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Abstract. We introduce the notion of an ACP process algebra. The
models of the axiom system ACP are the origin of this notion. ACP
process algebras have to do with processes in which no data are involved.
We also introduce the notion of a meadow enriched ACP process algebra,
which is a simple generalization of the notion of an ACP process algebra
to processes in which data are involved. In meadow enriched ACP process
algebras, the mathematical structure for data is a meadow.
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1 Introduction

In many formalisms proposed for the description and analysis of processes in
which data are involved, algebraic specifications of the data types concerned
have to be given over and over again. This is also the case with the principal
ACP-based formalisms proposed for the description and analysis of processes in
which data are involved, to wit µCRL [11, 12] and PSF [13]. There is a mismatch
between the process specification part and the data specification part of these
formalisms. Firstly, there is a choice of one built-in type of processes, whereas
there is a choice of all types of data that can be specified algebraically. Secondly,
the semantics of the data specification part is its initial algebra in the case of
PSF and its class of minimal Boolean preserving algebras in the case of µCRL,
whereas the semantics of the process specification part is a model based on
transition systems and bisimulation equivalence. Sticking to this mismatch, no
stable axiomatizations in the style of ACP has emerged for process algebras that
have to do with processes in which data is involved.

Our objective is to obtain a stable axiomatization in the style of ACP for
process algebras that have to do with processes in which data is involved. To
achieve this objective, we first introduce the notion of an ACP process algebra
and then the notion of a meadow enriched ACP process algebra. ACP process
algebras are essentially models of the axiom system ACP. Meadow enriched
ACP process algebras are data enriched ACP process algebras in which the
mathematical structure for data is a meadow. Meadows are defined for the first
time in [7]. The prime example of meadows is the rational number field with the
multiplicative inverse operation made total by imposing that the multiplicative



inverse of zero is zero. Although the notion of a meadow enriched ACP process
algebra is a simple generalization of the notion of an ACP process algebra, it
is an interesting one: there is a multitude of finite and infinite meadows and
meadows obviate the need for Boolean values and operations on data that yield
Boolean values to deal with conditions on data.

In the work on ACP, the emphasis has always been on axiom systems. In
this paper, we put the emphasis on algebras. That is, ACP process algebras are
looked upon in the same way as groups, rings, fields, etc. are looked upon in uni-
versal algebra (see e.g. [9]). The set of equations that are taken to characterize
ACP process algebras is a revision of the axiom system ACP. The revision is pri-
marily a matter of streamlining. However, it also involves a minor generalization
that allows for the generalization to meadow enriched ACP process algebras to
proceed smoothly.

This paper is organized as follows. First, we give a brief summary of meadows
(Section 2). Next, we introduce the notion of an ACP process algebra (Section 3)
and the notion of an meadow enriched ACP process algebra (Section 4). Finally,
we make some concluding remarks (Section 5).

2 Meadows

In the data enriched ACP process algebras introduced in this paper, the mathe-
matical structure for data is a meadow. A meadow is a field with the multiplica-
tive inverse operation made total by imposing that the multiplicative inverse of
zero is zero. Meadows are defined for the first time in [7] and are investigated in
e.g. [2, 5, 8]. In this section, we give a brief summary of meadows.

The signature of meadows is the same as the signature of fields. It is a
one-sorted signature. We make the single sort explicit because we will extend
this signature to a two-sorted signature in Section 4. The signature of meadows
consists of the sort Q of quantities and the following constants and operators:

– the constants 0 :Q and 1 :Q;
– the binary addition operator + :Q×Q→ Q;
– the binary multiplication operator · :Q×Q→ Q;
– the unary additive inverse operator − :Q→ Q;
– the unary multiplicative inverse operator −1 :Q→ Q.

We assume that there is a countably infinite set U of variables, which contains
u, v and w, with and without subscripts. Terms are build as usual. We use infix
notation for the binary operators + and ·, prefix notation for the unary operator
−, and postfix notation for the unary operator −1. We use the usual precedence
convention to reduce the need for parentheses. We introduce subtraction and
division as abbreviations: p− q abbreviates p+(−q) and p/q abbreviates p · q−1.
We freely use the numerals 2, 3, . . . .

The constants and operators from the signature of meadows are adopted from
rational arithmetic, which gives an appropriate intuition about these constants
and operators.
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Table 1. Axioms for meadows

(u+ v) + w = u+ (v + w)

u+ v = v + u

u+ 0 = u

u+ (−u) = 0

(u · v) · w = u · (v · w)

u · v = v · u

u · 1 = u

u · (v + w) = u · v + u · w

(u−1)
−1

= u

u · (u · u−1) = u

A meadow is an algebra with the signature of meadows that satisfies the
equations given in Table 1. Thus, a meadow is a commutative ring with identity
equipped with a multiplicative inverse operation −1 satisfying the reflexivity

equation (u−1)
−1

= u and the restricted inverse equation u · (u ·u−1) = u. From
the equations given in Table 1, the equation 0−1 = 0 is derivable.

A non-trivial meadow is a meadow that satisfies the separation axiom

0 6= 1 .

A cancellation meadow is a meadow that satisfies the cancellation axiom

u 6= 0 ∧ u · v = u · w ⇒ v = w ,

or equivalently, the general inverse law

u 6= 0⇒ u · u−1 = 1 .

In [7], cancellation meadows are called zero-totalized fields. An important prop-
erty of cancellation meadows is the following: 0/0 = 0, whereas u/u = 1 for
u 6= 0.

3 ACP Process Algebras

In this section, we introduce the notion of an ACP process algebra. This notion
originates from the models of the axiom system ACP, which was first presented
in [3]. A comprehensive introduction to ACP can be found in [1, 10].

It is assumed that a fixed but arbitrary finite set A of atomic action names,
with δ /∈ A, has been given.

The signature of ACP process algebras is a one-sorted signature. We make the
single sort explicit because we will extend this signature to a two-sorted signature
in Section 4. The signature of ACP process algebras consists of the sort P of
processes and the following constants, operators, and predicate symbols:

– the deadlock constant δ :P;
– for each e ∈ A, the atomic action constant e :P;
– the binary alternative composition operator + :P×P→ P;
– the binary sequential composition operator · :P×P→ P;
– the binary parallel composition operator ‖ :P×P→ P;
– the binary left merge operator bb :P×P→ P;
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– the binary communication merge operator | :P×P→ P;
– for each H ⊆ A, the unary encapsulation operator ∂H :P→ P;
– the unary atomic action predicate symbol A :P.

We assume that there is a countably infinite set X of variables of sort P,
which contains x, y and z, with and without subscripts. Terms are built as usual.
We use infix notation for the binary operators. We use the following precedence
conventions to reduce the need for parentheses: the operator + binds weaker
than all other binary operators and the operator · binds stronger than all other
binary operators. We write

∑

i∈I Pi, where I = {i1, . . . , in} and Pi1
, . . . , Pin

are
terms of sort P, for Pi1

+ . . . + Pin
. The convention is that

∑

i∈I Pi stands for
δ if I = ∅.

Let P and Q be closed terms of sort P. Intuitively, the constants and oper-
ators introduced above can be explained as follows:

– δ can neither perform an atomic action nor terminate successfully;
– e first performs atomic action e and then terminates successfully;
– P +Q behaves either as P or as Q, but not both;
– P ·Q first behaves as P and on successful termination of P it next behaves
as Q;

– P ‖Q behaves as the process that proceeds with P and Q in parallel;
– P bbQ behaves the same as P ‖Q, except that it starts with performing an
atomic action of P ;

– P | Q behaves the same as P ‖ Q, except that it starts with performing an
atomic action of P and an atomic action of Q synchronously;

– ∂H(P ) behaves the same as P , except that atomic actions from H are
blocked;

– A(P ) holds if P is an atomic action.

The predicate A is a means to distinguish atomic actions from other pro-
cesses. An alternate way to accomplish this is to have a subsort A of the sort P.
We have not chosen this alternate way because it complicates matters consider-
ably. Moreover, we prefer to keep close to elementary algebraic specification (see
e.g. [6]). By the notational convention introduced below, we seldom have to use
the predicate A explicitly.

In equations between terms of sort P, we will use a notational convention
which requires the following assumption: there is a countably infinite set X ′ ⊆ X
that contains a, b and c, with and without subscripts, but does not contain x, y
and z, with and without subscripts. Let φ be an equation between terms of sort
P, and let {a1, . . . , an} be the set of all variables from X ′ that occur in φ. Then
we write φ for A(x1) ∧ . . . ∧ A(xn) ⇒ φ′, where φ′ is φ with, for all i ∈ [1, n],
all occurrences of ai replaced by xi, and x1, . . . , xn are variables from X that do
not occur in φ.

An ACP process algebra is an algebra with the signature of ACP process
algebras that satisfies the formulas given in Table 2. Three equations in this
table are actually schemas of equations: e is a syntactic variable which stands
for an arbitrary constant of sort P. A side condition is added to two schemas

4



Table 2. Axioms for ACP process algebras

x+ y = y + x

(x+ y) + z = x+ (y + z)

x+ x = x

(x+ y) · z = x · z + y · z

(x · y) · z = x · (y · z)

x+ δ = x

δ · x = δ

∂H(e) = e if e /∈ H

∂H(e) = δ if e ∈ H

∂H(x+ y) = ∂H(x) + ∂H(y)

∂H(x · y) = ∂H(x) · ∂H(y)

x ‖ y = (x bb y + y bb x) + x | y

a bb x = a · x

a · x bb y = a · (x ‖ y)

(x+ y) bb z = x bb z + y bb z

a | b · x = (a | b) · x

a · x | b · y = (a | b) · (x ‖ y)

(x+ y) | z = x | z + y | z

x | y = y | x

(x | y) | z = x | (y | z)

δ | x = δ

A(e)

A(x) ∧ A(y) ⇒ A(x | y)

to restrict the constants for which the syntactic variable stands. The number
of proper equations is still finite because there exists only a finite number of
constant of sort P.

Because the notational convention introduced above is used, the four equa-
tions in Table 2 that are actually conditional equations look the same as their
counterpart in the axiom system ACP. It happens that these conditional equa-
tions allow for the generalization to meadow enriched ACP process algebras to
proceed smoothly. Apart from this, the set of formulas given in Table 2 differs
from the axiom system ACP on three points. Firstly, the equations x | y = y | x,
(x | y) | z = x | (y | z), and δ | x = δ have been added. In the axiom system ACP,
all closed substitution instances of these equations are derivable. Secondly, the
equations a · x | b = (a | b) · x and x | (y + z) = x | y + x | z have been removed.
These equations can be derived using the added equation x | y = y | x. Thirdly,
the formulas A(e) and A(x) ∧ A(y)⇒ A(x | y) have been added. They express
that the processes denoted by constants of sort P are atomic actions and that the
processes that result from the communication merge of two atomic actions are
atomic actions. This does not exclude that there are additional atomic actions,
which is impossible in the case of ACP.

Not all processes in a ACP process algebra have to be interpretations of closed
terms, even if all atomic actions are interpretations of closed terms. The processes
concerned may be solutions of sets of recursion equations. It is customary to
restrict the attention to ACP process algebras satisfying additional axioms by
which sets of recursion equations that fulfil a guardedness condition have unique
solutions. For an comprehensive treatment of this issue, the reader is referred
to [1].
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4 Meadow Enriched ACP Process Algebras

In this section, we introduce the notion of an meadow enriched ACP process
algebra. This notion is a simple generalization of the notion of an ACP process
algebra introduced in Section 3 to processes in which data are involved. The
elements of a meadow are taken as data.

The signature of meadow enriched ACP process algebras is a two-sorted
signature. It consists of the sorts, constants and operators from the signatures
of ACP process algebras and meadows and in addition the following operators:

– for each n ∈ N and e ∈ A, the n-ary data handling atomic action operator
e :Q× · · · ×Q

︸ ︷︷ ︸

n times

→ P;

– the binary guarded command operator :→ :Q×P→ P.

We take the variables in U for the variables of sort Q. We assume that the
sets U and X are disjunct. Terms are built as usual for a many-sorted signature
(see e.g. [14, 15]). We use the same notational conventions as before. In addition,
we use infix notation for the binary operator :→ .

Let p1, . . . , pn and p be closed terms of sort Q and P be a closed term of sort
P. Intuitively, the additional operators can be explained as follows:

– e(p1, . . . , pn) first performs data handling atomic action e(p1, . . . , pn) and
then terminates successfully;

– p :→ P behaves as the process P under the condition that p = 0 holds.

The different guarded command operators that have been proposed before in
the setting of ACP have one thing in common: their first operand is considered
to stand for an element of the domain of a Boolean algebra (see e.g. [4]). In
contrast with those guarded command operators, the first operand of the guarded
command operator introduced here is considered to stand for an element of the
domain of a meadow.

A meadow enriched ACP process algebra is an algebra with the signature
of meadow enriched ACP process algebras that satisfies the formulas given in
Tables 2 and 3. Like in Table 2, some formulas in Table 3 are actually schemas
of formulas: e and e′ are syntactic variables which stand for arbitrary constants
of sort P and, in addition, n and m stand for arbitrary natural numbers.

For meadow enriched ACP process algebras that satisfy the cancellation ax-
iom, the first five equations concerning the guarded command operator can easily
be understood by taking the view that 0 and 1 represent the Boolean values T

and F, respectively. In that case, we have that

– p/p models the test that yields T if p = 0 and F otherwise;
– if both p and q are equal to 0 or 1, then 1− p models ¬p, p · q models p ∨ q,
and consequently 1− (1− p) · (1− q) models p ∧ q.

From this view, the equations given in the upper half of Table 3 differ from
the axioms for the most general kind of guarded command operator that has
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Table 3. Additional axioms for meadow enriched ACP process algebras

0 :→ x = x

1 :→ x = δ

u :→ x = u/u :→ x

u :→ (v :→ x) = (1 − (1 − u/u) · (1 − v/v)) :→ x

u :→ x+ v :→ x = (u/u · v/v) :→ x

u :→ δ = δ

u :→ (x+ y) = u :→ x+ u :→ y

u :→ x · y = (u :→ x) · y

(u :→ x) bb y = u :→ (x bb y)

(u :→ x) | y = u :→ (x | y)

∂H(u :→ x) = u :→ ∂H(x)

e(u1, . . . , un) | e′(v1, . . . , vn) =

(u1 − v1) :→ (· · · :→ ((un − vn) :→ (e | e′)(u1, . . . , un)) · · ·)

e(u1, . . . , un) | e′(v1, . . . , vm) = δ if n 6= m

∂H(e(u1, . . . , un)) = e(u1, . . . , un) if e 6∈ H

∂H(e(u1, . . . , un)) = δ if e ∈ H

A(e(u1, . . . , un))

been proposed in the setting of ACP (see e.g. [4]) on two points only. Firstly,
the equation u :→ x = u/u :→ x has been added. This equation formalizes
the informal explanation of the guarded command given above. Secondly, the
equation x | (u :→ y) = u :→ (x | y) has removed. This equation can be derived
using the equation x | y = y | x from Table 2.

The equations in Table 3 concerning the communication merge of data han-
dling atomic actions formalize the intuition that two data handling atomic
actions e(p1, . . . , pn) and e′(q1, . . . , qm) cannot be performed synchronously if
n 6= m or p1 6= q1 or . . . or pn 6= qn. The equations concerning the encapsula-
tion of data handling atomic actions formalize the way in which it is dealt with
in µCRL and PSF. The formula concerning the atomic action predicate simply
expresses that data handling atomic actions are also atomic actions.

5 Conclusions

We have introduced the notion of an ACP process algebra. The set of equations
that have been taken to characterize ACP process algebras is a revision of the
axiom system ACP. We consider this revision worth mentioning of itself. We
have also introduced the notion of a meadow enriched ACP process algebra.
This notion is a simple generalization of the notion of an ACP process algebra to
processes in which data are involved, the mathematical structure of data being a
meadow. The primary mathematical structure for calculations is unquestionably
a field, and a meadow differs from a field only in that the multiplicative inverse
operation is made total by imposing that the multiplicative inverse of zero is zero.
Therefore, we consider a combination of ACP process algebras and meadows like
the one made in this paper, a combination with potentially many applications.
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