University of Amsterdam
Programming Research Group

A Process Calculus with Finitary
Comprehended Terms

JA. Bergstra
C.A. Middelburg

Report PRG0904 March 2009

JA. Bergstra

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel. +31 20 525.7591
e-mail; janb@science.uva.nl

C.A. Middelburg
Programming Research Group
Faculty of Science

University of Amsterdam
Kruislaan 403

1098 SJ Amsterdam

The Netherlands

e-mail: kmiddelb@science.uva.nl

Programming Research Group Electronic Report Series

A Process Calculus with
Finitary Comprehended Terms

J.A. Bergstra and C.A. Middelburg

Informatics Institute, Faculty of Science, University of Amsterdam,
Science Park 107, 1098 XG Amsterdam, the Netherlands
J.A.BergstraQuva.nl,C.A.Middelburg@uva.nl

Abstract. Meadow enriched ACP process algebras are essentially en-
richments of models of the axiom system ACP that concern processes
in which data are involved, the mathematical structure of data being a
meadow. For all associative operators from the signature of meadow en-
riched ACP process algebras, we introduce variable-binding operators as
generalizations. These variable-binding operators, which give rise to com-
prehended terms, have the property that they can always be eliminated.
Thus, we obtain a process calculus whose terms can be interpreted in
all meadow enriched ACP process algebras. Use of the variable-binding
operators that bind variables with a two-valued range can already have
a major impact on the size of terms.

Keywords: meadow enriched ACP process algebra, variable-binding op-
erator, comprehended term, process calculus.

1998 ACM Computing Classification: D.1.3, F.1.2, F.4.1.

1 Introduction

In [8], we have introduced the notion of a meadow enriched ACP process algebra.
Meadow enriched ACP process algebras are essentially enrichments of models of
the axiom system ACP that concern processes in which data are involved, the
mathematical structure of data being a meadow. The primary mathematical
structure for calculations is unquestionably a field, and a meadow differs from a
field only in that the multiplicative inverse operation is made total by imposing
that the multiplicative inverse of zero is zero. Like with fields, there is a multitude
of finite and infinite meadows. For these reasons, we consider the combination of
models of the axiom system ACP and meadows made in meadow enriched ACP
process algebras a combination with potentially many applications. It is striking
that meadows obviate the need for Boolean values and operations on data that
yield Boolean values to deal with conditions on data.

In the principal ACP-based formalisms proposed for the description and anal-
ysis of processes in which data are involved, to wit 4CRL [14, 15] and PSF [20],
we find variable-binding operators generalizing associative operators of ACP.
In the current paper, our main objective is to determine to what extent such
variable-binding operators fit in with meadow enriched ACP process algebras.

For all associative operators from the signature of meadow enriched ACP
process algebras, we introduce in this paper variable-binding operators as gen-
eralizations. These variable-binding operators, which give rise to comprehended
terms, have the property that they can always be eliminated. That is, for each
comprehended term, we can derive from axioms concerning the variable-binding
operators that the comprehended term is equal to a term over the signature of
meadow enriched ACP process algebras. Those axioms are axioms of a calculus
because the distinction between free and bound variables is essential in deriva-
tions. The terms of this process calculus are interpreted in meadow enriched
ACP process algebras.

Full elimination of all variable-binding operators occurring in a compre-
hended term can lead to a combinatorial explosion. We show that a combinatorial
explosion can be prevented if variable-binding operators that bind variables with
a two-valued range are still permitted in the resulting term. We also show that
in the latter case the size of the resulting term can be further reduced if we add
an identity element for sequential composition to meadow enriched ACP pro-
cess algebras. Moreover, we demonstrate that we do not need variable-binding
operators for all associative operators on processes if we add a sort of process se-
quences and the right operators on process sequences to meadow enriched ACP
process algebras.

In meadow enriched ACP process algebras as introduced in [8], a meadow is
taken as the mathematical structure for data. In this paper, a signed meadow, i.e.
a meadow expanded with a signum operation, is taken instead. For convenience,
the resulting enriched ACP process algebras are still called meadow enriched
ACP process algebras. In the presence of a signum operation, the ordering on the
elements of a meadow that corresponds with the usual ordering on the elements
of a field becomes definable.

This paper is organized as follows. First, we give a brief summary of signed
meadows (Section 2). Next, we review the notion of an ACP process algebra (Sec-
tion 3) and the notion of a meadow enriched ACP process algebra (Section 4).
After that, we associate a calculus with meadow enriched ACP process algebras
(Section 5) and define the interpretation of terms of this calculus in meadow
enriched ACP process algebras (Section 6). Following this, we investigate the
consequences of elimination of variable-binding operators from comprehended
terms on the size of the resulting terms (Section 7). Then, we investigate the
effects of adding an identity element for sequential composition to ACP process
algebras (Section 8) and the effects of adding process sequences to ACP process
algebras (Section 9). Finally, we make some concluding remarks (Section 10).

2 Signed Meadows

In this paper, the mathematical structure for data is a signed meadow. In this
section, we give a brief summary of signed meadows.

A meadow is a field with the multiplicative inverse operation made total by
imposing that the multiplicative inverse of zero is zero. A signed meadow is a

Table 1. Axioms for meadows

(v+v)+w=u+ (v+w) (w-v)-w=u-(v-w) wH '=u
ut+v=v+u U-V=0-Uu w-(u-u"t) =u
ut+t0=u u-l=u

u+(—u) =0 u-(vtw)=u-v+u-w

meadow expanded with a signum operation. Meadows are defined for the first
time in [10] and are investigated in e.g. [5,9, 11]. The expansion of meadows with
a signum operation originates from [9].

The signature of meadows is the same as the signature of fields. It is a
one-sorted signature. We make the single sort explicit because we will extend
this signature to a two-sorted signature in Section 4. The signature of meadows
consists of the sort Q of quantities and the following constants and operators:

the constants 0: -+ Q and 1: —» Q;

— the binary addition operator +: Q x Q — Q;

— the binary multiplication operator - : Q x Q — Q;
the unary additive inverse operator —: Q — Q;

the unary multiplicative inverse operator ' : Q = Q.

We assume that there is a countably infinite set U/ of variables of sort Q,
which contains u, v and w, with and without subscripts. Terms are build as
usual. We use infix notation for the binary operators + and -, prefix notation
for the unary operator —, and postfix notation for the unary operator —!. We
use the usual precedence convention to reduce the need for parentheses. We
introduce subtraction and division as abbreviations: p — ¢ abbreviates p + (—q)
and p/q abbreviates p-¢~!. For each non-negative natural number n, we write n
for the numeral for n. That is, the term n is defined by induction on n as follows:
0=0and n+1=mn+ 1. We also use the notation p™ for exponentiation with
a natural number as exponent. For each term p over the signature of meadows,
the term p” is defined by induction on n as follows: p° = 1 and p™*! = p™ - p.

The constants and operators from the signature of meadows are adopted from
rational arithmetic, which gives an appropriate intuition about these constants
and operators.

A meadow is an algebra with the signature of meadows that satisfies the
equations given in Table 1. Thus, a meadow is a commutative ring with identity
equipped with a multiplicative inverse operation ~! satisfying the reflexivity
equation (u‘1)71 = u and the restricted inverse equation u - (v -u~!) = u. From
the equations given in Table 1, the equation 0~! = 0 is derivable.

A non-trivial meadow is a meadow that satisfies the separation aziom

0#£1.
A cancellation meadow is a meadow that satisfies the cancellation aziom

uZOAu-v=u-w=>v=w,

Table 2. Additional axioms for signum operation

s(u/u) = ufu s(u™!) = s(u)
s(l—u/u)=1—-u/u s(u-v) =s(u) - s(v

s(—1) = -1 (1— 2050 sy +v) — s(u)) = 0

or equivalently, the general inverse law
uA0=>u-u"l=1.

In [10], cancellation meadows are called zero-totalized fields. An important prop-
erty of cancellation meadows is the following: 0/0 = 0, whereas u/u = 1 for
u # 0. Henceforth, we will write p <> ¢ for (1 —r/r)-p+ (r/r) - ¢. For cancel-
lation meadows, p <7 > ¢q can be read as follows: if r equals 0 then p else q.

A signed meadow is a meadow expanded with a unary signum operation s
satisfying the equations given in Table 2. In combination with the cancellation
axiom, the last equation in this table is equivalent to the conditional equation
s(u) = s(v) = s(u +v) = s(u). In signed meadows, the predicate < is defined as
follows:

u<v & s(u—v)=-1.

In [9], it is shown that the equational theories of signed meadows and signed
cancellation meadows are identical.

3 ACP Process Algebras

In this section, we introduce the notion of an ACP process algebra. This notion
originates from the models of the axiom system ACP, which was first presented
in [6]. A comprehensive introduction to ACP can be found in [3,13].

It is assumed that a fixed but arbitrary finite set A of atomic action names,
with § ¢ A, has been given.

The signature of ACP process algebras is a one-sorted signature. We make the
single sort explicit because we will extend this signature to a two-sorted signature
in Section 4. The signature of ACP process algebras consists of the sort P of
processes and the following constants, operators, and predicate symbols:

the deadlock constant ¢ : — P;

— for each e € A, the atomic action constant e : — P;

the binary alternative composition operator +: P x P — P;

— the binary sequential composition operator - : P x P — P;

— the binary parallel composition operator || : P x P — P;

the binary left merge operator || : P x P — P;

— the binary communication merge operator | : P x P — P;

for each H C A, the unary encapsulation operator g : P — P;

— the unary atomic action predicate symbol A : P.

We assume that there is a countably infinite set X of variables of sort P,
which contains z, y and z, with and without subscripts. Terms are built as usual.
We use infix notation for the binary operators. We use the following precedence
conventions to reduce the need for parentheses: the operator + binds weaker
than all other binary operators and the operator - binds stronger than all other
binary operators.

Let P and @ be closed terms of sort P. Intuitively, the constants, operators
and predicate symbols introduced above can be explained as follows:

— ¢ is not capable of doing anything;

— e is only capable of performing atomic action e and next terminating suc-
cesstully;

— P + @ behaves either as P or as (), but not both;

— P - Q first behaves as P and on successful termination of P it next behaves
as @;

— P|| @Q behaves as the process that proceeds with P and @ in parallel;

— P || @ behaves the same as P || Q, except that it starts with performing an
atomic action of P;

— P | @ behaves the same as P || @, except that it starts with performing an
atomic action of P and an atomic action of) synchronously;

— Ou(P) behaves the same as P, except that atomic actions from H are
blocked;

— A(P) holds if P is an atomic action.

In equations between terms of sort P, we will use a notational convention
which requires the following assumption: there is a countably infinite set X' C X
that contains a, b and ¢, with and without subscripts, but does not contain z, y
and z, with and without subscripts. Let ¢ be an equation between terms of sort
P, and let {ai,...,an} be the set of all variables from X’ that occur in ¢. Then
we write ¢ for A(z1) A ... A A(z,) = ¢, where ¢’ is ¢ with, for all i € [1,n],
all occurrences of a; replaced by z;, and z1, ..., x, are variables from X that do
not occur in ¢.

An ACP process algebra is an algebra with the signature of ACP process
algebras that satisfies the formulas given in Table 3. Three formulas in this
table are actually schemas of formulas: e is a syntactic variable which stands
for an arbitrary constant of sort P. A side condition is added to two schemas
to restrict the constants for which the syntactic variable stands. The number of
proper formulas is still finite because there exists only a finite number of constant
of sort P.

Because the notational convention introduced above is used, the four equa-
tions in Table 3 that are actually conditional equations look the same as their
counterpart in the axiom system ACP. It happens that these conditional equa-
tions allow for the generalization to meadow enriched ACP process algebras to
proceed smoothly. Apart from this, the set of formulas given in Table 3 differs
slightly from the axiom system ACP. The differences are discussed in [8].

Table 3. Axioms for ACP process algebras

rTt+y=y+z
(z+9)+2=2+(y+2)
rT+r=2x

(z+y) z=z-2+y-2
(-y) 2=z (y-2)

ely=(ly+yla)+ely
allz=a-z
a-xlly=a-(z|y)
@+y)lz=zlz+yl=
alb-z=(a|d) -z

r+d==zx a-z|b-y=(alb) (z]y)

§-z= (z4+y)|lz=z|z+y]|=z
zly=ylz
@ly)lz=2z|(ylz)

Ou(e) =e ife¢ H dlz=4

Ou(e) =9 ifee H

Ou(x +y) = Ou(x) + Ou(y) Ale)

Ou(x-y) =0n(z)-Ou(y) A(z) A Aly) = Az | y)

Not all processes in an ACP process algebra have to be interpretations of
closed terms, even if all atomic actions are interpretations of closed terms. The
processes concerned may be solutions of sets of recursion equations. It is cus-
tomary to restrict the attention to ACP process algebras satisfying additional
axioms by which sets of recursion equations that fulfil a guardedness condition
have unique solutions. For an comprehensive treatment of this issue, the reader
is referred to [3].

4 Meadow Enriched ACP Process Algebras

In this section, we introduce the notion of an meadow enriched ACP process
algebra. This notion is a simple generalization of the notion of an ACP process
algebra introduced in Section 3 to processes in which data are involved. The
elements of a signed meadow are taken as data.

The signature of meadow enriched ACP process algebras is a two-sorted
signature. It consists of the sorts, constants and operators from the signatures
of ACP process algebras and signed meadows and in addition the following
operators:

— for each n € N and e € A, the n-ary data handling atomic action operator
e:Qx---xQ—P;
—_———

n times

— the binary guarded command operator :— : Q x P — P.

We take the variables in U for the variables of sort Q and the variables in
X for the variables of sort P. We assume that the sets & and X' are disjunct.
Terms are built as usual for a many-sorted signature (see e.g. [25,28]). We use

Table 4. Additional axioms for meadow enriched ACP process algebras

0O:»z=z u:—§=4

l:mz=94 ui—= (z+y)=ui—z+u:—y
ui—z = (u/u):—x ui—mz-y=(u:—z)y

ui—= (vi=mz)=01-1Q—-ufu)-(1-v/v)):—z (u=z)ly=u:—=(z || v)
ui—=z+vi—z=(u/u-v/v)—x (ui=2)|y=u:—(z|y)

Ou(u:—x) =u:—0u(zr)

e(ut, ., u) | € Wi,...,v) =

(ur —v1) == (= ((un —vn) = (e | €) (U1, .oy un)))
e(ut, ..., un) | € (W1,...,vm) = ifn#m
Ou(e(uty ... un)) =e(ut, ..., un) ifed H
Ou(e(uty...,up)) =0 ifee H

Ale(uty ... up))

the same notational conventions as before. In addition, we use infix notation for
the binary operator :— .

Let p1,...,pn and p be closed terms of sort Q and P be a closed term of sort
P. Intuitively, the additional operators can be explained as follows:

— e(p1,-..,pn) is only capable of performing data handling atomic action
e(p1,-..,pn) and next terminating successfully;

— p:— P behaves as the process P if p equals 0 and is not capable of doing
anything otherwise.

The different guarded command operators that have been proposed before in
the setting of ACP have one thing in common: their first operand is considered
to stand for an element of the domain of a Boolean algebra (see e.g. [7]). In
contrast with those guarded command operators, the first operand of the guarded
command operator introduced here is considered to stand for an element of the
domain of a signed meadow.

A meadow enriched ACP process algebra is an algebra with the signature
of meadow enriched ACP process algebras that satisfies the formulas given in
Tables 1-4. Like in Table 3, some formulas in Table 4 are actually schemas of
formulas: e and €’ are syntactic variables which stand for arbitrary constants of
sort P and, in addition, n and m stand for arbitrary natural numbers.

For meadow enriched ACP process algebras that satisfy the cancellation ax-
iom, the first five equations concerning the guarded command operator can easily
be understood by taking the view that 0 and 1 represent the Boolean values T
and F, respectively. In that case, we have that

— p/p models the test that yields T if p = 0 and F otherwise;

— if both p and ¢ are equal to 0 or 1, then 1 — p models —p, p- ¢ models p V g,
and consequently 1 — (1 —p) - (1 — ¢) models p A g.

Henceforth, we will write P <ipr> @ for (p/p):— P+ (1 —p/p) :— Q. For meadow
enriched ACP process algebras that satisfy the cancellation axiom, P <ip> Q
can be read as follows: if p equals 0 then P else Q.

In subsequent sections, we write ¥, for the signature of meadow enriched
ACP process algebras.

5 A Calculus for Meadow Enriched ACP Process Algebras

In this section, we associate a calculus with meadow enriched ACP process alge-
bras. For that, we introduce, for all associative operators from the signature of
meadow enriched ACP process algebras, variable-binding operators as general-
izations. To build terms of the calculus, called binding terms, both the constants
and operators from the signature of meadow enriched ACP process algebras and
those variable-binding operators are available.

The sets of binding terms of sorts Q and P, written B7q and B7Tp, respec-
tively, are inductively defined by the following formation rules:

— if u € U, then u € BTq;

— if x € X, then v € BTp;

— if ¢: = S is a constant from X, then ¢ € BTg;

— if0:91 x---x S, — S is an operator from X, and t1 € BTs,, ..., tn € BTs,,
then o(t1,...,t,) € BTs;

— if u € U and t € BTq, then, for each n € N*, Y- "t € BTq and [[| t € BTq;

— if u € Y and t € BTp, then, for each n € Nt —}—Zt € BTp, -Zt € BTp, and
||Zt€BTp.1

S -+ ", and ||n are the variable-binding operators mentioned
above. They bind variables that range over all quantities that can be denoted
by numerals k& where 0 < k < n.

A binding term t is a comprehended term if it is a binding term of the form
<>Z t', where <>n is a variable-binding operator.? Below, we will give the axioms
of the calculus associated with meadow enriched ACP process algebras. We have
to do with a calculus because the distinction between free and bound variables
is essential in applying the axioms concerning comprehended terms.

A variable u € U occurs free in a binding term ¢ if there is an occurrence of
w in t that is not in a subterm of the form <>Z t', where <>n is a variable-binding
operator. A binding term ¢ is closed if it is a binding term in which no variable
occurs free.

Substitution of a binding term ¢’ of sort P for a variable z € X in a binding
term t, written ¢[t'/z], is defined by induction on the structure of ¢ as usual:

! We write N* for the set N\ {0}.
2 The name comprehended term originates from the name comprehended expression
introduced in [24].

Table 5. Axioms for comprehended terms

Yup =Y (pv/u)) . P =, (Plo/u])

> p=pl0/4] +. P = Po/u]

S p = p0/ul + D lu+ 1/u)) AL P = Pojul +) (Plu+1/u)
1% p = T (plo/u)) - P = " (Plo/u])

I1% p = pl0/u] ., P = Pl0/4]

I+ p = pl0/u) - TI7 (plu + 1/u]) P = Ploju] -+ (Plu+ 1/u])

|2 P = |5 (Plv/u)
||, P = Plo/u]
|21 P = Ploju] ||| (Plu+ 1/4])

v[t' [z] =v,

' fz=y,
y[t'/z] = { :

Y otherwise ,
c[t' [x] =c,

o(tr, ... to)[t' /2] = o(ts[t /], . .., ta[t'/2])
(Qutit'/z] = Qut"[t /a]) ;

and substitution of a binding term ¢’ of sort Q for a variable u € I in a binding
term ¢, written ¢[t' /u], is defined by induction on the structure of ¢ as follows:

olt ={ﬂ u=v
v otherwise ,

z[t' [u) =z,

ct' Ju] =c,

o1y to)[t'Ju] = o(t1[t' [u), ..., tu[t' /u]),
<>: " fu=wv,

N - n , if u Z v, v occurs free in ¢/

(Qutt'/u] =4 Qu(t Tw/v])[t' /u)) (w does not oceur in £/,) |

Qu ("It /ul) otherwise .

The essentiality of the distinction between free and bound variables in apply-
ing the axioms concerning comprehended terms originates from the substitutions
involved in applying those axioms.

The axioms of the calculus associated with meadow enriched ACP process
algebras are the formulas given in Tables 1-5. Like some equations in Tables 3
and 4, the equations in Table 5 are actually schemas of equations: p and P are

syntactic variables which stand for arbitrary binding terms of sort Q and sort
P, respectively, and n stands for an arbitrary positive natural number.

The axioms given in Table 5 are called the azioms for comprehended terms.
They consist of three axioms, including an a-conversion axiom, for each of the
variable-binding operators of the calculus. For each comprehended term, we can
derive from these axioms that the comprehended term is equal to a term over
the signature of meadow enriched ACP process algebras.

Theorem 1 (Elimination). For all comprehended terms t, there exists a term
t' over the signature of meadow enriched ACP process algebras such that t = t'
is derivable from the axioms for comprehended terms.

Proof. If t is of the form 37", [[n ¢, 4. ", « ¢" or |7 ¢, where ¢" is a term
over the signature of meadow enriched ACP process algebras of the right sort,
then it is easy to prove by induction on n that there exists a term t' over the
signature of meadow enriched ACP process algebras such that ¢t = ¢’ is derivable
from the axioms for comprehended terms. Using this fact, the general case is
easily proved by induction on the depth of ¢. O

The comprehended terms of the calculus associated with meadow enriched
ACP process algebras are finitary comprehended terms because the variable-
binding operators of the calculus bind variables with a finite range only. This is
a prerequisite for elimination of variable-binding operators.

6 The Interpretation of Terms of the Calculus

In this section, we define the interpretation of terms of the calculus associated
with meadow enriched ACP process algebras. We assume that a fixed but arbi-
trary meadow enriched ACP process algebra 2 has been given.

We write oy, where ¢ in X, for the interpretation of ¢ in 2. Moreover, we
write f+ 1, where f: Qg — Qg or f: Qg — Py, for the function f': Qg — Qg
or f': Qg — Py, respectively, defined by f'(q) = f(q +a 1a)-

The terms of the calculus introduced above can be interpreted in 2. To
achieve that, we associate with each variable-binding operator <>n of the calculus

a function Qg :(Qu — Qo) — Qg or O; :(Qa — Py) — Py as follows:

Salf) = f(02), +a(f) = f0x),
W) = FO0) +a Xn(F+ 1), Ao () = fOu) +u+a(f+1),
[Ia(f) = f(0a), w(f) = 1(0q),
wN) = FOx) a[Ta(f+1), o (f) = FOx) ag(f+1),
la(f) = f(02),
15X () = FOx) llg la(f +1)

10

The interpretation of a term of the calculus in 2 depends on the elements
of Qo and Pg that are associated with the variables that occur free in it. We
model such associations by functions p: (UUX) — (QuUPy) such that u € Y =
p(u) € Qg and x € X = p(z) € Py. These functions are called assignments
in 2. We write Assy for the set of all assignments in 2(. For each assignment
p € Assg, u € U and g € Qg, we write p(u — ¢) for the unique assignment
p € Assy such that p'(v) = p(v) if v Z u and p'(u) = q.

The interpretation of terms of the calculus in a meadow enriched ACP process
algebra 2l is given by the function [_]y : (BTq U BTp) = (Assa = (Qa U Pg))
defined as follows:

[uly (p) = p(u),

[z]g (p) = p(z) ,

[[C]]m(/’) =cy,

fo(ts, - - tn)]a(p) = oa([t1lg(p)s - - - [tnle () 5

[0 tly(p) = (u(f), where fis defined by f(q) = [t]g(p(u = q)) -

The axioms of the calculus associated with meadow enriched ACP process
algebras are sound with respect to the interpretation of the terms of the calculus
given above.

Theorem 2 (Soundness). For all equations t = t' that belong to the azioms
of the calculus associated with meadow enriched ACP process algebras, we have
that [t]y(p) = [t']o(p) for all assignments p € Assq.

Proof. For all equations ¢ = t' that belong to the axioms for meadow enriched
ACP process algebras, the soundness follows immediately from the fact that 2 is
a meadow enriched ACP process algebra. For all equations ¢ = t' that belong to
the axioms for comprehended terms, the soundness is easily proved by induction
on the structure of ¢. O

7 The Binary Variable-Binding Operators

Full elimination of all variable-binding operators occurring in a comprehended
term can lead to a combinatorial explosion. In this section, we show that no com-
binatorial explosion takes place if variable-binding operators that bind variables
with a two-valued range are still permitted in the resulting term.

We begin by looking at an example. From the axioms for comprehended
terms, we easily derive the equation

o p=p[0/u] + -+ p[6/u] .

This suggests that full elimination of variable-binding operators leads to combi-
natorial explosions. Using the axioms for comprehended terms as well as other
axioms of the calculus, we derive the following:

11

—

pl0/u] + -+ p[6/u]
=p[0/u] + -+ p[6/u] + 0
=0<l—-s(u—6)>p)0/u]+ -+ (01 —s(u—6)>p)[T/u]
=3 (N (a0l =s(u—6)>p)[2° - w+2" v +2°-u/u])))
=32 (T2 (091 —s(u—6) > p)2- v +u/ul)[2-w +v/v]))) .

This suggest that elimination of variable-binding operators other than the ones
that bind variables with a two-valued range does not have to lead to combinato-
rial explosions. However, a counterpart of the first step in the derivation above
does not exist for comprehended terms of the forms -Z pand ||Z p because identity
elements for sequential composition and parallel composition are missing.

Henceforth, we will use the term binary variable-binding operators for the
variable-binding operators that bind variables with a two-valued range and the
term non-binary variable-binding operators for the other variable-binding oper-
ators.

The size of binding terms is given by the function size : (BTq U BTp) - N
defined as follows:

6
6

—

size(u) =1,

size(x) =1,

size(c) =1,

size(o(t1, ..., ty)) = size(t1) + - -- + size(ty) + 1,
size(Q1 () = size(t) +logy(n) +1 .3

The summand log,(n) occurs in the equation for the size of a term of the form
{7 (t) because having (the cardinality of) the range of u encoded in the variable-
binding operator is an artifice that must be taken into account using the most
efficient way in which n could be represented by a binding term. It follows from
Proposition 1 formulated below that the size of this term is of order log,(n).

The important insights relevant to elimination of non-binary variable-binding
operators are brought together in the following proposition.

Proposition 1. From the azioms of the calculus associated with meadow en-
riched ACP process algebras, we can derive the equations from Table 6 for each
binding term p of sort Q, binding term P of sort P, and n,m € NT.

Proof. It follows immediately from the axioms for comprehended terms that the
first two equations for Y™ are derivable. It is easy to prove by induction on n
that

"= 2 (pl2 - ufu]) + Ty (pl2 - ut 1/u])

is derivable. From this it follows easily that the third equation for 3" is deriv-
able. It is easy to prove by induction on n that

3 We use the convention that, whenever we write log,(n) in a context requiring a
natural number, [log,(n)] is implicitly meant.

12

Table 6. Derived equations for comprehended terms

S, p = pl0/u]
o p = p[0/u] + p[1/u]
p=32(S7 (2 v+ u/u))

=32 (0<1 —s(u—n)>p)

+, P = P[0/u]
-+ m]jl P[O/u] + P[1/4]

o P = (P2 v+ w/u))
I, P = Plo/u

I 2 = Pio/ul | Pl1/u]

12 P =1 (I (P2 v + u/u)

2P =127 PSP + w/u)

+ (0 (P2 v+ uju))
—|—n+1P —|— (6<1—s(u—n)> P)

ntl o, 2™ St —2m
u P= u P u (P[2m+u/u])

ifn+1<2™

ifn+1<2m

ifnt+1<2™

if2m <n+1<2mtt

if2m <n+1<2mtt

Yup <1l —s(u+1)>q) =p[0/u]

is derivable. Using this fact, it is easy to prove by induction on n that for all
m>n+1:

St p =041 —s(u —n)>p)

13

is derivable. From this it follows easily that the fourth equation for >." is deriv-
able. The proofs for the equations for []", +"

the exception of the fourth equation for «" and |
tion on n that for all m < n:

WP =2 P " (Plm o+ ufu))

, " and ||n go analogously, with
" Tt is easy to prove by induc-

is derivable. From this it follows easily that the fourth equation for «" is derivable.
The proof for the fourth equation for || goes analogously.

The axioms for comprehended terms give rise to a corollary about full elim-
ination of all variable-binding operators.

Corollary 1. Let t be a comprehended term without comprehended terms as
proper subterms, and let k = size(t). Then there erists a term t' over the sig-
nature of meadow enriched ACP process algebras such that t = t' is derivable
from the axioms of the calculus associated with meadow enriched ACP process
algebras and

— size(t') = O(k? - 2F);

— size(t') = Q(k - 2"72) if t is a term of the form Y. t" or [[.t" and the
number of times that u occurs free in t" is greater than zero;

— size(t') = 2(k - 2573) if t s a term of the form —Ft", < t" or || t" and
the number of times that u occurs free in t" is greater than zero.

Proof. Term t is a binding term of the form OZ t", where <>n is a variable-
binding operator. Let k' = size(t"), let k" be the number of times that u occurs
free in t"”, and let I; (0 < 4 < n) be the size of the smallest term p over the
signature of meadow enriched ACP process algebras such that p = 4. Then
size(t') =n - k' + 317 1(k” l;) +n — 1. Because k = k¥’ + log,(n) + 1, we know
that k' < k, logy(n) < k and n < 2F. Moreover, we know that k" < k' and
I; = O(log,(i + 1)). Hence size(t') = O(k? - 2F). We also know that k' > 1
and, because k = k' + log,(n) + 1, logy,(n) > k — 2 and n > 2F=2 if ¢t is of
the form 77 ¢” or [[""t”; and that k' > 2 and, because k =k +logy(n) +1,

logy(n) > k — 3 and n > 2*73 if ¢ is of the form —|— t" <" ¢" or || ¢". Hence, in
the case where k" > 1, size(t') = 2(k - 2F=2) if ¢ is of the form > " t" or [t”
and size(t') = 2(k - ok- 3) if ¢ is of the form —_ ¢, «" " or || ¢". O

Proposition 1 gives rise to a corollary about full elimination of all non-binary
variable-binding operators.

Corollary 2. Let t be a comprehended term without comprehended terms as
proper subterms, and let k = size(t). Then there exists a binding term t' with-
out non-binary variable-binding operators such that t = t' is derivable from the
azioms of the calculus associated with meadow enriched ACP process algebras
and

— size(t') = O(k®) if t is a term of the form S0 t", [N t" or 4. t";

— size(t') = Q(k?) if t is a term of the form S0 t", [[t" or 4. t";

— size(t') = O(k*) if t is a term of the form o t" or ||} t";

— size(t') = 2(k3) if t is a term of the form -Z t" or ||Zt” and the number of

times that u occurs free in t'" is greater than zero.

Proof. Firstly, we consider the case where ¢ is a term of the form Y ¢", T t"
or 1 t". Let k' = size(t"), let k" be the number of times that u occurs free in
t”, and let I/, be the size of the smallest term p over the signature of meadow
enriched ACP process algebras such that p = 1 — s(u — n). Then size(t') =
K+ %™ k" - (6 1)) + logy(n) - (logy(n) + 1) + 4 - I, + 6. Because k =

14

k' +log,(n) + 1, we know that k' < k and log,(n) < k. Moreover, we know that
k" < k' and I, = O(logy(n + 1)). Hence size(t') = O(k®). We also know that
k' > 1 and, because k = k' +1og,(n)+ 1, log,(n) > k—2 if t is of the form . ¢
or [T, t; and that k' > 2 and, because k = k' +1og,(n) + 1, log,(n) > k—3if ¢
is of the form — ¢". Hence, size(t') = 2(k?).

Secondly, we consider the case where ¢ is a term of the form « ¢t or || ¢".
Let k' = size(t"), and let k" be the number of times that u occurs free in
t". Then size(t') < 312%™ (k' + S5O (k- (6 - 7)) + logy (i) - (logy(d) + 1)).
Because k = k' +logy(n) + 1, we know that &' < k and log,(n) < k. Moreover,
we know that k" < k' Hence size(t') = O(k*). We also have that size(t') >
K+ Elogg(") (K" - (6 -1)) + logy(n) - (logy(n) + 1). Because k = k' +log,(n) + 1
and k' > 2, we also know that log,(n) > k — 3. Hence, in the case where k" > 1,
size(t') = (Z(k3) |

Corollaries 1 and 2 show that much of the compactness that can be achieved
with the variable-binding operators of the calculus associated with meadow en-
riched ACP process algebras can already be achieved with the binary variable-
binding operators.

In Corollary 2, size(t') is O(k*) instead of O(k®) if ¢ is of the form o ¢
or ||7¢". The origin of this that ACP process algebras do not have identity
elements for sequential and parallel composition. In the setting of ACP, the
identity element for sequential composition, as well as parallel composition, is
known as the empty process.

8 Adding an Identity Element for Sequential Composition

In this section, we investigate the effect of adding an identity element for sequen-
tial composition to ACP process algebras on the result concerning elimination
of non-binary variable-binding operators presented above.

The signature of these algebras is the signature of ACP process algebras
extended with the following;:

— the empty process constant € : — P;
— the unary termination operator v/: P — P.

Let P be a closed term of sort P. Intuitively, the additional constant and
operator can be explained as follows:

— € is only capable of terminating successfully;
— /(P) is only capable of terminating successfully if P is capable of terminat-
ing successfully and is not capable of doing anything otherwise.

In the setting of ACP, the addition of the empty process constant has been
treated in several ways. The treatment in [18] yields a non-associative parallel
composition operator. The first treatment that yields an associative parallel
composition operator [27] is from 1986, but was not published until 1997. The
treatment in this paper is based on [1].

15

Table 7. Replacing and additional axioms for empty process constant

Te=2x NIGEK:

e-x==zx V(a)=46
zlly=(ly+yla)+zly)+ V() V) V(@ +y) = V() + V()
zlle== Vi -y) =) V(y)
elz=4¢ Vi) V(y) = V() V(=)
elz=4 z+/(x) =2

On(e) =€

An ACP process algebra with an identity element for sequential composition
is an algebra with the signature of ACP process algebras with an identity element
for sequential composition that satisfies the formulas given in Table 3 with the
exception of z ||y = (z || y + y ||) + 2 | y and the formulas given in Table 7.

We could dispense with the equations a ||z = a-2 and a|b-x = (a|b) -z from
Table 3 because they have become derivable from the other equations. In spite
of the replacement of the equation z ||y = (x ||y +y ||) + = | y by the equation
zlly=((z|ly+ylz)+z|y)++(z) /(y), the equations characterizing ACP
process algebras with an identity element for sequential composition constitute
a conservative extension of the equations characterizing ACP process algebras.
The equation v/(z) - v/(y) = +/(y) - /() is of importance because it makes the
equation (z || y) || 2 = z || (y ||) derivable. The equation z + /(z) = z is of
importance because it makes the equation z || € = x derivable.

Meadow enriched ACP process algebras with an identity element for sequen-
tial composition are defined like meadow enriched ACP process algebras. We can
associate a calculus with meadow enriched ACP process algebras with an iden-
tity element for sequential composition like we did before for meadow enriched
ACP process algebras.

By the addition of an identity element for sequential composition, the prop-
erties of +" and ||" with respect to elimination of non-binary variable-binding
operators become comparable to the properties of 32", []" and +" with respect
to elimination of non-binary variable-binding operators.

Proposition 2. From the azioms of the above-mentioned calculus, we can de-
rive the following equations for each binding term P of sort P and n,m € N*:

n+1 2m .
P=< (e<dl=s(u—n)>P) ifn+1<2™,

[

(el —s(u—n)>P) ifn+1<2m.

Proof. The proofs for these equations go analogously to the proofs for the last
equations for 3", []" and +" in the proof of Proposition 1. i

Proposition 2 gives rise to a corollary about full elimination of the non-binary
variable-binding operators for sequential and parallel composition in the presence
of an identity element for sequential composition.

16

Corollary 3. Lett be a comprehended term of the form -Z t" or ||Z t" without
comprehended terms as proper subterms, and let k = size(t). Then there exists a
binding term t' without non-binary variable-binding operators such that t = t' is
derivable from the azioms of the above-mentioned calculus and size(t') = O(k®)
and size(t') = 2(k?).

Proof. The proof goes analogously to the case where t is of the form " ¢",
[1;¢" or -+ t" in the proof of Corollary 2. O

9 Adding Process Sequences

In this section, we introduce process sequences to demonstrate that there is an
alternative to introducing variable-binding operators for all associative binary
operators on processes.

The signature of ACP process algebras with an identity element for sequential
composition and process sequences is the signature of ACP process algebras with
an identity element for sequential composition extended with the sort PS of
process sequences and the following constants and operators:

the empty process sequence constant () : — PS;

the unary singleton process sequence operator {_) : P — PS;

— the binary process sequence concatenation operator ~: PS x PS — PS;
— the unary generalized alternative composition operator -+ : PS — P;

— the unary generalized sequential composition operator »: PS — P;

— the unary generalized parallel composition operator H :PS — P.

We assume that there is a countably infinite set)V of variables of sort PS, which
contains «, # and 7, with and without subscripts. We use the same notational
conventions as before. In addition, we use infix notation for the binary operator
~ and mixfix notation for the unary operator (_).

The constant and the first two operators introduced above are the usual ones
for sequences, which gives an appropriate intuition about them. The remaining
three operators introduced above generalize alternative, sequential and parallel
composition to an arbitrary finite number of processes.

An ACP process algebra with an identity element for sequential composition
and process sequences is an algebra with the signature of ACP process algebras
with an identity element for sequential composition and process sequences that
satisfies the formulas given in Table 3 with the exception of z ||y = (z |l y +
y |l z) + 2 | y and the formulas given in Tables 7 and 8.

If we would introduce process sequences in the absence of an identity element
for sequential composition, we should consider non-empty process sequences only.

Meadow enriched ACP process algebras with an identity element for sequen-
tial composition and process sequences are defined like meadow enriched ACP
process algebras. We can associate a calculus with meadow enriched ACP pro-
cess algebras with an identity element for sequential composition and process
sequences like we did before for meadow enriched ACP process algebras. More-
over, we can extend the resulting calculus with variable-binding operators that

17

Table 8. Additional axioms for process sequences

an{)=a ()=
()ra=a () = @

(@~B)ry=an(B~7) «((z) ~a) =z *(a)
+() =4 () =e
+(a)) =2 () =«

+(z)~)=z +(a) |() ~a) =2 | || ()

Table 9. Additional axioms for comprehended terms of sort PS

My § =N (S[v/ul)
. S = S[0/4]
A = S[0/u] ~ N (S[u + 1/u])

generalize the process sequence concatenation operator. For the terms of the
extended calculus, we need the following additional formation rule:

— if w € U and t € BTps, then, for each n € NT, mZt € BTps.

The axioms of the extended calculus are the formulas given in Tables 1-5
and 7-9. Like some equations in Tables 3-5, the equations in Table 9 are actually
schemas of equations: S is a syntactic variable which stands for an arbitrary
binding term of sort PS, and n stands for an arbitrary positive natural number.

The properties of ™" with respect to elimination of non-binary variable-
binding operators are comparable to the properties of —I—n, <" and ||n with
respect to elimination of non-binary variable-binding operators.

Proposition 3. From the azioms of the extended calculus, we can derive the
following equations for each binding term S of sort PS and n,m € Nt :
~,, S = S[o/u],
N2 5 = S[0/u] ~ S[1/u]
ontl 2 2n
o (M (S2-v+u/u))
(

L S=m
AT S =2 (Yal=su—n)>S) fn+1<2m.

m

M

u

Proof. The proof goes analogously to the case of the equations for >." in the
proof of Proposition 1. O

Proposition 3 gives rise to a corollary about full elimination of the non-binary
variable-binding operators for process sequence concatenation.

Corollary 4. Let t be o comprehended term of the form mZ t" without com-
prehended terms as proper subterms, and let k = size(t). Then there exists a

18

binding term t' without non-binary variable-binding operators such that t = t'

is derivable from the axioms of the extended calculus and size(t') = O(k®) and
size(t') = 2(k?).

Proof. The proof goes analogously to the case where ¢ is of the form Y ¢",
[15#" or 4. t" in the proof of Corollary 2. O

In the presence of the operators —+, « and || and the variable-binding operator
A", the variable-binding operators —|—n, <" and ||n are superfluous.

Proposition 4. From the azioms of the extended calculus, we can derive the
following equations for each binding term P of sort P and n € Nt :

FuP=+(y(P), e P=+(y(P), [P =[(~u(P)
Proof. This is easy to prove by induction on n. O

If we would introduce quantity sequences as well, we could get a similar result
for the variable-binding operators }." and []".

10 Conclusions

For all associative operators from the signature of meadow enriched ACP pro-
cess algebras, we have introduced variable-binding operators as generalizations.
Thus, we have obtained a process calculus whose terms can be interpreted in all
meadow enriched ACP process algebras. We have shown that the use of variable-
binding operators that bind variables with a two-valued range can already have a
major impact on the size of terms, and that the impact can be further increased
if we add an identity element for sequential composition to meadow enriched
ACP process algebras. In addition, we have demonstrated that we do not need
variable-binding operators for all associative operators on processes if we add a
sort of process sequences and the right operators on process sequences to meadow
enriched ACP process algebras.

All variable-binding operators of the calculus associated with meadow en-
riched ACP process algebras can be eliminated from all terms of the calculus
by means of its axioms, and all terms of the calculus can be directly interpreted
in meadow enriched ACP process algebras. Therefore, although they yield a
calculus, we consider these variable-binding operators to constitute a process
algebraic feature. Fitting them in with an algebraic framework does not involve
any serious theoretical complication.

Different from the variable-binding operators introduced in this paper, the
variable-binding operators from gyCRL and PSF which generalize associative op-
erators of ACP do not give rise to finitary comprehended terms. It is much more
difficult to fit the variable-binding operators from those formalisms in with an
algebraic framework, see e.g. [19]. This also holds for the integration operator,
which is found in extensions of the axiom system ACP concerning timed pro-
cesses to allow for the alternative composition of a continuum of differently timed
processes to be expressed (see e.g. [2]).

19

We have also attempted to fit variable-binding operators that bind variables
with an infinite range in an algebraic framework. We have looked at binding
algebras [26], which are second-order algebras of a specific kind that covers
variable-binding operators. The problem is that the theory of binding algebras
is insufficiently elaborate for our purpose. For example, it is not known whether
the important characterization results from the theory of first-order algebras,
i.e. Birkhofl’s variety result and Malcev’s quasi-variety result (see e.g. [12,23]),
have generalizations for binding algebras.

It is known that many important results from the theory of first-order alge-
bras, including the above-mentioned ones, have generalizations for higher-order
algebras as considered in the theory of general higher-order algebras developed
in [21,17,22]. Therefore, we have also considered the replacement of variable-
binding operators by higher-order operators that give rise to such higher-order
algebras. However, owing to the absence of bound variables, additional higher-
order operators are needed which serve the same purpose as the combinators of
combinatory logic [16]. Thus, this leads to the line taken earlier with combinatory
process algebra [4].

References

1. Baeten, J.C.M., van Glabbeek, R.J.: Merge and termination in process algebra. In:
K.V. Nori (ed.) Proceedings 7th Conference on Foundations of Software Technology
and Theoretical Computer Science, Lecture Notes in Computer Science, vol. 287,
pp. 153-172. Springer-Verlag (1987)

2. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. Monographs in
Theoretical Computer Science, An EATCS Series. Springer-Verlag, Berlin (2002)

3. Baeten, J.C.M., Weijland, W.P.: Process Algebra, Cambridge Tracts in Theoretical
Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

4. Bergstra, J.A., Bethke, 1., Ponse, A.: Process algebra with combinators. In:
E. Borger, Y. Gurevich, K. Meinke (eds.) CSL ’93, Lecture Notes in Computer
Science, vol. 832, pp. 36-65. Springer-Verlag (1994)

5. Bergstra, J.A., Hirschfeld, Y., Tucker, J.V.: Meadows and the equational specifi-
cation of division. Theoretical Computer Science 410(12-13), 1261-1271 (2009)

6. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. In-
formation and Control 60(1-3), 109-137 (1984)

7. Bergstra, J.A., Middelburg, C.A.: Splitting bisimulations and retrospective condi-
tions. Information and Computation 204(7), 1083-1138 (2006)

8. Bergstra, J.A., Middelburg, C.A.: Meadow enriched ACP process algebras. Elec-
tronic Report PRG0902, Programming Research Group, University of Ams-
terdam (2009). Available from http://www.science.uva.nl/research/prog/
publications.html. Also available from http://arxiv.org/: arXiv:0901.3012v2
[math.RA]

9. Bergstra, J.A., Ponse, A.: A generic basis theorem for cancellation meadows.
arXiv:0803.3969v2 [math.RA] at http://arxiv.org/ (2008)

10. Bergstra, J.A., Tucker, J.V.: The rational numbers as an abstract data type. Jour-
nal of the ACM 54(2), Article 7 (2007)

11. Bethke, I., Rodenburg, P.H., Sevenster, A.: The structure of finite meadows.
arXiv:0903.1196v1 [ecs.LO] at http://arxiv.org/ (2009)

20

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra, Graduate Texts
in Mathematics, vol. 78. Springer-Verlag, Berlin (1981)

Fokkink, W.J.: Introduction to Process Algebra. Texts in Theoretical Computer
Science, An EATCS Series. Springer-Verlag, Berlin (2000)

Groote, J.F., Ponse, A.: Proof theory for pyCRL: A language for processes with data.
In: D.J. Andrews, J.F. Groote, C.A. Middelburg (eds.) Semantics of Specification
Languages, Workshops in Computing Series, pp. 232-251. Springer-Verlag (1994)
Groote, J.F., Ponse, A.: The syntax and semantics of pCRL. In: A. Ponse, C. Ver-
hoef, S.F.M. van Vlijmen (eds.) Algebra of Communicating Processes 1994, Work-
shops in Computing Series, pp. 26-62. Springer-Verlag (1995)

Hindley, J.R., Seldin, J.P.: Introduction to Combinators and A-calculus. Cambridge
University Press, Cambridge (1986)

Kosiuczenko, P., Meinke, K.: On the power of higher-order algebraic specification
methods. Information and Computation 124(1), 85-101 (1996)

Koymans, C.P.J., Vrancken, J.L.M.: Extending process algebra with the empty
process €. Logic Group Preprint Series 1, Department of Philosophy, Utrecht Uni-
versity, Utrecht (1985)

Luttik, S.P.: Choice quantification in process algebra. Ph.D. thesis, Programming
Research Group, University of Amsterdam, Amsterdam (2002)

Mauw, S., Veltink, G.J.: A process specification formalism. Fundamenta Informat-
icae 13(2), 85-139 (1990)

Meinke, K.: Universal algebra in higher types. Theoretical Computer Science 100,
385-417 (1992)

Meinke, K.: Proof theory of higher-order equations: Conservativity, normal forms
and term rewriting. Journal of Computer and System Sciences 67, 127-173 (2003)
Meinke, K., Tucker, J.V.: Universal algebra. In: S. Abramsky, D.M. Gabbay, T.S.E.
Maibaum (eds.) Handbook of Logic in Computer Science, vol. I, pp. 189-411.
Oxford University Press, Oxford (1992)

RAISE Language Group: The RAISE Specification Language. Prentice-Hall, En-
glewood Cliffs (1992)

Sannella, D., Tarlecki, A.: Algebraic preliminaries. In: E. Astesiano, H.J. Kreowski,
B. Krieg-Briickner (eds.) Algebraic Foundations of Systems Specification, pp. 13—
30. Springer-Verlag, Berlin (1999)

Sun Yong: An algebraic generalization of Frege structures — Binding algebras.
Theoretical Computer Science 211, 189-232 (1999)

Vrancken, J.L.M.: The algebra of communicating processes with empty process.
Theoretical Computer Science 177(2), 287-328 (1997)

Wirsing, M.: Algebraic specification. In: J. van Leeuwen (ed.) Handbook of Theo-
retical Computer Science, vol. B, pp. 675-788. Elsevier, Amsterdam (1990)

21

Electronic Reports Series of the Programming Research Group

Within this series the following reports appeared.

[PRG0903]

[PRG0902]

[PRG0901]

[PRG0814]

[PRGO0813]

[PRG0812]

[PRGOS11]

[PRG0810]

[PRGO809]

[PRGO808]

[PRGO807]

[PRGO806]

[PRGO805]

[PRGO0804]

[PRGO0803]

[PRG0802]

[PRGO0801]

[PRGO713]

[PRG0712]

[PRGO711]

JA. Bergstra and C.A. Middelburg, Transmission Protocols for Instruction Streams, Programming
Research Group - University of Amsterdam, 2009.

JA. Bergstra and C.A. Middelburg, Meadow Enriched ACP Process Algebras, Programming
Research Group - University of Amsterdam, 2009.

JA. Bergstra and C.A. Middelburg, Timed Tuplix Calculus and the Wesseling and van den Berg
Equation, Programming Research Group - University of Amsterdam, 2009.

JA. Bergstra and C.A. Middelburg, Instruction Sequences for the Production of Processes,
Programming Research Group - University of Amsterdam, 2008.

JA. Bergstra and C.A. Middelburg, On the Expressiveness of Single-Pass Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

JA. Bergstra and C.A. Middelburg, Instruction Sequences and Non-uniform Complexity Theory,
Programming Research Group - University of Amsterdam, 2008.

D. Staudt, A Case Study in Software Engineering with PSF: A Domotics Application, Programming
Research Group - University of Amsterdam, 2008.

JA. Bergstra and C.A. Middelburg, Thread Algebra for Poly-Threading, Programming Research
Group - University of Amsterdam, 2008.

JA. Bergstra and C.A. Middelburg, Data Linkage Dynamics with Shedding, Programming Research
Group - University of Amsterdam, 2008.

B. Diertens, A Process Algebra Software Engineering Environment, Programming Research Group -
University of Amsterdam, 2008.

JA. Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, Tuplix Calculus Specifications of Financial
Transfer Networks, Programming Research Group - University of Amsterdam, 2008.

JA. Bergstra and C.A. Middelburg, Data Linkage Algebra, Data Linkage Dynamics, and Priority
Rewriting, Programming Research Group - University of Amsterdam, 2008.

JA. Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, UvA Budget Allocatie Model, Programming
Research Group - University of Amsterdam, 2008.

JA. Bergstra and C.A. Middelburg, Thread Algebra for Sequential Poly-Threading, Programming
Research Group - University of Amsterdam, 2008.

JA. Bergstra and C.A. Middelburg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

A. Barros and T. Hou, A Constructive Version of AIP Revisited, Programming Research Group -
University of Amsterdam, 2008.

JA. Bergstra and C.A. Middelburg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - University of Amsterdam, 2008.

JA. Bergstra, A. Ponse, and M.B. van der Zwaag, Tuplix Calculus, Programming Research Group -
University of Amsterdam, 2007.

JA. Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, Towards a Formalization of Budgets,
Programming Research Group - University of Amsterdam, 2007.

JA. Bergstra and C.A. Middelburg, Program Algebra with a Jump-Shift Instruction, Programming
Research Group - University of Amsterdam, 2007.

[PRGO710]

[PRGO709]

[PRGO708]

[PRG0707]

[PRGO706]

[PRGO705]

[PRGO704]

[PRGO703]

[PRGO702]

[PRGO701]

[PRG0610]

[PRGO60Y]

[PRGO6O08]

[PRG0607]

[PRGOGOB]

[PRGOGOS]

[PRGO604]

[PRGO603]

[PRG0602]

[PRGO601]

[PRGO505]

[PRG0504]

JA. Bergstraand C.A. Middelburg, Instruction Sequences with Dynamically Instantiated Instructions,
Programming Research Group - University of Amsterdam, 2007.

JA. Bergstra and C.A. Middelburg, Instruction Sequences with Indirect Jumps, Programming
Research Group - University of Amsterdam, 2007.

B. Diertens, Software (Re-)Engineering with PSF [11: an IDE for PSF, Programming Research Group
- University of Amsterdam, 2007.

JA. Bergstra and C.A. Middelburg, An Interface Group for Process Components, Programming
Research Group - University of Amsterdam, 2007.

JA. Bergstra, Y. Hirschfeld, and J.V. Tucker, Skew Meadows, Programming Research Group -
University of Amsterdam, 2007.

JA. Bergstra, Y. Hirschfeld, and J.V. Tucker, Meadows, Programming Research Group - University of
Amsterdam, 2007.

JA. Bergstra and C.A. Middelburg, Machine Sructure Oriented Control Code Logic (Extended
\ersion), Programming Research Group - University of Amsterdam, 2007.

JA. Bergstra and C.A. Middelburg, On the Operating Unit Sze of Load/Store Architectures,
Programming Research Group - University of Amsterdam, 2007.

JA. Bergstra and A. Ponse, Interface Groups and Financial Transfer Architectures, Programming
Research Group - University of Amsterdam, 2007.

JA. Bergstra, |. Bethke, and M. Burgess, A Process Algebra Based Framework for Promise Theory,
Programming Research Group - University of Amsterdam, 2007.

JA. Bergstra and C.A. Middelburg, Parallel Processes with Implicit Computational Capital,
Programming Research Group - University of Amsterdam, 2006.

B. Diertens, Software (Re-)Engineering with PSF [I: from architecture to implementation,
Programming Research Group - University of Amsterdam, 2006.

A. Ponse and M.B. van der Zwaag, Risk Assessment for One-Counter Threads, Programming
Research Group - University of Amsterdam, 2006.

JA. Bergstra and C.A. Middelburg, Synchronous Cooperation for Explicit Multi-Threading,
Programming Research Group - University of Amsterdam, 2006.

JA. Bergstra and M. Burgess, Local and Global Trust Based on the Concept of Promises,
Programming Research Group - University of Amsterdam, 2006.

JA. Bergstra and J.V. Tucker, Division Safe Calculation in Totalised Fields, Programming Research
Group - University of Amsterdam, 2006.

JA. Bergstra and A. Ponse, Projection Semantics for Rigid Loops, Programming Research Group -
University of Amsterdam, 2006.

JA. Bergstra and |. Bethke, Predictable and Reliable Program Code: Mrtual Machine-based
Projection Semantics (submitted for inclusion in the Handbook of Network and Systems
Administration), Programming Research Group - University of Amsterdam, 2006.

JA. Bergstraand A. Ponse, Program Algebra with Repeat Instruction, Programming Research Group
- University of Amsterdam, 2006.

JA. Bergstra and A. Ponse, Interface Groups for Analytic Execution Architectures, Programming
Research Group - University of Amsterdam, 2006.

B. Diertens, Software (Re-)Engineering with PSF, Programming Research Group - University of
Amsterdam, 2005.

PH. Rodenburg, Piecewise Initial Algebra Semantics, Programming Research Group - University of
Amsterdam, 2005.

[PRGO503]

[PRGO502]

[PRGO501]

[PRG0405]

[PRG0404]

[PRG0403]

[PRG0402]

[PRG0401]

[PRG0302]
[PRGO0301]

[PRG0201]

T.D. Vu, Metric Denotational Semantics for BPPA, Programming Research Group - University of
Amsterdam, 2005.

JA. Bergstra, |. Bethke, and A. Ponse, Decision Problems for Pushdown Threads, Programming
Research Group - University of Amsterdam, 2005.

J.A. Bergstraand A. Ponse, A Bypass of Cohen’s Impossibility Result, Programming Research Group -
University of Amsterdam, 2005.

JA. Bergstraand |. Bethke, An Upper Bound for the Equational Specification of Finite State Services,
Programming Research Group - University of Amsterdam, 2004.

JA. Bergstra and C.A. Middelburg, Thread Algebra for Strategic Interleaving, Programming
Research Group - University of Amsterdam, 2004.

B. Diertens, A Compiler-projection from PGLEc.MSPio to Parrot, Programming Research Group -
University of Amsterdam, 2004.

JA. Bergstra and |. Bethke, Linear Projective Program Syntax, Programming Research Group -
University of Amsterdam, 2004.

B. Diertens, Molecular Scripting Primitives, Programming Research Group - University of
Amsterdam, 2004.

B. Diertens, A Toolset for PGA, Programming Research Group - University of Amsterdam, 2003.

JA. Bergstra and P. Walters, Projection Semantics for Multi-File Programs, Programming Research
Group - University of Amsterdam, 2003.

|. Bethke and P. Walters, Molecule-oriented Java Programs for Cyclic Sequences, Programming
Research Group - University of Amsterdam, 2002.

The above reports and more are available through the website: www.science.uva.nl/research/prog/

Electronic Report Series

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

