
Univer sity of Amsterdam
Programming Research Group

Inversive Meadows and Divisive Meadows

J.A. Bergstra
C.A. Middelburg

Report PRG0907 July 2009

J.A. Bergstra

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel. +31 20 525.7591
e-mail: janb@science.uva.nl

C.A. Middelburg

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

e-mail: kmiddelb@science.uva.nl

Programming Research Group Electronic Report Series

Inversive Meadows and Divisive Meadows

J.A. Bergstra and C.A. Middelburg

Informatics Institute, Faculty of Science, University of Amsterdam,
Science Park 107, 1098 XG Amsterdam, the Netherlands

J.A.Bergstra@uva.nl,C.A.Middelburg@uva.nl

Abstract. An inversive meadow is a commutative ring with identity
and a total multiplicative inverse operation satisfying 0−1 = 0. Previ-
ously, inversive meadows were shortly called meadows. In this paper, we
introduce divisive meadows, which are inversive meadows with the multi-
plicative inverse operation replaced by a division operation. We introduce
a translation from the terms over the signature of divisive meadows into
the terms over the signature of inversive meadows and a translation the
other way round to show that it depends on the angle from which they
are viewed whether inversive meadows or divisive meadows must be con-
sidered more basic. Divisive meadows are more basic if variants with a
partial multiplicative inverse or division operation are considered as well.
We also take a survey of first-order logics that are appropriate to handle
those partial variants of inversive and divisive meadows.

Keywords: inversive meadow, divisive meadow, projection semantics, par-
tial algebra construction, first-order logic.

MSC2000 codes: 12E12, 12E30, 12L12.

1 Introduction

The primary mathematical structure for measurement and computation is un-
questionably a field. In [10], meadows are proposed as alternatives for fields with
a purely equational specification. A meadow is a commutative ring with identity
and a total multiplicative inverse operation satisfying two equations which imply
that the multiplicative inverse of zero is zero. Thus, meadows are total algebras.
As usual in field theory, the convention to consider p / q as an abbreviation for
p · (q−1) was used in subsequent work on meadows (see e.g. [5, 8]). This con-
vention is no longer satisfactory if partial variants of meadows are considered
too, as will be demonstrated in this paper. That is why we rename meadows
into inversive meadows and introduce divisive meadows. A divisive meadow is
an inversive meadow with the multiplicative inverse operation replaced by the
division operation suggested by the above-mentioned abbreviation convention.
Henceforth, we will use the name meadow whenever the distinction between
inverse meadows and divisive meadows is not important.
For both inversive meadows and divisive meadows, we give an equational

specification. Given the equational specification of inversive meadows, we can
easily give a modular specification of divisive meadows using module algebra [4].

We give the modular specification in question and show that the equational
theory associated with it is the same as the equational theory associated with
the equational specification of divisive meadows.
Partial variants of meadows are obtained by turning the total multiplicative

inverse or division operation into a partial one. There is one way in which the
multiplicative inverse operation can be turned into a partial operation, whereas
there are two conceivable ways in which the division operation can be turned
into a partial operation. In [7], projection semantics is proposed as an approach
to define the meaning of programs. Projection semantics explains the meaning
of programs in terms of known programs instead of in terms of more or less
sophisticated mathematical objects. We transpose this approach to the current
setting so as to explain the meaning of terms over the signature of divisive
meadows in terms of terms over the signature of inversive meadows. It is also
used to explain the meaning of terms over the signature of inversive meadows
in terms of terms over the signature of divisive meadows. It happens that the
latter projection is appropriate in the case of the partial variants of inversive
meadows as well, whereas the former projection is not appropriate in the case
of one of the kinds of partial variants of divisive meadows. That is why we take
divisive meadows for more basic than inversive meadows if their partial variants
are considered as well.
The main inversive meadow that we are interested in is Qi

0, the zero-totalized
field of rational numbers, which differs from the field of rational numbers only
in that the multiplicative inverse of zero is zero. The main divisive meadow that
we are interested in is Qd

0 , which is Q
i
0 with the multiplicative inverse operation

replaced by a division operation in conformity with the first projection referred
to above. We give finite equational specifications of which Qi

0 and Q
d
0 are the

initial algebras. We obtain a partial variant from Qi
0 and two partial variants

from Qd
0 by means of a rather unknown, but simple construction. This fits in

with our position that partial algebras should be made of total ones. Thus, we
have five algebras related to rational numbers, each requiring only equational
logic for total algebras as a tool for their construction.
Having constructed the partial variant of Qi

0, the question whether it satisfies
the equation 0−1 = 0−1 and related questions are still open because the logic of
partial functions to be used when working with it has not been fixed yet. Similar
remarks apply to the partial variants of Qd

0 . This means that it is still a matter of
design which logic of partial functions can be used for reasoning. Therefore, we
take a survey of first-order logics that may be appropriate to handle the partial
variants of Qi

0 and Q
d
0 .

It appears that, in the sphere of groups, rings and fields, the qualifications
“inversive” and “divisive” have only been used by Yamada [34] and Verloren van
Themaat [32], respectively. Our use of these qualifications is in line with theirs.
This paper is organized as follows. First, we give a brief summary of inverse

meadows (Section 2). Next, we introduce divisive meadows and relate them
to inverse meadows by means of projection semantics (Section 3). After that,
we use module algebra to give a modular specification that corresponds to the

2

equational specification of divisive meadows given earlier (Section 4). Then, we
introduce simple constructions of partial inversive and divisive meadows from
total ones (Section 5). Following this, we introduce the inversive meadow of
rational numbers, the divisive meadow of rational numbers, and partial variants
of them (Section 6). After that, we take surveys of two-valued and three-valued
first-order logics that may be appropriate to handle partial algebras (Sections 7
and 8). Following this, we discuss issues on which the suitability of such a logic for
a particular purpose may depend (Section 9). Finally, we make some concluding
remarks (Section 10).

2 Inversive Meadows

In this section, we give a brief summary of inversive meadows. In [10], inversive
meadows were introduced for the first time. They are further investigated in
e.g. [5, 8, 11].
An inversive meadow is a commutative ring with identity and a total multi-

plicative inverse operation satisfying two equations which imply that the multi-
plicative inverse of zero is zero.
The signature of inversive meadows consists of the following constants and

operators:

– the constants 0 and 1;
– the binary addition operator + ;
– the binary multiplication operator · ;
– the unary additive inverse operator −;
– the unary multiplicative inverse operator −1.

We assume that there are infinitely many variables, including x, y and z.
Terms are build as usual. We use infix notation for the binary operators, prefix
notation for the unary operator −, and postfix notation for the unary operator
−1. Moreover, we use the usual precedence convention to reduce the need for
parentheses. We introduce subtraction as an abbreviation: p − q abbreviates
p+(−q). For each natural number n, we write n for the numeral for n. That is, the
term n is defined by induction on n as follows: 0 = 0 and n+ 1 = n+1. We also
use the notation pn for exponentiation with a natural number as exponent. For
each term p over the signature of meadows, the term pn is defined by induction
on n as follows: p0 = 1 and pn+1 = pn · p.
The constants and operators from the signature of inversive meadows are

adopted from rational arithmetic, which gives an appropriate intuition about
these constants and operators. The set of all terms over the signature of inversive
meadows constitutes the inversive meadow notation.
An inversive meadow is an algebra over the signature of inversive meadows

that satisfies the equations given in Tables 1 and 2. The equations given in
Table 1 are the axioms of a commutative ring with identity. Thus, an inversive
meadow is a commutative ring with identity and a total multiplicative inverse

operation −1 satisfying the reflexivity equation (x−1)
−1
= x and the restricted

3

Table 1. Axioms of a commutative ring with identity

(x + y) + z = x + (y + z)

x + y = y + x

x + 0 = x

x + (−x) = 0

(x · y) · z = x · (y · z)

x · y = y · x

x · 1 = x

x · (y + z) = x · y + x · z

Table 2. Additional axioms for an inversive meadow

(x−1)
−1

= x

x · (x · x−1) = x

inverse equation x · (x · x−1) = x. From the equations given in Tables 1 and 2,
the equation 0−1 = 0 is derivable.
The advantage of working with a total multiplicative inverse operation lies

in the fact that conditions like x 6= 0 in x 6= 0 ⇒ x · x−1 = 1 are not needed to
guarantee meaning.
A non-trivial inversive meadow is an inversive meadow that satisfies the

separation axiom 0 6= 1; and an inversive cancellation meadow is an inversive
meadow that satisfies the cancellation axiom x 6= 0 ∧ x · y = x · z ⇒ y = z, or
equivalently, the general inverse law x 6= 0⇒ x·x−1 = 1. An important property
of non-trivial inversive cancellation meadows is the following: 0 · (0−1) = 0,
whereas x · (x−1) = 1 for x 6= 0.
Henceforth, we will write Σimd for the signature of inversive meadows and

Eimd for the set of axioms for inversive meadows.

3 Divisive Meadows

In this section, we introduce divisive meadows and use projection semantics to
explain the terms over the signature of divisive meadows in terms of terms over
the signature of inversive meadows.
A divisive meadow is a commutative ring with identity and a total division

operation satisfying three equations which imply that division by zero always
yields zero.
The signature of divisive meadows is the signature of inversive meadows with

the unary multiplicative inverse operator −1 replaced by:

– the binary division operator / .

The set of all terms over the signature of divisive meadows constitutes the
divisive meadow notation.
A divisive meadow is an algebra over the signature of divisive meadows that

satisfies the equations given in Tables 1 and 3. Thus, a divisive meadow is a
commutative ring with identity and a total division operation / satisfying the
three equations given in Table 3. The first two of these equations are the obvious

4

Table 3. Additional axioms for a divisive meadow

1 / (1 / x) = x

(x · x) / x = x

x / y = x · (1 / y)

counterparts of the additional axioms for inversive meadows. From the equations
given in Tables 1 and 3, the equation x/0 = 0 is derivable. The equation 1/0 = 0
can be derived without using the last equation from Table 3, and then the latter
equation can be applied to derive the equation x / 0 = 0.
A non-trivial divisive meadow is an divisive meadow that satisfies the sep-

aration axiom; and a divisive cancellation meadow is an divisive meadow that
satisfies the cancellation axiom. An important property of non-trivial divisive
cancellation meadows is the following: 0 / 0 = 0, whereas x / x = 1 for x 6= 0.
Henceforth, we will write Σdmd for the signature of divisive meadows and

Edmd for the set of axioms for divisive meadows.
We can explain the meaning of the terms over the signature of divisive mead-

ows by means of a projection dmn2imn from the divisive meadow notation to the
inversive meadow notation. This projection is defined as follows:

dmn2imn(x) = x ,
dmn2imn(0) = 0 ,
dmn2imn(1) = 1 ,
dmn2imn(p+ q) = dmn2imn(p) + dmn2imn(q) ,
dmn2imn(p · q) = dmn2imn(p) · dmn2imn(q) ,
dmn2imn(−p) = −dmn2imn(p) ,
dmn2imn(p / q) = dmn2imn(p) · (dmn2imn(q)−1) .

The projection dmn2imn supports an interpretation of the theory of divisive
meadows in the theory of inversive meadows: for each equation p = q derivable
from the axioms of a divisive meadow, the equation dmn2imn(p) = dmn2imn(q)
is derivable from the axioms of a inversive meadow.1 Therefore the projection
dmn2imn determines a mapping from divisive meadows to inversive meadows.
We can also explain the meaning of the terms over the signature of inversive

meadows by means of a projection imn2dmn from the inversive meadow notation
to the divisive meadow notation. This projection is defined as follows:

imn2dmn(x) = x ,
imn2dmn(0) = 0 ,
imn2dmn(1) = 1 ,
imn2dmn(p+ q) = imn2dmn(p) + imn2dmn(q) ,
imn2dmn(p · q) = imn2dmn(p) · imn2dmn(q) ,
imn2dmn(−p) = −imn2dmn(p) ,
imn2dmn(p−1) = 1 / imn2dmn(p) .

1 For the notion of a translation that supports a theory interpretation, see e.g. [33].

5

The projection imn2dmn supports an interpretation of the theory of inversive
meadows in the theory of divisive meadows: for each equation p = q derivable
from the axioms of a inversive meadow, the equation imn2dmn(p) = imn2dmn(q)
is derivable from the axioms of a divisive meadow. Therefore the projection
imn2dmn determines a mapping from inversive meadows to divisive meadows.

4 Modular Specification of Divisive Meadows

In this section, we give a modular specification of divisive meadows using basic
module algebra [4].

BMA[fol] (Basic Module Algebra for f irst-order logic specifications) is a
many-sorted equational theory of modules which covers the concepts on which
the key modularization mechanisms found in existing specification formalisms
are based. The signature of BMA[fol] includes among other things:

– the sorts ATSIG of atomic signatures, ATREN of atomic renamings, SIG
of signatures, and M of modules;

– the binary deletion operator ∆ : ATSIG × SIG → SIG ;
– the unary signature operator Σ :M → SIG ;
– for each first-order sentence φ over some signature, the constant 〈φ〉 :M ;
– the binary renaming application operator . : ATREN ×M → M ;
– the binary combination operator + :M ×M → M ;
– the binary export operator ¤ : SIG ×M → M .

The axioms of BMA[fol] as well as four different models for BMA[fol] can be
found in [4]. A useful derived operator is the hiding operator ∆:ATSIG×M → M

defined by a∆X = (a∆Σ(X))¤X. Below, we will use the notational conventions
introduced in Section 3.5 of [4].
Let Mdi be the closed module expression corresponding to the equational

specification of inversive meadows, i.e. 〈(x + y) + z = x + (y + z)〉 + · · · +
〈x · (x · x−1) = x〉. We give a modular specification of divisive meadows using
BMA[fol] as follows:

Mdd = F : −1 :Q → Q ∆ (Mdi + 〈x / y = x · (y−1)〉) .

In [4], a semantic mapping EqTh is defined that gives, for each closed module
expression, its equational theory. We have the following theorem:

Theorem 1. EqTh(Mdd) is the equational theory associated with the equational
specification of divisive meadows given in Section 3.

Proof. In [4], a semantic mappingMod is defined that gives, for each closed mod-
ule expression, its model class. Mod and EqTh are defined such that EqTh(m) is
the equational theory of Mod(m) for each closed module expression m. Hence, it
is sufficient to show that Mod(Mdd) is the class of models of the equational spec-
ification of divisive meadows. By the definition of Mod , we have to show that:
(i) the reduct to the signature of divisive meadows of each model of the equational

6

specification of inversive meadows extended with the equation x / y = x · (y−1)
is a model of the equational specification of divisive meadows; (ii) each model of
the equational specification of divisive meadows can be expanded with a multi-

plicative inverse operation satisfying (x−1)
−1
= x and x · (x · x−1) = x. Using

the equations from the equational specification of inversive meadows and the
equation x / y = x · (y−1), it can easily be proved by equational reasoning that
all equations from the equational specification of divisive meadows are satisfied
by the reducts in question. Let −1 be defined by x−1 = 1 / x. Then, using the
equations from the equational specification of divisive meadows and the equation
x−1 = 1 / x, it can easily be proved by equational reasoning that the equations

(x−1)
−1
= x and x · (x ·x−1) = x are satisfied by the expansions in question. ut

We give the following modular specification of reduced divisive meadows:

Mdrd1 = F : · :Q ×Q → Q ∆Mdd ,

Mdrd2 = F :− :Q → Q ∆ (Mdrd1 + 〈x− y = x+ (−y)〉) ,

Mdrd3 = F : + :Q ×Q → Q ∆Mdrd2 ,

Mdrd = F : 0 :Q ∆Mdrd3 .

The signature of reduced divisive meadows consists of the constant 1 and the
binary operators − and / . We can explain the meaning of the terms over the
signature of inversive meadows by means of a projection imn2rdmn to terms over
the signature of reduced divisive meadows. This projection is defined as follows:

imn2rdmn(x) = x ,
imn2rdmn(0) = 1− 1 ,
imn2rdmn(1) = 1 ,
imn2rdmn(p+ q) = imn2rdmn(p)− ((1− 1)− imn2rdmn(q)) ,
imn2rdmn(p · q) = imn2rdmn(p) / (1 / imn2rdmn(q)) ,
imn2rdmn(−p) = (1− 1)− imn2rdmn(p) ,
imn2rdmn(p−1) = 1 / imn2rdmn(p) .

We have the following theorem:

Theorem 2. EqTh(Mdrd) is the equational theory associated with the equa-

tional specification whose equations are given in Table 4.

Proof. The proof follows the same line as the proof of Theorem 1. For the ex-
pansion, we define zero, addition, multiplication, and additive inverse as follows:
0 = 1− 1, x+ y = x− ((1− 1)− y), x · y = x / (1 / y), and −x = (1− 1)− x. ut

Using the equational specification of reduced divisive meadows, it is easy to
show that the projection imn2rdmn supports an interpretation of the theory of
inversive meadows in the theory of reduced divisive meadows.
The following are some open problems concerning inversive meadows, divisive

meadows, and reduced divisive meadows:

7

Table 4. Axioms of a reduced divisive meadow

(x − ((1 − 1) − y)) − ((1 − 1) − z) = x − ((1 − 1) − (y − ((1 − 1) − z)))

x − ((1 − 1) − y) = y − ((1 − 1) − x)

x − (1 − 1) = x

x − x = 1 − 1

(x / (1 / y)) / (1 / z) = x / (1 / (y / (1 / z)))

x / (1 / y) = y / (1 / x)

x / 1 = x

x / (1 / (y − ((1 − 1) − z))) = x / (1 / y) − ((1 − 1) − (x / (1 / z)))

(x / (1 / x)) / x = x

– do there exist equational specifications of inversive meadows, divisive mead-
ows, and reduced divisive meadows with less than 10 equations, 11 equations,
and 9 equations, respectively;

– can the number of binary operators needed to explain the meaning of the
terms over the signature of inversive meadows be reduced to one.

5 Partial Inversive and Divisive Meadows

In this section, we introduce simple constructions of partial inversive and divisive
meadows from total ones and show why we take divisive meadows for more basic
than inversive meadows if the partial ones are considered as well.
We take the position that partial algebras should be made from total ones.

For the particular case of meadows, this implies that relevant partial meadows
are obtained by making operations undefined for certain arguments.
LetMi be an inversive meadow. Then it make sense to construct one partial

inversive meadow fromMi:

– 0−1 ↑ Mi is the partial algebra that is obtained from Mi by making 0
−1

undefined.

Let Md be a divisive meadow. Then it make sense to construct two partial
divisive meadows fromMd:

– Q / 0 ↑ Md is the partial algebra that is obtained from Md by making
q / 0 undefined for all q in the domain ofMd;

– (Q \{0})/0↑Md is the partial algebra that is obtained fromMd by making
q / 0 undefined for all q in the domain ofMd different from 0.

Clearly, the partial meadow constructions are special cases of a more general
partial algebra construction for which we have coined the term punching. Pre-
senting the details of the general construction is outside the scope of the current
paper.

8

LetMi be an inversive meadow and letMd be an divisive meadow. It hap-
pens that the projection imn2dmn recovers 0−1 ↑Mi from Q / 0 ↑Md as well as
(Q \ {0}) / 0 ↑Md, the projection dmn2imn recovers Q / 0 ↑Md from 0

−1 ↑Mi,
and the projection dmn2imn does not recover (Q \ {0}) / 0 ↑Md from 0

−1 ↑Mi:

– 0−1 is undefined in 0−1 ↑Mi, imn2dmn(0
−1) = 1 / 0, and 1 / 0 is undefined

in Q / 0 ↑Md and (Q \ {0}) / 0 ↑Md;
– x / 0 is undefined in Q / 0 ↑Md, dmn2imn(x / 0) = x · (0−1), and x · (0−1) is
undefined in 0−1 ↑Mi;

– 0 / 0 = 0 in (Q \ {0}) / 0 ↑Md, dmn2imn(0 / 0) = 0 · (0
−1), but 0 · (0−1) is

undefined in 0−1 ↑Mi.

This uncovers that (Q \ {0}) / 0 ↑Md expresses a view on the partiality of divi-
sion by zero that cannot be expressed if only multiplicative inverse is available.
Therefore, we take divisive meadows for more basic than inversive meadows if
their partial variants are considered as well. Otherwise, we might take inversive
meadows for more basic, e.g. because of supposed notational simplicity. Thus,
the move from a total algebra to a partial algebra may imply a reversal of the
preferred direction of projection from dmn2imn to imn2dmn. This shows that pro-
jection semantics is a tool within a setting: if the setting changes, the tool, or
rather its way of application, changes as well.
Returning to (Q \ {0}) / 0 ↑Md, the question remains whether the equation

0 / 0 = 0 is natural. The total cost Cn of producing n items of some product is
often viewed as the sum of a fixed cost FC and a variable cost VC n. Moreover,
for n ≥ 1, the variable cost VC n of producing n items is usually viewed as n
times the marginal cost per item, taking VC n / n as the marginal cost per item.
For n = 0, the variable cost of producing n items and the marginal cost per item
are both 0. This makes the equation VC 0 / 0 = 0 natural.

6 Algebras Related to Rational Numbers

In this section, we obtain first an inverse meadow and a divisive meadow closely
related to the field of rational numbers as the initial algebras of equational
specifications and next partial variants of those meadows as the result of the
partial algebra construction introduced in Section 5. As usual, we write I(Σ,E)
for the initial algebra among the algebras over the signature Σ that satisfy the
equations E (see e.g. [9]).
The inversive meadow that we are interested in is Qi

0, the inversive meadow
of rational numbers:

Qi
0 = I(Σimd, Eimd ∪ {(1 + x2 + y2) · (1 + x2 + y2)−1 = 1}) .

At the end of this section, we will prove that Qi
0 differs from the field of rational

numbers only in that the multiplicative inverse of zero is zero. The divisive
meadow that we are interested in is Qd

0 , the divisive meadow of rational numbers:

Qd
0 = I(Σdmd, Edmd ∪ {(1 + x2 + y2) / (1 + x2 + y2) = 1}) .

9

Qd
0 differs from Qi

0 only in that the multiplicative inverse operation replaced
by a division operation in conformity with the projection imn2dmn defined in
Section 3.
We are also interested in the partial meadows that can be obtained from Qi

0

and Qd
0 by means of the partial meadow constructions introduced in Section 5.

Thus, we have five algebras related to rational numbers:

Qi
0 ,

0−1 ↑ Qi
0 ,

Qd
0 ,

Q / 0 ↑ Qd
0 , (Q \ {0}) / 0 ↑ Qd

0 .

These algebras have been obtained by means of the well-known initial algebra
construction and, in the case of the partial algebras, a simple partial algebra
construction. This implies that in all cases only equational logic for total algebras
has been used as a logical tool for their construction. The approach followed here
contrasts with the usual approach where a special logic for partial algebras would
be used for their construction (see e.g. [13]).
We believe that many complications and unclarities in the development of

the theories of the partial algebras are avoided by not using some logic of partial
functions as a logical tool for their construction. Having constructed 0−1 ↑Qi

0 in
the way described above, the question whether it satisfies the equation 0−1 = 0−1

and related questions are still open because the logic of partial functions to be
used when working with 0−1↑Qi

0 has not been fixed yet. This means that it is still
a matter of design which logic of partial functions will be used when working
with this partial algebra. As soon as the logic is fixed, the above-mentioned
questions are no longer open: it is anchored in the logic whether 0−1 = 0−1 is
satisfied, 0−1 6= 0−1 is satisfied, or neither of the two is satisfied. Similar remarks
apply to the other two partial algebras obtained above.
Many people prefer 0−1↑Qi

0 to the other algebras related to rational numbers.
It is likely that this is because x · x−1 = 1 serves as an implicit definition of −1

in 0−1 ↑ Qi
0.

To prove that Qi
0 differs from the field of rational numbers only in that the

multiplicative inverse of zero is zero, we need some auxiliary results.

Lemma 1. Let p be a prime number. Then for each u ∈ Zp, there exists v, w ∈
Zp such that u = v2 + w2.

Proof. The case where p = 2 is trivial. In the case where p 6= 2, p is odd, say
2 · n + 1. Let S be the set {u ∈ Zp | ∃v ∈ Zp • u = v2}, and let c ∈ Zp be such
that c /∈ S. Because 0 ∈ Zp and each element of S has at most two roots, we
have |S| ≥ n + 1. For each u ∈ c · S, u = 0 or u /∈ S, as u 6= 0 and u ∈ S
only if c ∈ S. Because c · u 6= c · v for each u, v ∈ S with u 6= v, we have
|c ·S| ≥ n+1. It follows that S∪ c ·S = Zp and S∩ c ·S = {0}. This implies that
c · S = {u ∈ Zp | ∀v ∈ Zp • u 6= v2} ∪ {0}. Hence, for each u ∈ Zp with u /∈ S,
there exists an v ∈ Zp such that u = c · v2. The set S is not closed under sums,
as 1 ∈ S, and every element of Zp is a sum of ones. This implies that there exist
u, v ∈ Zp such that u

2 + v2 /∈ S. Let a, b ∈ Zp be such that a
2 + b2 /∈ S, and

take a2 + b2 for c. Then for each u ∈ Zp with u /∈ S, there exists an v ∈ Z such

10

that u = (a2 + b2) · v2. Because (a2 + b2) · v2 = (a · v)2 + (b · v)2, we have that,
for each u ∈ Zp with u /∈ S, there exist v, w ∈ Z such that u = v2+w2. Because
u ∈ S iff u = v2+02 for some v ∈ Zp, we have that, for each u ∈ Zp with u ∈ S,
there exist v, w ∈ Z such that u = v2 + w2. ut

Corollary 1. Let p be a prime number. Then there exists u, v, w ∈ N such that

w · p = u2 + v2 + 1.

Proof. By Lemma 1, there exist u, v ∈ Zp such that −1 = u2 + v2. Let a, b ∈ Zp

be such that −1 = a2+ b2. Then a2+ b2+1 is a multiple of p in N. Hence, there
exists u, v, w ∈ N such that w · p = u2 + v2 + 1. ut

Theorem 3. Qi
0 = I(Σimd, Eimd ∪ {(1 + x2 + y2) · (1 + x2 + y2)−1 = 1}) is the

zero-totalized field of rational numbers, i.e. the Σimd-algebra that differs from

the field of rational numbers only in that 0−1 = 0.

Proof. From the proof of Theorem 3.6 from [10], we already know that, for each
set E′ of Σimd-equations valid in the zero-totalized field of rational numbers,
I(Σimd, Eimd ∪ E′) is the zero-totalized field of rational numbers if it follows
from Eimd ∪ E′ that u has a multiplicative inverse for each u ∈ N. Because
1 + x2 + y2 6= 0, we have that (1 + x2 + y2) · (1 + x2 + y2)−1 = 1 is valid in the
zero-totalized field of rational numbers. So it remains to be proved that u has a
multiplicative inverse for each u ∈ N.
Let p be a prime number. Then, by Corollary 1, there exist u, v, w ∈ N such

that w · p = u2 + v2 + 1. Let m, a, b ∈ N be such that m · p = a2 + b2 + 1.
It is easily proved by induction that u+ v = u + v and u · v = u · v for all
u, v ∈ N in any meadow. It follows that m · p = a2 + b2 + 1 in Qi

0. Because

(1 + x2 + y2) · (1 + x2 + y2)−1 = 1 in Qi
0, we have (m · p) · (m · p)−1 = 1.

This implies that m · (m · p)−1 is the multiplicative inverse of p. Hence, u has
a multiplicative inverse for each u ∈ N that is a prime number. Let c ∈ N.
Then c is the product of finitely many prime numbers, say p1 · · · · · pn. Because
(p1 · · · · ·pn)

−1 = p1
−1 · · · · ·pn

−1 in any meadow (see e.g. Proposition 2.8 in [5])

and c = p1 · · · · · pn, we have that p1
−1 · · · · · pn

−1 is the multiplicative inverse
of c. Hence, u has a multiplicative inverse for each u ∈ N. ut

Lemma 1, Corollary 1, and Theorem 3 come from Hirshfeld (personal communi-
cation, 31 January 2009). Lemma 1 is a folk theorem in the area of field theory,
but we could not find a proof of it in the literature.
We remark that in [10], the initial algebra specification of Qi

0 is obtained by
adding the equation (1+x2+y2+z2+w2) · (1+x2+y2+z2+w2)−1 = 1 instead
of the equation (1+x2+y2) · (1+x2+y2)−1 = 1 to Eimd. In other words, in the
current paper, we have reduced the number of squares needed in the equation
added to Eimd from 4 to 2. In [6], it is shown that the number of squares cannot
be reduced to 1.

11

7 Two-Valued Logics of Partial Functions

In this section, we take a survey of two-valued first-order logics that may be
used when working with partial algebras such as 0−1 ↑ Qi

0, Q / 0 ↑ Qd
0 , and

(Q \ {0}) / 0 ↑ Qd
0 , focussing on semantics.

We consider two truth values, which correspond to true and false and which
are denoted by T and F, respectively.
In handling partial functions in a two-valued logic, it is possible not to deviate

essentially from classical first-order logic because partial functions can be repre-
sented by total functions if the domain of the structure in question is extended
with an undefined value. In this way, non-denoting terms do not occur: the terms
in question denote the undefined value. A serious drawback of this approach is
that the undefined value is not treated differently from the ordinary values. For
instance, quantification is over ordinary values as well as the undefined value.
As a result, frequent reasoning about undefined is customary. This approach is
followed in e.g. Scott’s logic of computable functions [16]. Henceforth, we will use
the term two-valued logics of partial functions exclusively for logics that deviate
essentially from classical first-order logic.
Two-valued logics of partial functions do not give up the excluded middle:

when a formula cannot be classified as true, it is inexorably classified as false.
In general, atomic formulas in which non-denoting terms occur are classified as
false. Below, we will mention one exception: equations in the case where strong
equality is taken as basic.
The key differences between the various two-valued logics of partial functions

are with respect to:

– how free variables and bound variables are treated;
– what kind of equality is taken as basic;
– what additional predicates are taken as basic.

There are two ways of treating free variables and bound variables in two-
valued logics of partial functions:

– free variables may not denote, but bound variables always do;
– both bound variables and free variables always denote.

The first treatment has the advantage that frequent reasoning about the de-
finedness of terms can be avoided. It is found in e.g. Scott’s free logic [31] and
MPLω [24]. The second treatment keeps a logic closer to classical first-order logic
than the first treatment. It is found in e.g. LPT [2].
There are two ways of adapting equality to non-denoting terms in two-valued

logics. The two ways in question lead to kinds of equality which only differ in
how non-denoting terms are handled:

– strong equality : if either t or t′ is non-denoting, then the truth value of t = t′

is T whenever both t and t′ are non-denoting and F otherwise;
– existential equality : if either t or t′ is non-denoting, then the truth value of
t = t′ is F.

12

Strong equality can be expressed in terms of existential equality (see e.g. [13]).
The definedness predicate is virtually the only additional predicate that is

taken as basic in two-valued logics of partial functions. This unary predicate is
defined as follows: D(t) = T if t is denoting, and D(t) = F otherwise. Definedness
can be expressed in terms of existential equality. Moreover, existential equality
can be expressed in terms of definedness and strong equality (see e.g. [13]).
In most two-valued logics of partial functions that have been proposed, in-

cluding Scott’s free logic, MPLω and LPT, existential equality and definedness
are taken as basic.

8 Three-Valued Logics of Partial Functions

In this section, we take a survey of three-valued first-order logics that may be
used when working with partial algebras such as 0−1 ↑ Qi

0, Q / 0 ↑ Qd
0 , and

(Q \ {0}) / 0 ↑ Qd
0 , focussing on semantics.

We consider three truth values, which correspond to true, false, and neither-
true-nor-false and which are denoted by T, F, and ∗, respectively.
The key differences between the various three-valued logics of partial func-

tions are with respect to:

– how the classical logical connectives and quantifiers are extended to the
three-valued case;

– what additional logical connectives are taken as basic;
– what kind of equality is taken as basic;
– what model-theoretic notion of logical consequence is taken to underlie the
proof system.

In three-valued logics of partial functions, the classical logical connectives are
always extended to total three-valued truth functions (as opposed to partial
three-valued truth functions) and the classical logical quantifiers correspond-
ingly.
Even if we require the usual interdefinability of the classical logical connec-

tives, there remain 36 ways of extending them to the three-valued case. However,
many ways must be considered uninteresting for a logic of partial functions be-
cause they lack an interpretation of the third truth value that fits in with its
origin: dealing with non-denoting terms. If those ways are excluded, only four
ways to extend the classical logical connectives to the three-valued case remain
(see e.g. [3]). Three of them are well-known: they lead to Bochvar’s strict connec-
tives [12], McCarthy’s sequential connectives [25], and Kleene’s monotonic con-
nectives [22]. The fourth way leads to McCarthy’s sequential connectives with
the role of the operands of the binary connectives reversed. For each of these
kinds of connectives, the quantifiers belonging to it are the natural generaliza-
tions of the conjunction and disjunction in question. The quantifiers belonging to
McCarthy’s sequential connectives, which are relatively unknown, are considered
in [23].

13

In all above-mentioned ways of extending the classical logical connectives,
the resulting connectives are monotonic with respect the ordering ¹ on three-
valued domain of truth values defined as follows: b ¹ b′ iff b 6= ∗ implies b = b′.
Kleene’s connectives are the strongest monotonic extensions of the classical con-
nectives. They are expressively complete for all monotonic three-valued truth
functions. This implies that Bochvar’s connectives and McCarthy’s connectives
can be expressed in terms of Kleene’s connectives. Hence, only the addition of
McCarthy’s conjunction and disjunction to Bochvar’s connectives and the addi-
tion of non-monotonic connectives to Bochvar’s connectives, McCarthy’s connec-
tives or Kleene’s connectives make sense. The most interesting non-monotonic
connective appears to be Hoogewijs’ definedness connective [19], which is defined
as follows: ∆b = T if not b = ∗, and ∆b = F otherwise. Kleene’s connectives
together with this definedness connective are expressively complete for all three-
valued truth functions.
There are only three ways of extending classical equality to the three-valued

case that possess an interpretation of the third truth value that fits in with
dealing with non-denoting terms. The three ways in question lead to kinds of
equality which only differ in their treatment of non-denoting terms:

– weak equality : if either t or t′ is non-denoting, then the truth value of t = t′

is ∗;
– strong equality : if either t or t′ is non-denoting, then the truth value of t = t′

is T whenever both t and t′ are non-denoting and F otherwise;
– existential equality : if either t or t′ is non-denoting, then the truth value of
t = t′ is F.

Kleene’s connectives, the quantifiers belonging to them, and weak equality match
very well together: each behaves according to its classical truth-condition and
falsehood-condition; only if neither of them meets, it will yield ∗. Weak equality
is taken as basic in many three-valued logics of partial functions in which also
Kleene’s connectives and the quantifiers belonging to them are taken as basic.
Strong equality and existential equality correspond with the two kinds of equality
that are considered in two-valued logics of partial functions.
In the presence of Kleene’s connectives and the definedness connective men-

tioned above, strong equality and existential equality can be expressed in terms
of weak equality (see e.g. [27]).
The following are the intuitive ideas that underlie the most sensible notions

of logical consequence for three-valued logics:

– from premises that are true, one can draw conclusions that are true;
– from premises that are true, one can draw conclusions that are not false;
– from premises that are not false, one can draw conclusions that are true;
– from premises that are not false, one can draw conclusions that are not false.

The notions of logical consequence that correspond with these ideas are called ss-
consequence, sw-consequence, ws-consequence, and ww-consequence, respectively
(s stands for strong and w stands for weak). For formulas formed with Kleene’s
connectives and the quantifiers belonging to them (cf. [23]):

14

– ss-consequence amounts to classical logical consequence except for the ab-
sence of what depends anyhow on the excluded middle;

– sw-consequence amounts to classical logical consequence;
– ws-consequence amounts to ss-consequence with the difference that premises
that are neither true nor false are ignored;

– ww-consequence amounts to sw-consequence with the difference that prem-
ises that are neither true nor false are ignored.

We see that ss-consequence is lacking exactly what does not leave room for for-
mulas which are neither true nor false. This is what one naturally expects from a
three-valued logic where the additional truth value is interpreted as neither true
nor false. Each of the above-mentioned notions of logical consequence under-
lies known three-valued logics of partial functions, e.g. ss-consequence underlies
LPF [1], sw-consequence underlies PPC [19] and PFOL [15], ws-consequence
underlies WS [29], and ww-consequence underlies WL [28].
For formulas formed with Kleene’s connectives, the quantifiers belonging to

them, and the definedness connective mentioned above, each of these notions of
logical consequence can be used to define the others (see e.g. [15]).
In most three-valued logics of partial functions that have been proposed, in-

cluding LPF, PPC, PFOL and WS, Kleene connectives, the quantifiers belonging
to them, Hoogewijs’ definedness connective and weak equality are taken as basic.

9 Discussion of Logics of Partial Functions

In Sections 7 and 8, it is not only mentioned what the key differences are between
the various two-valued logics of partial functions and what the key differences are
between the various three-valued logics of partial functions. It is also mentioned
what their main connections are. From that, it is clear that are a few logics
which together encompass all others. However, this should not be taken as an
indication that only those few logics should be considered when fixing a logic to
be used for a particular purpose, such as reasoning about some partial meadow
of rational numbers. Whether a logic of partial functions is suited to a particular
purpose may depend on quite different issues.
It follows from results in [21, 30] how the few logics of partial functions which

together encompasses all others can be reconstructed classically by embeddings
into classical logic. Of course, this should not be taken as an indication that we
should stick to classical logic either.
Using Kleene’s connectives, the quantifiers belonging to them, and weak

equality, formulas can easily be understood. A formula is classified as true or
false according to the classical truth-condition and falsehood-condition for the
logical connectives, quantifiers, and equality; it is classified as neither-true-nor-
false exactly when it cannot be classified as true or false by these conditions.
The notion of logical consequence that fits in most naturally with this is ss-
consequence, because it is the only one that is lacking exactly what does not
leave room for formulas which are neither true nor false. However, it is not

15

easy to memorize the logical axioms and inference rules of a proof system for
ss-consequence if we are used to classical logic.
Formulas that can easily be understood and an easily memorizable proof sys-

tem are not the only matters for consideration when fixing a logic. Another im-
portant matter is that the validity of formulas in the partial meadow of rational
numbers under consideration is in accordance with the intuition. For instance, in
the case of a three-valued logic of partial functions with Bochvar’s, McCarthy’s
or Kleene’s connectives, the quantifiers belonging to the connectives in question,
and weak equality, the formula ∀x • (x/x = 1⇒ x 6= 0) is not true in Q /0↑Qd

0 ,
which is likely to be considered counterintuitive.
Sections 7 and 8 show that there are many matters about which a choice has

to be made when designing a logic of partial functions to be used when working
with a partial meadow of rational numbers. The logics of partial functions that
have been proposed in the past cover only a small part of the possible combina-
tions of choices. It is not clear to us what is at the root of this. Therefore, we do
no preclude the possibility that other logics of partial functions are also worth
consideration.

10 Conclusions

We have made a formal distinction between inverse meadows and divisive mead-
ows, have given a translation from the terms over the signature of divisive mead-
ows into the terms over the signature of inversive meadows and a translation the
other way round, and have shown, using those translations, that it depends on
the angle from which they are viewed whether inversive meadows or divisive
meadows must be considered more basic. We have also introduced simple con-
structions of variants of inverse meadows and divisive meadows with a partial
multiplicative inverse or division operation.
We have obtained five algebras related to rational numbers by means of the

well-known initial algebra construction and, in three cases, the above-mentioned
partial algebra constructions. This implies that in all cases only equational logic
for total algebras has been used as a logical tool for their construction. In this
way, we have avoided choosing or developing an appropriate logic, which we
consider a design problem of logics, not of data types. We have also taken a
survey of first-order logics that are appropriate to handle those partial variants
of inversive and divisive meadows.
The survey of logics of partial functions that we have taken is a survey of

options. It does not include a comparison of their usefulness for a particular
purpose. Such comparisons are found in e.g. [14, 20]. The problem with them
is that they are based on selected examples, and therefore they cover only a
few forms of formulas and a few patterns of proofs. An option for future work
is to carry out a more systematic comparison of the different logics of partial
functions by which the partial variants of inversive and divisive meadows can be
handled, with the aim to develop a clear picture of their differences.

16

We claim that, viewed from the theory of abstract data types, the way in
which partial algebras are constructed in this paper is the preferred way. Its main
advantage is that no decision need to be taken in the course of the construction
about matters concerning the logic to be used when working with the partial
algebras in question. For that reason, we consider it useful to generalize the
partial algebra constructions on inversive and divisive meadows to a partial
algebra construction that can be applied to any total algebra. This is another
option for future work.
The axioms of an inversive meadow forces that the equation 0−1 = 0 holds.

It happens that this equation is used for technical convenience in several other
places, see e.g. [18, 17]. The axioms of a divisive meadow forces that the equation
x / 0 = 0 holds. One of the few published pieces of writing about this equation
that we have been able to trace is [26].

References

1. Barringer, H., Cheng, J.H., Jones, C.B.: A logic covering undefinedness in program
proofs. Acta Informatica 21(3), 251–269 (1984)

2. Beeson, M.J.: Proving programs and programming proofs. In: R. Barcan-Marcus,
G.J.W. Dorn, P. Weingartner (eds.) Logic, Methodology, and Philosophy of Science
VII, pp. 51–81. North-Holland, Amsterdam (1986)

3. Bergstra, J.A., Bethke, I., Rodenburg, P.H.: A propositional logic with 4 values:
True, false, divergent and meaningless. Journal of Applied Non-Classical Logic
5(2), 199–218 (1995)

4. Bergstra, J.A., Heering, J., Klint, P.: Module algebra. Journal of the ACM 37(2),
335–372 (1990)

5. Bergstra, J.A., Hirshfeld, Y., Tucker, J.V.: Meadows and the equational specifica-
tion of division. Theoretical Computer Science 410(12–13), 1261–1271 (2009)

6. Bergstra, J.A., Hirshfeld, Y., Tucker, J.V.: Skew meadows. arXiv:0901.0803

[math.RA] at http://arxiv.org/ (2009)
7. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. Journal of Logic

and Algebraic Programming 51(2), 125–156 (2002)
8. Bergstra, J.A., Ponse, A.: A generic basis theorem for cancellation meadows.

arXiv:0803.3969 [math.RA] at http://arxiv.org/ (2008)
9. Bergstra, J.A., Tucker, J.V.: Algebraic specifications of computable and semicom-

putable data types. Theoretical Computer Science 50(2), 137–181 (1987)
10. Bergstra, J.A., Tucker, J.V.: The rational numbers as an abstract data type. Jour-

nal of the ACM 54(2), Article 7 (2007)
11. Bethke, I., Rodenburg, P.H., Sevenster, A.: The structure of finite meadows.

arXiv:0903.1196 [cs.LO] at http://arxiv.org/ (2009)
12. Bochvar, D.A.: On a three-valued logical calculus and its application to the analysis

of contradictions (in Russian). Matématic̆eskij Sbornik 4(46), 287–308 (1939). A
translation into English appeared in History and Philosophy of Logic 2(1–2), 87–
112 (1981)

13. Cerioli, M., Mossakowski, T., Reichel, H.: From total equational to partial first
order logic. In: E. Astesiano, H.J. Kreowski, B. Krieg-Brückner (eds.) Algebraic
Foundations of Systems Specification, pp. 31–104. Springer-Verlag, Berlin (1999)

17

14. Cheng, J.H., Jones, C.B.: On the usability of logics which handle partial functions.
In: C. Morgan, J.C.P. Woodcock (eds.) 3rd Refinement Workshop, Workshops in
Computing Series, pp. 51–69. Springer-Verlag (1991)

15. Gavilanes-Franco, A., Lucio-Carrasco, F.: A first order logic for partial functions.
Theoretical Computer Science 74(1), 37–69 (1990)

16. Gordon, M.J.C., Milner, R., Wadsworth, C.: Edinburgh LCF, Lecture Notes in

Computer Science, vol. 78. Springer-Verlag, Berlin (1979)
17. Harrison, J.: Theorem Proving with the Real Numbers. Distinguished Dissertations

Series. Springer-Verlag, Berlin (1998)
18. Hodges, W.A.: Model Theory, Encyclopedia of Mathematics and Its Applications,

vol. 42. Cambridge University Press, Cambridge (1993)
19. Hoogewijs, A.: A calculus of partially defined predicates. Mathematical scripts,

Rijksuniversiteit Gent (1977)
20. Jones, C.B.: Reasoning about partial functions in the formal development of pro-

grams. Electronic Notes in Theoretical Computer Science 145, 3–25 (2006)
21. Jones, C.B., Middelburg, C.A.: A typed logic of partial functions reconstructed

classically. Acta Informatica 31(5), 399–430 (1994)
22. Kleene, S.C.: On notation for ordinal numbers. Journal of Symbolic Logic 3(4),

150–155 (1938)
23. Konikowska, B., Tarlecki, A., Blikle, A.: A three-valued logic for software specifi-

cation and validation. Fundamenta Informaticae 14, 411–453 (1991)
24. Koymans, C.P.J., Renardel de Lavalette, G.R.: The logic MPLω. In: M. Wirsing,

J.A. Bergstra (eds.) Algebraic Methods: Theory, Tools and Applications, Lecture

Notes in Computer Science, vol. 394, pp. 247–282. Springer-Verlag (1989)
25. McCarthy, J.: A basis for a mathematical theory of computation. In: P. Braf-

fort, D. Hirschberg (eds.) Computer Programming and Formal Systems, pp. 33–70.
North-Holland, Amsterdam (1963)

26. McDonnell, E.E.: Zero divided by zero. In: APL ’76, pp. 295–296. ACM Press
(1976)

27. Middelburg, C.A., Renardel de Lavalette, G.R.: LPF and MPLω – a logical com-
parison of VDM SL and COLD-K. In: S. Prehn, W.J. Toetenel (eds.) VDM ’91,
Volume 1, Lecture Notes in Computer Science, vol. 551, pp. 279–308. Springer-
Verlag, Berlin (1991)

28. Owe, O.: An approach to program reasoning based on a first order logic for partial
functions. Technical Report 89, Institute of Informatics, University of Oslo (1985)

29. Owe, O.: Partial logics reconsidered: A conservative approach. Formal Aspects of
Computing 5(3), 208–223 (1993)

30. Renardel de Lavalette, G.R.: The static part of the design language COLD-K.
In: D.J. Andrews, J.F. Groote, C.A. Middelburg (eds.) Semantics of Specification
Languages, Workshops in Computing Series, pp. 51–82. Springer-Verlag (1994)

31. Scott, D.S.: Existence and description in formal logic. In: R. Schoenman (ed.)
Bertrand Russell, Philosopher of the Century, pp. 181–200. Allen & Unwin (1967)

32. Verloren van Themaat, W.A.: Right-divisive groups. Notre Dame Journal of Formal
Logic 19(1), 137–140 (1978)

33. Visser, A.: Categories of theories and interpretations. In: A. Enayat, I. Kalantari,
M. Moniri (eds.) Logic in Tehran 2003, Lecture Notes in Logic, vol. 26, pp. 284–341.
Association for Symbolic Logic (2006)

34. Yamada, M.: Inversive semigroups I. Proceedings of Japan Academy 39(2), 100–
103 (1963)

18

Electronic Reports Series of the Programming Research Group

Within this series the following reports appeared.

[PRG0906] J.A. Bergstra and C.A. Middelburg, Instruction Sequence Notations with Probabilistic Instructions,
Programming Research Group - University of Amsterdam, 2009.

[PRG0905] J.A. Bergstra and C.A. Middelburg, A Protocol for Instruction Stream Processing, Programming
Research Group - University of Amsterdam, 2009.

[PRG0904] J.A. Bergstra and C.A. Middelburg, A Process Calculus with Finitary Comprehended Terms,
Programming Research Group - University of Amsterdam, 2009.

[PRG0903] J.A. Bergstra and C.A. Middelburg, Tr ansmission Protocols for Instruction Streams, Programming
Research Group - University of Amsterdam, 2009.

[PRG0902] J.A. Bergstra and C.A. Middelburg, Meadow Enriched ACP Process Algebras, Programming
Research Group - University of Amsterdam, 2009.

[PRG0901] J.A. Bergstra and C.A. Middelburg, Timed Tuplix Calculus and the Wesseling and van den Berg
Equation, Programming Research Group - University of Amsterdam, 2009.

[PRG0814] J.A. Bergstra and C.A. Middelburg, Instruction Sequences for the Production of Processes,
Programming Research Group - University of Amsterdam, 2008.

[PRG0813] J.A. Bergstra and C.A. Middelburg, On the Expressiveness of Single-Pass Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0812] J.A. Bergstra and C.A. Middelburg, Instruction Sequences and Non-uniform Complexity Theory,
Programming Research Group - University of Amsterdam, 2008.

[PRG0811] D. Staudt, A Case Study in Software Engineering with PSF: A Domotics Application, Programming
Research Group - University of Amsterdam, 2008.

[PRG0810] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Poly-Threading, Programming Research
Group - University of Amsterdam, 2008.

[PRG0809] J.A. Bergstra and C.A. Middelburg, Data Linkage Dynamics with Shedding, Programming Research
Group - University of Amsterdam, 2008.

[PRG0808] B. Diertens, A Process Algebra Software Engineering Environment, Programming Research Group -
University of Amsterdam, 2008.

[PRG0807] J.A. Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, Tuplix Calculus Specifications of Financial
Tr ansfer Networks, Programming Research Group - University of Amsterdam, 2008.

[PRG0806] J.A. Bergstra and C.A. Middelburg, Data Linkage Algebra, Data Linkage Dynamics, and Priority
Rewriting, Programming Research Group - University of Amsterdam, 2008.

[PRG0805] J.A. Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, UvA Budget Allocatie Model, Programming
Research Group - University of Amsterdam, 2008.

[PRG0804] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Sequential Poly-Threading, Programming
Research Group - University of Amsterdam, 2008.

[PRG0803] J.A. Bergstra and C.A. Middelburg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0802] A. Barros and T. Hou, A Constructive Version of AIP Revisited, Programming Research Group -
University of Amsterdam, 2008.

[PRG0801] J.A. Bergstra and C.A. Middelburg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - University of Amsterdam, 2008.

[PRG0713] J.A. Bergstra, A. Ponse, and M.B. van der Zwaag, Tuplix Calculus, Programming Research Group -
University of Amsterdam, 2007.

[PRG0712] J.A. Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, Towards a Formalization of Budgets,
Programming Research Group - University of Amsterdam, 2007.

[PRG0711] J.A. Bergstra and C.A. Middelburg, Program Algebra with a Jump-Shift Instruction, Programming
Research Group - University of Amsterdam, 2007.

[PRG0710] J.A. Bergstra and C.A. Middelburg, Instruction Sequences with Dynamically Instantiated Instructions,
Programming Research Group - University of Amsterdam, 2007.

[PRG0709] J.A. Bergstra and C.A. Middelburg, Instruction Sequences with Indirect Jumps, Programming
Research Group - University of Amsterdam, 2007.

[PRG0708] B. Diertens, Software (Re-)Engineering with PSF III: an IDE for PSF, Programming Research Group
- University of Amsterdam, 2007.

[PRG0707] J.A. Bergstra and C.A. Middelburg, An Interface Group for Process Components, Programming
Research Group - University of Amsterdam, 2007.

[PRG0706] J.A. Bergstra, Y. Hirschfeld, and J.V. Tucker, Skew Meadows, Programming Research Group -
University of Amsterdam, 2007.

[PRG0705] J.A. Bergstra, Y. Hirschfeld, and J.V. Tucker, Meadows, Programming Research Group - University of
Amsterdam, 2007.

[PRG0704] J.A. Bergstra and C.A. Middelburg, Machine Structure Oriented Control Code Logic (Extended
Version), Programming Research Group - University of Amsterdam, 2007.

[PRG0703] J.A. Bergstra and C.A. Middelburg, On the Operating Unit Size of Load/Store Arc hitectures,
Programming Research Group - University of Amsterdam, 2007.

[PRG0702] J.A. Bergstra and A. Ponse, Interface Groups and Financial Transfer Architectures, Programming
Research Group - University of Amsterdam, 2007.

[PRG0701] J.A. Bergstra, I. Bethke, and M. Burgess, A Process Algebra Based Framework for Promise Theory,
Programming Research Group - University of Amsterdam, 2007.

[PRG0610] J.A. Bergstra and C.A. Middelburg, Parallel Processes with Implicit Computational Capital,
Programming Research Group - University of Amsterdam, 2006.

[PRG0609] B. Diertens, Software (Re-)Engineering with PSF II: from architecture to implementation,
Programming Research Group - University of Amsterdam, 2006.

[PRG0608] A. Ponse and M.B. van der Zwaag, Risk Assessment for One-Counter Threads, Programming
Research Group - University of Amsterdam, 2006.

[PRG0607] J.A. Bergstra and C.A. Middelburg, Synchronous Cooperation for Explicit Multi-Threading,
Programming Research Group - University of Amsterdam, 2006.

[PRG0606] J.A. Bergstra and M. Burgess, Local and Global Trust Based on the Concept of Promises,
Programming Research Group - University of Amsterdam, 2006.

[PRG0605] J.A. Bergstra and J.V. Tucker, Division Safe Calculation in Totalised Fields, Programming Research
Group - University of Amsterdam, 2006.

[PRG0604] J.A. Bergstra and A. Ponse, Projection Semantics for Rigid Loops, Programming Research Group -
University of Amsterdam, 2006.

[PRG0603] J.A. Bergstra and I. Bethke, Predictable and Reliable Program Code: Virtual Machine-based
Projection Semantics (submitted for inclusion in the Handbook of Network and Systems
Administration), Programming Research Group - University of Amsterdam, 2006.

[PRG0602] J.A. Bergstra and A. Ponse, Program Algebra with Repeat Instruction, Programming Research Group
- University of Amsterdam, 2006.

[PRG0601] J.A. Bergstra and A. Ponse, Interface Groups for Analytic Execution Architectures, Programming
Research Group - University of Amsterdam, 2006.

[PRG0505] B. Diertens, Software (Re-)Engineering with PSF, Programming Research Group - University of
Amsterdam, 2005.

[PRG0504] P.H. Rodenburg, Piecewise Initial Algebra Semantics, Programming Research Group - University of
Amsterdam, 2005.

[PRG0503] T.D. Vu, Metric Denotational Semantics for BPPA, Programming Research Group - University of
Amsterdam, 2005.

[PRG0502] J.A. Bergstra, I. Bethke, and A. Ponse, Decision Problems for Pushdown Threads, Programming
Research Group - University of Amsterdam, 2005.

[PRG0501] J.A. Bergstra and A. Ponse, A Bypass of Cohen’s Impossibility Result, Programming Research Group -
University of Amsterdam, 2005.

[PRG0405] J.A. Bergstra and I. Bethke, An Upper Bound for the Equational Specification of Finite State Services,
Programming Research Group - University of Amsterdam, 2004.

[PRG0404] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Strategic Interleaving, Programming
Research Group - University of Amsterdam, 2004.

[PRG0403] B. Diertens, A Compiler-projection from PGLEc.MSPio to Parrot, Programming Research Group -
University of Amsterdam, 2004.

[PRG0402] J.A. Bergstra and I. Bethke, Linear Projective Program Syntax, Programming Research Group -
University of Amsterdam, 2004.

[PRG0401] B. Diertens, Molecular Scripting Primitives, Programming Research Group - University of
Amsterdam, 2004.

[PRG0302] B. Diertens, A Toolset for PGA, Programming Research Group - University of Amsterdam, 2003.

[PRG0301] J.A. Bergstra and P. Walters, Projection Semantics for Multi-File Programs, Programming Research
Group - University of Amsterdam, 2003.

[PRG0201] I. Bethke and P. Walters, Molecule-oriented Java Programs for Cyclic Sequences, Programming
Research Group - University of Amsterdam, 2002.

The above reports and more are available through the website: www.science.uva.nl/research/prog/

Electronic Report Series

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

