiomatize inversive and divisive arithmetical meadows, we need addi-

tional equations. We write:

E i
AMd for ECRa

∪ {x · x−1 = 1} ,

Ed
AMd for ECRa

∪ {x / x = 1} .

The class of inversive arithmetical meadows is the class of all algebras over
the signature Σ i

AMd that satisfy the equations E
i
AMd and the class of divisive

arithmetical meadows is the class of all algebras over the signature Σ d
AMd that

satisfy the equations Ed
AMd.

We state and prove two equational facts about numerals that will be used in
later proofs.

Lemma 1. For all n,m ∈ N \ {0}, we have that ECRa
` n+m = n +m and

ECRa
` n ·m = n ·m.

Proof. The fact that n+m = n + m is derivable from ECRa
is easily proved

by induction on n. The basis step is trivial. The inductive step goes as follows:
(n+ 1) +m = (n+m) + 1 = n+m+ 1 = n+m+ 1 = n+ 1+m = n+ 1+m.
The fact that n ·m = n ·m is derivable from ECRa

is easily proved by induction
on n, using that n+m = n+m is derivable from ECRa

. The basis step is trivial.
The inductive step goes as follows: (n+ 1) ·m = n ·m+ 1 ·m = n ·m+1 ·m =
n ·m+ 1 ·m = (n+ 1) ·m = n+ 1 ·m. ut

We state and prove two useful facts about the multiplicative inverse operator
derivable from E i

AMd.

Lemma 2. We have E i
AMd ` (x

−1)−1 = x and E i
AMd ` (x · y)

−1 = x−1 · y−1.

Proof. We derive (x−1)−1 = x from E i
AMd as follows: (x

−1)−1 = 1 · (x−1)−1 =
(x ·x−1) ·(x−1)−1 = x ·(x−1 ·(x−1)−1) = x ·1 = x. We derive (x ·y)−1 = x−1 ·y−1

from E i
AMd as follows: (x ·y)

−1 = 1 ·(1 ·(x ·y)−1) = (x ·x−1) ·((y ·y−1) ·(x ·y)−1) =
(x−1 · y−1) · ((x · y) · (x · y)−1) = (x−1 · y−1) · 1 = x−1 · y−1. ut

To axiomatize inversive and arithmetical meadows with zero, we need other
additional equations. We write:

E iz
AMd for ECRaz

∪ {(x−1)
−1
= x, x · (x · x−1) = x} ,

Edz
AMd for ECRaz

∪ {1 / (1 / x) = x, (x · x) / x = x, x / y = x · (1 / y)} .
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The class of inversive arithmetical meadows with zero is the class of all algebras
over the signature Σ iz

AMd that satisfy the equations E
iz
AMd and the class of divisive

arithmetical meadows with zero is the class of all algebras over the signature
Σdz

AMd that satisfy the equations E
dz
AMd.

We state and prove two useful facts about the additive identity constant
derivable from E iz

AMd.

Lemma 3. We have E iz
AMd ` 0 · x = 0 and E iz

AMd ` 0
−1 = 0.

Proof. Firstly, we derive x+ y = x⇒ y = 0 from E iz
AMd as follows: x+ y = x⇒

0 + y = 0⇒ y + 0 = 0⇒ y = 0. Secondly, we derive x+ 0 · x = x from E iz
AMd as

follows: x+0 ·x = x · 1+0 ·x = 1 ·x+0 ·x = (1+0) ·x = 1 ·x = x · 1 = x. From
x+ y = x⇒ y = 0 and x+0 · x = x, it follows that 0 · x = 0. We derive 0−1 = 0
from E iz

AMd as follows: 0
−1 = 0−1 · (0−1 · (0−1)−1) = (0−1)−1 · (0−1 · 0−1) =

0 · (0−1 · 0−1) = 0. ut

We state and prove a useful fact about the multiplicative inverse operator
derivable from E iz

AMd.

Lemma 4. We have E iz
AMd ` (x · y)

−1 = x−1 · y−1.

Proof. Proposition 2.8 from [2] states that (x ·y)−1 = x−1 ·y−1 is derivable from
E iz

AMd∪{x+0 = x, x+(−x) = 0}. The proof of this proposition given in [2] goes
through because no use is made of the equations x+0 = x and x+(−x) = 0. ut

We state and prove a fact about the additive identity constant that will be
used in a later proof.

Lemma 5. For each Σ iz
AMd-term t, either E iz

AMd ` t = 0 or there exists a Σ
i
AMd-

term t′ such that E iz
AMd ` t = t′.

Proof. The proof is easy by induction on the structure of t, using Lemma 3. ut

4 Arithmetical Meadows of Rational Numbers

We obtain inverse and divisive arithmetical meadows closely related to the field
of rational numbers as the initial algebras of equational specifications. As usual,
we write I(Σ,E) for the initial algebra among the algebras over the signature
Σ that satisfy the equations E (see e.g. [6]).
Qia, the inversive arithmetical meadow of rational numbers, is defined as

follows:

Qia = I(Σ i
AMd,E

i
AMd) .

Qda, the divisive arithmetical meadow of rational numbers, is defined as follows:

Qda = I(Σd
AMd,E

d
AMd) .

Qia andQda are the initial algebras in the class of inversive arithmetical meadows
and the class of divisive arithmetical meadows, respectively.
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Theorem 1. Qia = I(Σ i
AMd,E

i
AMd) is the subalgebra of the Σ i

AMd-reduct of the

inversive meadow of rational numbers whose domain is the set of all positive

rational numbers.

Proof. Like in the case of Theorem 3.1 from [8], it is sufficient to prove that, for
each closed term t over the signature Σ i

AMd, there exists a unique term t′ in the
set

{n ·m−1 | n,m ∈ N \ {0} ∧ gcd(n,m) = 1}

such that E i
AMd ` t = t′. Like in the case of Theorem 3.1 from [8], this is

proved by induction on the structure of t, using Lemmas 1 and 2. The proof is
similar, but simpler owing to: (i) the absence of terms of the forms 0 and −t′;
(ii) the absence of terms of the forms 0 and −(n ·m−1) among the terms that
exist by the induction hypothesis; (iii) the presence of the axiom x ·x−1 = 1. ut

The fact that Qda is the initial algebra in the class of divisive arithmetical
meadows is proved similarly.
Derivability of equations from the equations of the initial algebra specifica-

tions of Qia and Qda is decidable.

Theorem 2. For all Σ i
AMd-terms t and t

′, it is decidable whether E i
AMd ` t = t′.

Proof. For each Σ i
AMd-term r, there exist Σ i

AMd-terms r1 and r2 in which the
multiplicative inverse operator do not occur such that E i

AMd ` r = r1 · r
−1
2 . The

proof of this fact is easy by induction on the structure of r, using Lemma 2.
Inspection of the proof yields that there is an effective way to find witnessing
terms.
For each closed Σ i

AMd-term r in which the multiplicative inverse operator
does not occur there exists a k ∈ N \ {0}, such that E i

AMd ` r = k. The
proof of this fact is easy by induction on the structure of r. Moreover, for each
Σ i

AMd-term r in which the multiplicative inverse operator does not occur there
exists a Σ i

AMd-term r′ of the form
∑n1

i1=1
. . .

∑nm

im=1
ki1...im

·xi1
1 · · · · ·x

im

m , where
ki1...im

∈ N \ {0} for each i1 ∈ [1, n1], . . . , im ∈ [1, nm] and x1, . . . , xm are
variables, such that E i

AMd ` r = r′. The proof of this fact is easy by induction
on the structure of r, using the previous fact. Inspection of the proof yields that
there is an effective way to find a witnessing term. Terms of the form described
above are polynomials in several variables with positive integer coefficients.
Let t1, t2, t

′
1, t

′
2 be Σ

i
AMd-terms in which the multiplicative inverse operator

do not occur such that E i
AMd ` t = t1 · t2

−1 and E i
AMd ` t

′ = t′1 · t
′
2

−1
. Moreover,

let s and s′ be Σ i
AMd-terms of the form

∑n1

i1=1
. . .

∑nm

im=1
ki1...im

· xi1
1 · · · · · x

im

m ,
where ki1...im

∈ N \ {0} for each i1 ∈ [1, n1], . . . , im ∈ [1, nm] and x1, . . . , xm

are variables, such that E i
AMd ` t1 · t

′
2 = s and E i

AMd ` t′1 · t2 = s′. We have

that E i
AMd ` t = t′ iff E i

AMd ` t1 · t2
−1 = t′1 · t

′
2

−1
iff E i

AMd ` t1 · t
′
2 = t′1 · t2 iff

E i
AMd ` s = s′. Moreover, we have that E i

AMd ` s = s′ only if s and s′ denote
the same function on positive real numbers in the inversive arithmetical meadow
of positive real numbers. The latter is decidable because polynomials in several
variables with positive integer coefficients denote the same function on positive
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real numbers in the inversive arithmetical meadow of positive real numbers only
if they are syntactically equal. ut

The fact that derivability of equations from the equations of the initial algebra
specification of Qda is decidable is proved similarly.
We obtain inverse and divisive arithmetical meadows with zero closely related

to the field of rational numbers as the initial algebras of equational specifications.
Qiaz

0 , the inversive arithmetical meadow of rational numbers with zero, is
defined as follows:

Qiaz
0 = I(Σ iz

AMd,E
iz
AMd ∪ {(1 + x2 + y2) · (1 + x2 + y2)−1 = 1}) .

Qdaz
0 , the divisive arithmetical meadow of rational numbers with zero, is defined
as follows:

Qdaz
0 = I(Σdz

AMd,E
dz
AMd ∪ {(1 + x2 + y2) / (1 + x2 + y2) = 1}) .

Qiaz
0 and Qdaz

0 are the initial algebras in the class of inversive arithmetical mead-
ows with zero that satisfy (1+x2+y2)·(1+x2+y2)−1 = 1 and the class of divisive
arithmetical meadows with zero that satisfy (1 + x2 + y2) / (1 + x2 + y2) = 1,
respectively. First we prove a fact that is useful in proving that Qiaz

0 is the initial
algebra in the class of inversive arithmetical meadows with zero.

Lemma 6. In I(Σ iz
AMd,E

iz
AMd ∪ {(1 + x2 + y2) · (1 + x2 + y2)−1 = 1}), n has a

multiplicative inverse for each n ∈ N.

Proof. In the proof of Theorem 3 from [3] given in that paper, it is among
other things proved that n has a multiplicative inverse for each n ∈ N in
I(Σ i

Md,E
iz
AMd∪{x+0 = x, x+(−x) = 0, }∪{(1+x2+y2) · (1+x2+y2)−1 = 1}).

The proof concerned goes through because no use is made of the equations
x+ 0 = x and x+ (−x) = 0. ut

Theorem 3. Qiaz
0 = I(Σ iz

AMd,E
iz
AMd ∪ {(1 + x2 + y2) · (1 + x2 + y2)−1 = 1}) is

the subalgebra of the Σ iz
AMd-reduct of the inversive meadow of rational numbers

whose domain is the set of all non-negative rational numbers.

Proof. Like in the case of Theorem 1, it is sufficient to prove that, for each closed
term t over the signature Σ i

AMd, there exists a unique term t′ in the set

{0} ∪ {n ·m−1 | n,m ∈ N \ {0} ∧ gcd(n,m) = 1}

such that E iz
AMd ∪ {(1 + x2 + y2) · (1 + x2 + y2)−1 = 1} ` t = t′. Like in the

case of Theorem 1, this is proved by induction on the structure of t, now using
Lemmas 1, 3 and 4. The proof is similar, but more complicated owing to: (i) the
presence of terms of the form 0; (ii) the presence of terms of the form 0 among
the terms that exist by the induction hypothesis; (iii) the absence of the axiom
x · x−1 = 1. Because of the last point, use is made of Lemma 6. ut

The fact that Qdaz
0 is the initial algebra in the class of divisive arithmetical

meadows with zero is proved similarly.
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An alternative initial algebra specification of Qiaz
0 is obtained if the equation

(1+x2+y2)·(1+x2+y2)−1 = 1 is replaced by (x·(x+y))·(x·(x+y))−1 = x·x−1.

Theorem 4. Qiaz
0
∼= I(Σ iz

AMd,E
iz
AMd ∪ {(x · (x+ y)) · (x · (x+ y))−1 = x · x−1}).

Proof. It is sufficient to prove that (x · (x + y)) · (x · (x + y))−1 = x · x−1 is
valid in Qiaz

0 and (1 + x2 + y2) · (1 + x2 + y2)−1 = 1 is valid in I(Σ iz
AMd,E

iz
AMd ∪

{(x · (x + y)) · (x · (x + y))−1 = x · x−1}). It follows from Lemma 4, and the
associativity and commutativity of · , that (x ·(x+y)) ·(x ·(x+y))−1 = x ·x−1 ⇔
(x ·x−1) · ((x+y) · (x+y)−1) = x ·x−1 is derivable from E iz

AMd. This implies that
(x·(x+y))·(x·(x+y))−1 = x·x−1 is valid in Qiaz

0 iff (x·x−1)·((x+y)·(x+y)−1) =
x ·x−1 is valid in Qiaz

0 . The latter is easily established by distinction between the
cases x = 0 and x 6= 0. To show that (1+x2+y2) · (1+x2+y2)−1 = 1 is valid in
I(Σ iz

AMd,E
iz
AMd ∪{(x · (x+ y)) · (x · (x+ y))

−1 = x ·x−1}), it is sufficient to derive
(1+x2+y2)·(1+x2+y2)−1 = 1 from E iz

AMd∪{(x·x
−1)·((x+y)·(x+y)−1) = x·x−1}.

The derivation is fully trivial with the exception of the first step, viz. substituting
1 for x and x2 + y2 for y in (x · x−1) · ((x+ y) · (x+ y)−1) = x · x−1. ut

An alternative initial algebra specification of Qdaz
0 is obtained in the same vein.

In Qiaz
0 , the general inverse law x 6= 0 ⇒ x · x−1 = 1 is valid. Derivability

of equations from the equations of the alternative initial algebra specification of
Qiaz

0 and the general inverse law is decidable. First we prove a fact that is useful
in proving this decidability result.

Lemma 7. For all Σ i
AMd-terms t in which no other variables than x1, . . . , xn

occur, E iz
AMd ∪ {(x · (x + y)) · (x · (x + y))−1 = x · x−1} ∪ {x1 · x

−1
1 = 1, . . . ,

xn · x
−1
n = 1} `x1,...,xn

t · t−1 = 1.

Proof. The proof is easy by induction on the structure of t, using Lemma 4. ut

Theorem 5. For all Σ iz
AMd-terms t and t′, it is decidable whether E iz

AMd ∪
{(x · (x+ y)) · (x · (x+ y))−1 = x · x−1} ∪ {x 6= 0⇒ x · x−1 = 1} ` t = t′.

Proof. Let E iz +

AMd
= E iz

AMd ∪ {(x · (x + y)) · (x · (x + y))−1 = x · x−1} ∪

{x 6= 0 ⇒ x · x−1 = 1}. We prove that E iz +

AMd
` t = t′ is decidable by in-

duction on the number of variables occurring in t = t′. In the case where
the number of variables is 0, we have that E iz +

AMd
` t = t′ iff Qiaz

0 |= t = t′

iff E iz
AMd ∪ {(1 + x2 + y2) · (1 + x2 + y2)−1 = 1} ` t = t′. The last is de-

cidable because, by the proof of Theorem 3, there exist unique terms s and
s′ in the set {0} ∪ {n · m−1 | n,m ∈ N \ {0} ∧ gcd(n,m) = 1} such that
E iz

AMd ∪ {(1+ x2+ y2) · (1+ x2+ y2)−1 = 1} ` t = s and E iz
AMd ∪ {(1+ x2+ y2) ·

(1 + x2 + y2)−1 = 1} ` t′ = s′, and inspection of that proof yields that there
is an effective way to find s and s′. Hence, in the case where the number of
variables is 0, E iz +

AMd
` t = t′ is decidable. In the case where the number of vari-

ables is n + 1, suppose that the variables are x1, . . . , xn+1. Let s be such that
E iz

AMd ` t = s and s is either a Σ i
AMd-term or the constant 0 and let s

′ be such
that E iz

AMd ` t
′ = s′ and s′ is either a Σ i

AMd-term or the constant 0. Such s and s
′

exist by Lemma 5, and inspection of the proof of that lemma yields that there is

9



an effective way to find s and s′. We have that E iz +

AMd
` t = t′ iff E iz +

AMd
` s = s′.

In the case where not both s and s′ are Σ i
AMd-terms, E

iz +

AMd
` s = s′ only if s

and s′ are syntactically equal. Hence, in this case, E iz +

AMd
` t = t′ is decidable.

In the case where both s and s′ are Σ i
AMd-terms, by the general inverse law, we

have that E iz +

AMd
` s = s′ iff E iz +

AMd
` s[0/xi] = s′[0/xi] for all i ∈ [1, n + 1] and

E iz +

AMd
∪ {x1 · x

−1
1 = 1, . . . , xn+1 · x

−1
n+1 = 1} `x1,...,xn+1

s = s′. By Lemma 7,

we have that E iz +

AMd
∪ {x1 · x

−1
1 = 1, . . . , xn+1 · x

−1
n+1 = 1} `x1,...,xn+1

s = s′ iff

E i
AMd ` s = s′. For each i ∈ [1, n + 1], E iz +

AMd
` s[0/xi] = s′[0/xi] is decidable

because the number of variables occurring in s[0/xi] = s′[0/xi] is n. Moreover,
we know from Theorem 2 that E i

AMd ` s = s′ is decidable. Hence, in the case
where both s and s′ are Σ i

AMd-terms, E
iz +

AMd
` t = t′ is decidable as well. ut

The fact that derivability of equations from the equations of the alternative
initial algebra specification of Qdaz

0 and x 6= 0⇒ x / x = 1 is decidable is proved
similarly. We remark that it is an open problem whether derivability of equations
from the equations of the alternative initial algebra specifications of Qiaz

0 and
Qdaz

0 is decidable.

5 Interlude on Meadows

For completeness, we shortly discuss inversive and divisive meadows.
To axiomatize inversive and divisive meadows, we need the following sets of

equations:

E i
Md for ECR ∪ {(x

−1)
−1
= x, x · (x · x−1) = x} ,

Ed
Md for ECR ∪ {1 / (1 / x) = x, (x · x) / x = x, x / y = x · (1 / y)} .

The class of inversive meadows is the class of all algebras over the signature Σ i
Md

that satisfy the equations E i
Md; and the class of divisive meadows is the class of

all algebras over the signature Σ d
Md that satisfy the equations E

d
Md.

A meadow is non-trivial if it satisfies 0 6= 1; and a meadow is a cancellation
meadow if it satisfies x 6= 0 ∧ x·y = x·z ⇒ y = z. In [8], an inversive cancellation
meadow is called a zero-totalized field.
Recently, we found out in [14] that inversive meadows were already intro-

duced by Komori [11] in a report from 1975, where they go by the name of
desirable pseudo-fields. We propose the name Komori ring as an alternative for
inversive meadow and the name Komori field as an alternative for inversive non-
trivial cancellation meadow. In [14], we also found an axiomatization of inversive
meadows which differs from the one given above. We came across this paper by
a reference in [16].
Qi

0, the inversive meadow of rational numbers, is defined as follows:

Qi
0 = I(Σ i

Md,E
i
Md ∪ {(1 + x2 + y2) · (1 + x2 + y2)−1 = 1}) .

Qd
0 , the divisive meadow of rational numbers, is defined as follows:

Qd
0 = I(Σd

Md,E
d
Md ∪ {(1 + x2 + y2) / (1 + x2 + y2) = 1}) .

10



Moss showed in [13] that there exists an initial algebra specification of Q with
just one hidden function. The initial algebra specification of Qi

0 given above is
without hidden functions.
Inversive meadows have been extended with signum, floor and ceiling opera-

tions in [5], differentiation operations in [4], and a square root operation in [1].

6 Outstanding Questions about Arithmetical Meadows

The following are some outstanding questions with regard to arithmetical mead-
ows:

1. Is the initial algebra specification of Qi
0 a conservative extension of the initial

algebra specifications of Qia and Qiaz
0 ?

2. Do Qia and Qiaz
0 have initial algebra specifications that constitute complete

term rewriting systems (modulo associativity and commutativity of + and ·)?
3. Do Qia and Qiaz

0 have ω-complete initial algebra specifications?
4. What are the complexities of derivability of equations from E i

AMd and E
iz
AMd∪

{(x · (x+ y)) · (x · (x+ y))−1 = x · x−1, x 6= 0⇒ x · x−1 = 1}?
5. Is derivability of equations from E iz

AMd ∪ {(x · (x + y)) · (x · (x + y))−1 =
x · x−1} ` t = t′ decidable?

6. Do we have Qiaz
0
∼= I(Σ iz

AMd,E
iz
AMd ∪ {(1 + x2) · (1 + x2)−1 = 1})?

These questions are formulated for the inversive case, but they have counterparts
for the divisive case of which some might lead to different answers.

7 Partial Arithmetical Meadows with Zero

Following [3], we introduce in this section simple constructions of partial inversive
and divisive arithmetical meadows with zero from total ones.
We take the position that partial algebras should be made from total ones.

For the case that we are engaged in, this means that relevant partial arithmetical
meadows with zero are obtained from arithmetical meadows with zero by making
certain operations undefined for certain arguments.
LetMiaz

0 be an inversive arithmetical meadow with zero. Then it makes sense
to construct one partial inversive arithmetical meadow with zero fromMiaz

0 :

– 0−1 ↑Miaz
0 is the partial algebra that is obtained fromMiaz

0 by making 0−1

undefined.

LetMdaz
0 be a divisive arithmetical meadow with zero. Then it makes sense to

construct two partial divisive arithmetical meadows with zero fromMdaz
0 :

– Q / 0 ↑Mdaz
0 is the partial algebra that is obtained from Mdaz

0 by making
q / 0 undefined for all q in the domain ofMdaz

0 ;
– (Q \ {0}) / 0 ↑ Mdaz

0 is the partial algebra that is obtained from Mdaz
0 by

making q / 0 undefined for all q in the domain ofMdaz
0 different from 0.

11



Clearly, the partial arithmetical meadow constructions are special cases of
a more general partial algebra construction for which we have coined the term
punching. Presenting the details of the general construction is outside the scope
of the current paper.
The partial arithmetical meadow constructions described above yield the

following three partial arithmetical meadows with zero related to rational num-
bers:

0−1 ↑ Qiaz
0 , Q / 0 ↑ Qdaz

0 , (Q \ {0}) / 0 ↑ Qdaz
0 .

These algebras have been obtained by means of the well-known initial algebra
construction and a simple partial algebra construction. The merits of this ap-
proach are discussed in [3].
At first sight, the absence of the additive inverse operator does not seem to

add anything new to the treatment of punched meadows in [3]. However, this
is not quite the case. Consider 0−1 ↑ Qiaz

0 . In the case of this algebra, there is a
useful syntactic criterion for “being defined”. The set Def of defined terms and
the auxiliary set Nz of non-zero terms can be inductively defined by:

– 1 ∈ Nz ;
– if x ∈ Nz , then x+ y ∈ Nz and y + x ∈ Nz ;
– if x ∈ Nz and y ∈ Nz , then x · y ∈ Nz ;
– if x ∈ Nz , then x−1 ∈ Nz ;
– 0 ∈ Def ;
– if x ∈ Nz , then x ∈ Def ;
– if x ∈ Def and y ∈ Def , then x+ y ∈ Def and x · y ∈ Def .

This indicates that the absence of the additive inverse operator allows a typing
based solution to problems related to “division by zero” in elementary school
mathematics. So there may be a point in dealing first and thoroughly with non-
negative rational numbers in a setting where division by zero is not defined.
Working in Qia simplifies matters even more because there is no distinction

between terms and defined terms. Again, this may be of use in the teaching of
mathematics at elementary school.

8 Arithmetical Meadows and Regular Arithmetical Rings

We can define commutative arithmetical rings with a multiplicative identity in
the same vein as arithmetical meadows. Moreover, we can define commutative
von Neumann regular arithmetical rings with a multiplicative identity as commu-
tative arithmetical rings with a multiplicative identity satisfying the regularity
condition ∀x • ∃y • x · (x · y) = x.
The following theorem states that commutative von Neumann regular arith-

metical rings with a multiplicative identity are related to inversive arithmetical
meadows like commutative von Neumann regular rings with a multiplicative
identity are related to inversive meadows.

12



Theorem 6. Each commutative von Neumann regular arithmetical ring with a

multiplicative identity can be expanded to an inversive arithmetical meadow, and

this expansion is unique.

Proof. Lemma 2.11 from [2] states that each commutative von Neumann regular
ring with a multiplicative identity can be expanded to an inversive meadow, and
this expansion is unique. The only use that is made of the equations x+ 0 = x
and x + (−x) = 0 in the proof of this lemma given in [2] originates from the
use of Lemma 2.12 from [2]. In the proof of the latter lemma, use is made of
the equations x + 0 = x and x + (−x) = 0. However, it is easy to see that the
use of these equations can simply be avoided. By doing so, we obtain a proof of
Lemma 2.11 from [2] that goes through for the arithmetical case. ut

We can also define commutative arithmetical rings with additive and mul-
tiplicative identities and commutative von Neumann regular arithmetical rings
with additive and multiplicative identities in the obvious way. We also have
that commutative von Neumann regular arithmetical rings with additive and
multiplicative identities are related to inversive arithmetical meadows with zero
like commutative von Neumann regular rings with a multiplicative identity are
related to inversive meadows.

9 Conclusions

We have complemented the signatures of inversive and divisive meadows with
arithmetical versions, and provided equational axiomatizations of several classes
of arithmetical meadows and instances of them related to the field of rational
numbers. We have answered a number of questions about these classes and in-
stances of arithmetical meadows, and stated a number of outstanding questions
about them. In addition, we have discussed partial variants of the instances in
question and an arithmetical version of a well-known mathematical structure
closely related to inversive meadows, namely von Neumann regular rings.
We remark that the name arithmetical algebra is not always used in the same

way as Peacock [15] used it. It is sometimes difficult to establish whether the
notion in question is related to Peacock’s notion of arithmetical algebra. For
example, it is not clear to us whether the notion of arithmetical algebra defined
in [17] is related to Peacock’s notion of arithmetical algebra.
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