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Abstract. We formalize a cumulative interest compliant conservation
requirement for pure financial products proposed by Wesseling and van
den Bergh to make financial issues relating to these products amenable
to mathematical analysis. The formalization is given in a timed extension
of tuplix calculus and abstracts from the idiosyncrasies of time measure-
ment. We also use the timed tuplix calculus to show how wanted financial
behaviours may profit from using pure financial products.

Keywords: timed tuplix calculus, realistic interest calculation axiom,
Wesseling and van den Bergh equation, implicit capital, signed cancella-
tion meadow.

1 Introduction

In [10], Wesseling and van den Bergh claim that interest calculations relating to
financial products should always be based on cumulative interests. By strictly
adhering to the use of cumulative interests, the design of financial products is
made symmetric between client and provider and an implicit bias towards either
party can be avoided. This is the point of departure of their ‘realistic interest cal-
culation approach’. Applying this approach involves a strict separation between
transfers related to a financial product proper and transfers related to its costs of
delivery. Transfers related to the financial product proper include transfers due
to interests. Transfers related to the costs of delivery may include clear profit,
general running cost, cost of insurance against non-payment, costs of marketing
and communication, etc. Having made this separation, Wesseling and van den
Bergh formulate a cumulative interest compliant conservation requirement for
pure financial products: the sum of all transfers relating to the product, trans-
posed to some point of time (the focal date) by means of cumulative interest at
the actual interest rate of the product, is zero.
Our objective is to formalize this conservation requirement in the setting

of tuplix calculus [6], a calculus that has been applied earlier in modular fi-
nancial budget design. In order to achieve that objective, we introduce a timed
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extension of tuplix calculus. A single equational axiom of the extended calculus
expresses that interest calculations are based on cumulative interests. We formal-
ize the above-mentioned conservation requirement for pure financial products by
an equation in the extended calculus. Unaware of previous occurrences of the
requirement in the financial literature, we call this equation the Wesseling and
van den Bergh equation. Moreover, we adapt the notion of implicit capital of a
process introduced in [4] to the setting of timed tuplices and use it to show how
wanted financial behaviours may profit from using pure financial products. The
implicit capital associated with a financial behaviour may be viewed as the least
amount of money that must be at disposal to exhibit that behaviour – taking
cumulative interest into account.
In [6], tuplix calculus is presented by first introducing a core tuplix calculus

and after that extending the core tuplix calculus with several operators. In the
timed tuplix calculus introduced in this paper, only the core tuplix calculus is
included. In the core tuplix calculus as well as its extensions, the mathematical
structure for quantities is a signed cancellation meadow [5]. The prime example
of cancellation meadows is the field of rational numbers with the multiplicative
inverse operation made total by imposing that the multiplicative inverse of zero
is zero. A cancellation meadow is an appropriate mathematical structure for
quantities if quantities are measured with finite accuracy. A signed cancellation
meadow is a cancellation meadow expanded with a signum operation.
This paper is organized as follows. First, we give a brief summary of signed

cancellation meadows (Section 2). Next, we review the core of tuplix calculus
(Section 3). Then, we extend the core of tuplix calculus to a timed tuplix calcu-
lus (Section 4). After that, we formalize the conservation requirement for pure
financial products and show how financial behaviours may profit from using pure
financial products (Section 5). Following this, we construct the standard model of
the timed tuplix calculus (Section 6). Finally, we make some concluding remarks
(Section 7).

2 Signed Cancellation Meadows

In the timed tuplix calculus presented in this paper, the mathematical structure
for quantities is a signed cancellation meadow. Signed cancellation meadows
were first introduced in [5]. In this section, we give a brief summary of signed
cancellation meadows.
A meadow is a commutative ring with identity equipped with a multiplica-

tive inverse operation satisfying a reflexivity equation and a restricted inverse
equation, and in which the multiplicative inverse of zero is zero. A cancellation
meadow is a meadow in which the multiplicative inverse operation satisfies a
general inverse law. A signed meadow is a meadow expanded with a signum
operation. Meadows are defined for the first time in [7]. In that paper, cancella-
tion meadows are called zero-totalized field. The expansion of meadows with a
signum operation originates from [5].
The signature of meadows consists of the following constants and operators:
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Table 1. Equations for meadows

(u+ v) + w = u+ (v + w)

u+ v = v + u

u+ 0 = u

u+ (−u) = 0

(u · v) · w = u · (v · w)

u · v = v · u

u · 1 = u

u · (v + w) = u · v + u · w

(u−1)
−1

= u

u · (u · u−1) = u

– the constants 0 and 1;
– the binary addition operator + ;
– the binary multiplication operator · ;
– the unary additive inverse operator −;
– the unary multiplicative inverse operator −1.

We assume that there are infinitely many variables, including u, v and w.
Terms are build as usual. We use infix notation for the binary operators +
and · , prefix notation for the unary operator −, and postfix notation for
the unary operator −1. We use the usual precedence convention to reduce the
need for parentheses. We introduce subtraction and division as abbreviations:
p − q abbreviates p + (−q) and p/q abbreviates p · q−1. We use numerals in
the common way (2 abbreviates 1 + 1, etc.). We also use the notation pn for
exponentiation with a natural number as exponent. For each term p over the
signature of meadows, the term pn is defined by induction on n as follows: p0 = 1
and pn+1 = pn · p.
The constants and operators from the signature of meadows are adopted from

rational arithmetic, which gives an appropriate intuition about these constants
and operators.
A meadow is an algebra over the signature of meadows that satisfies the

equations given in Table 1. Thus, a meadow is a commutative ring with identity
equipped with a multiplicative inverse operation −1 satisfying the reflexivity

equation (u−1)
−1
= u and the restricted inverse equation u · (u ·u−1) = u. From

the equations given in Table 1, the equation 0−1 = 0 is derivable.
In meadows, the multiplicative inverse operation is total. The advantage

of working with a total multiplicative inverse operation lies in the fact that
conditions like u 6= 0 in u 6= 0 ⇒ u · u−1 = 1 are not needed to guarantee
meaning.
A non-trivial meadow is a meadow that satisfies the separation axiom

0 6= 1 .

A cancellation meadow is a meadow that satisfies the cancellation axiom

u 6= 0 ∧ u · v = u · w ⇒ v = w ,

or equivalently, the general inverse law

u 6= 0⇒ u · u−1 = 1 .
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Table 2. Equations for signum operation

s(u/u) = u/u

s(1− u/u) = 1− u/u

s(−1) = −1

s(u−1) = s(u)

s(u · v) = s(u) · s(v)

(1− s(u)−s(v)
s(u)−s(v)

) · (s(u+ v)− s(u)) = 0

An important property of non-trivial cancellation meadows is the following:
0/0 = 0, whereas u/u = 1 for u 6= 0.
A signed meadow is a meadow expanded with a unary signum operation s

satisfying the equations given in Table 2. In combination with the cancellation
axiom, the last equation in this table is equivalent to the conditional equation
s(u) = s(v)⇒ s(u+ v) = s(u).
In signed cancellation meadows, the function max has a simple definition:

max(u, v) =
s(u− v) + 1

2
· (u− v) + v .

Henceforth, we will write p ≤ q for max(p, q) = q.

3 Core Tuplix Calculus and Encapsulation

The timed tuplix calculus presented in this paper extends CTC (Core Tuplix
Calculus). CTC has been introduced in [6] as the core of TC (Tuplix Calcu-
lus). In this section, we give a brief summary of CTC and its extension with
encapsulation operators. These operators have been introduced in [6] as well.
The operators of the timed tuplix calculus that will be introduced in Section 4
include generalizations of the encapsulation operators.
It is assumed that a fixed but arbitrary set A of transfer actions has been

given. It is also assumed that a fixed but arbitrary signed non-trivial cancellation
meadow D has been given.
CTC has two sort: the sort T of tuplices and the sort Q of quantities. To

build terms of sort T, it has the following constants and operators:

– the empty tuplix constant ε :T;
– the blocking tuplix constant δ :T;
– for each a ∈ A, the unary transfer action operator a :Q→ T;
– the unary zero test operator γ :Q→ T;
– the binary conjunctive composition operator ´ :T×T→ T.

To build terms of sort Q, CTC has the constants and operators from the signa-
ture of meadows.
We assume that there are infinitely many variables of sort T, including x, y

and z, and infinitely many variables of sort Q, including u, v and w. Terms are
build as usual for a many-sorted signature (see e.g. [9, 11]). We use infix notation
for the binary operator ´.
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Table 3. Axioms of CTC

x´ y = y ´ x T1

(x´ y)´ z = x´ (y ´ z) T2

x´ ε = x T3

x´ δ = δ T4

a(u)´ a(v) = a(u+ v) T5

γ(u) = γ(u/u) T6

γ(0) = ε T7

γ(1) = δ T8

γ(u)´ γ(v) = γ(u/u+ v/v) T9

γ(u− v)´ a(u) = γ(u− v)´ a(v) T10

A term of sort T is tuplix-closed if it does not contain variables of sort T.
A term of sort T is closed if it does not contain variables of any sort.
We look at CTC as a calculus that is concerned with transfers of quantities

of something. Let t and t′ be closed terms of sort T, and let q be a closed
term of sort Q. Intuitively, the constants and operators introduced above can be
explained as follows:

– ε is a tuplix with no effect;
– δ blocks any joint effect of tuplices;
– the effect of a(q) is performing action a and transferring quantity q on per-
forming that action;

– γ(q) is with no effect if q equals 0 and blocks any joint effect otherwise;
– the effect of t´ t′ is the joint effect of t and t′.

In [6], these constants and operators are explained in a different way. We consider
that way of explanation less appropriate for the timed extension of CTC that
will be presented in Section 4.
We use the following convention: a transfer of a positive quantity is taken as

an outgoing transfer and a transfer of a negative quantity is taken as an incoming
transfer.
Notice that CTC can be looked upon as a special purpose process algebra in

which processes are considered at a level of detail where not even the order in
which actions are performed matter. This makes CTC suitable for formalizing
budgets: budgets are in fact descriptions of financial behaviour at the level of
detail where only the actions to be performed and the quantities transferred on
performing those actions matter.
The axioms of CTC are given in Table 3. The following proof rule is adopted

to lift the valid equations between terms of sort Q to CTC:

for all terms p and q of sort Q, D |= p = q implies γ(p) = γ(q) .

We will refer to this proof rule by DE.
To prove a statement for all CTC terms of sort T, it is is sufficient to prove

it for all CTC canonical terms. A CTC canonical term is a CTC term of sort T

of the form

γ(p0)´ a1(p1)´ . . .´ ak(pk)´ x1 ´ . . .´ xl ,

where k, l ≥ 0 and a1, . . . , ak are distinct transfer actions.
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Table 4. Axioms for encapsulation

∂H(ε) = ε E1

∂H(δ) = δ E2

∂H(γ(u)) = γ(u) E3

∂H(a(u)) = a(u) if a /∈ H E4

∂H(a(u)) = γ(u) if a ∈ H E5

∂H(x´ ∂H(y)) = ∂H(x)´ ∂H(y) E6

∂H∪H′(x) = ∂H(∂H′(x)) E7

Proposition 1. For all CTC terms t of sort T, there exists a CTC canonical

term t′ such that t = t′ is derivable from the axioms of CTC.

Proof. This proposition is a reformulation of Lemma 1 from [6]. ut

Like in [6], we can add the following operators to the operators of CTC to
build terms of sort T:

– for each H ⊆ A, the unary encapsulation operator ∂H :T→ T.

Let t be a closed term of sort T. Intuitively, the encapsulation operators can
be explained as follows:

– if, for each a ∈ H, the sum of all quantities transferred by t on performing
a equals 0, then ∂H(t) differs from t in that, for each a ∈ H, the effect of
all transfer actions of the form a(p) occurring in t is eliminated; otherwise,
∂H(t) has the same effect as δ.

The name encapsulation was introduced earlier in the setting of the process
algebra ACP for similar operations in [3].
The axioms for encapsulation are given in Table 4.

4 Timed Tuplix Calculus

In this section, we extend CTC to TTC (Timed Tuplix Calculus). In the informal
explanation of the constants and operators of CTC given in Section 3, we could
disregard what it is of which quantities are transferred. Clearly, if CTC is used to
formalize budgets, quantities of money are transferred. It happens to be far from
obvious to give informal explanations of two of the additional operators of TTC
that are not couched in terms of quantities of money, usually called amounts
of money. Therefore, we change over in this section to explanations couched in
terms of amounts of money. This should not be taken as a suggestion that more
abstract explanations are impossible. In subsequent sections, tuplices are viewed
as representations of financial behaviours. The change-over made in this section
agrees with this viewpoint.
Like CTC, TTC has two sort: the sort T of tuplices and the sort Q of

quantities. To build terms of sort T, it has the constants and operators of CTC
to build terms of sort T, and in addition the following operators:

– the unary delay operator σ :T→ T;
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– for each I ⊆ A, the unary pre-abstraction operator tI :T→ T;
– for each H ⊆ A, the binary interest counting encapsulation operator ∂H :

Q×T→ T.

To build terms of sort Q, it has the constants and operators from the signature
of meadows, and in addition the following operator:

– the binary implicit capital operator Q :Q×T→ Q.

We write ∂p
H(t) and Q

p(t), where p is a term of sort Q and t is a term of
sort T, for ∂H(p, t) and Q(p, t), respectively. We also use the notation σ

n(t). For
each term t of sort T, the term σn(t) is defined by induction on n as follows:
σ0(t) = t and σn+1(t) = σ(σn(t)).
In TTC, it is assumed that t ∈ A. A special role is assigned to t: transfer

actions of the form a(p) are renamed to t(p) on pre-abstraction in order to
abstract from their identity, but not from their presence.
Let t be a closed term of sort T and let p be a closed term of sort Q. Intu-

itively, the additional operators introduced above can be explained as follows:

– σ(t) differs from t in that the effect of each transfer action occurring in t is
delayed one time slice;

– tI(t) differs from t in that, for each a ∈ I, the effect of each transfer action
of the form a(p) occurring in t is replaced by the effect of t(p);

– ∂p
H(t) differs from ∂H(t) in that, for each a ∈ H, a cumulative interest at
the rate of p per time slice is taken into account on the summation of all
amounts of money transferred by t on performing a;

– Qp(t) is the least amount of money that must be at disposal to exhibit
financial behaviour t if a cumulative interest at the rate of p per time slice
is taken into account.

The delay operator introduced here is comparable to the relative discrete time
unit delay operator and the absolute discrete time unit delay operator introduced
earlier in the setting of the process algebra ACP in [2]. The pre-abstraction oper-
ators introduced here are comparable to the pre-abstraction operators introduced
earlier in the setting of the process algebra ACP in [1]. The interest counting
encapsulation operators are generalizations of the encapsulation operators intro-
duced in Section 3: ∂H(t) can be taken as abbreviation of ∂

0
H(t). The implicit

capital operator introduced here is comparable to the implicit computational
capital operator introduced earlier in the setting of the process algebra ACP
in [4].
The implicit capital of a financial behaviour is an amount of money that

cannot be negative. However, it is undefined if the behaviour is δ. In order to
circumvent the use of algebras with partial operations, −1 is used to represent
the undefinedness of the implicit capital of a financial behaviour.
Notice that TTC can be looked upon as a special purpose timed process

algebra in which processes are considered at a level of detail where the time slices
in which actions are performed matter, but not their order within the time slices.
This makes TTC suitable for formalizing financial products: financial products
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Table 5. Axioms for delay, pre-abstraction and interest counting encapsulation

σ(ε) = ε D1

σ(δ) = δ D2

σ(γ(u)) = γ(u) D3

σ(x´ y) = σ(x)´ σ(y) D4

tI(ε) = ε PA1

tI(δ) = δ PA2

tI(γ(u)) = γ(u) PA3

tI(a(u)) = a(u) if a /∈ I PA4

tI(a(u)) = t(u) if a ∈ I PA5

tI(x´ y) = tI(x)´ tI(y) PA6

tI(σ(x)) = σ(tI(x)) PA7

tI∪I′(x) = tI(tI′(x)) PA8

γ(1− 1+u
1+u

)´ ∂u
{a}(a(v)´ x) =

γ(1− 1+u
1+u

)´ ∂u
{a}(σ(a((1 + u) · v))´ x) RICA

∂u
H(ε) = ε ICE1

∂u
H(δ) = δ ICE2

∂u
H(γ(v)) = γ(v) ICE3

∂u
H(a(v)) = a(v) if a /∈ H ICE4

∂u
H(a(v)) = γ(v) if a ∈ H ICE5

∂u
H(x´ ∂u

H(y)) = ∂u
H(x)´ ∂u

H(y) ICE6

∂u
H(σ(x)) = σ(∂u

H(x)) ICE7

∂u
H∪H′(x) = ∂u

H(∂u
H′(x)) ICE8

Table 6. Axioms for implicit capital

Qu(x) = Qu(tA(x)) IC1

Qu(ε) = 0 IC2

Qu(δ) = −1 IC3

Qu(t(v)) = max(v, 0) IC4
1+Qu(x)
1+Qu(x)

·Qu(σ(x)) = 1+Qu(x)
1+Qu(x)

·max( 1
1+u

·Qu(x), 0) IC5
1+Qu(x)
1+Qu(x)

·Qu(t(v)´ σ(x)) = 1+Qu(x)
1+Qu(x)

·max(v + 1
1+u

·Qu(x), 0) IC6

exhibit financial behaviours where the day, week, month or year in which actions
are performed and the amounts of money are transferred in doing so are relevant,
but not their order within the periods concerned.
The axioms of TTC are the axioms of CTC and the additional axioms given

in Tables 5 and 6. Like in CTC, the proof rule DE is adopted to lift the valid
equations between terms of sort Q to TTC.
Axiom RICA (Realistic Interest Calculation Axiom) is equivalent to

u 6= −1⇒ ∂u
{a}(a(v)´ x) = ∂u

{a}(σ(a((1 + u) · v))´ x) ,

which can be paraphrased as follows: when encapsulating a, reckoning with an
interest rate u different from −1, a transfer of an amount v in time slice n is
equivalent to a transfer of an amount (u+1) ·v in time slice n+1. The exclusion
of u = −1 prevents that the equation x = δ can be derived. Axioms IC5 and
IC6 are equivalent to

Qu(x) 6= −1⇒ Qu(σ(x)) = max( 1
1+u

·Qu(x), 0) ,

Qu(x) 6= −1⇒ Qu(t(v)´ σ(x)) = max(v + 1
1+u

·Qu(x), 0) .
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The exclusion of Qu(x) = −1 is needed because −1 is used to represent unde-
finedness of the implicit capital of a financial behaviour.

Example 1. Let p be a closed term of sort Q such that D |= 1+p
1+p

= 1. The
following is a derivation from the axioms of TTC and the proof rule DE:

∂p

{a}(a(u)´ σ(a(5))´ σ2(b(u− 7)))

= ∂p

{a}(a(u)´ a( 5
1+p
)´ σ2(∂p

{a}(b(u− 7))))

= ∂p

{a}(a(u+
5

1+p
)´ ∂p

{a}(σ
2(b(u− 7))))

= ∂p

{a}(a(u+
5

1+p
))´ ∂p

{a}(σ
2(b(u− 7)))

= ∂p

{a}(a(u+
5

1+p
))´ σ2(∂p

{a}(b(u− 7)))

= γ(u+ 5
1+p
)´ σ2(b(u− 7)) .

Because D |= −5
1+p

+ 5
1+p

= 0, it follows immediately that

∂p

{a}(a(
−5
1+p
)´ σ(a(5))´ σ2(b( −5

1+p
− 7))) = σ2(b( −5

1+p
− 7)) .

Moreover, it follows immediately that

∂p

{a}(a(q)´ σ(a(5))´ σ2(b(q − 7))) = δ

for all closed terms q of sort Q such that not D |= q + 5
1+p

= 0.

Example 2. Let p and q be closed terms of sort Q. The following is a derivation
from the axioms of TTC and the proof rule DE:

Qp(a(7)´ σ(a′(−8))´ b(−5)´ σ2(b′((1 + q)2 · 5)))

= Qp(t(7)´ σ(t(−8))´ t(−5)´ σ2(t((1 + q)2 · 5)))

= Qp(t(2)´ σ(t(−8)´ σ(t((1 + q)2 · 5))))

= max(2 + 1
1+p

·Qp(t(−8)´ σ(t((1 + q)2 · 5))), 0)

= max(2 + 1
1+p

·max(−8 + 1
1+p

·Qp(t((1 + q)2 · 5)), 0), 0)

= max(2 + 1
1+p

·max(−8 + 1
1+p

· (1 + q)2 · 5, 0), 0) .

It follows immediately that

Qp(a(7)´ σ(a′(−8))´ b(−5)´ σ2(b′((1 + q)2 · 5))) = 2

for all closed terms p and q of sort Q such that D |= 1
1+p

· (1 + q)2 ≤ 8
5 . There

are many such p and q, for example, p and q such that D |= p = 1
100 and

D |= q = 10
100 , but also p and q such that D |= p = 25

100 and D |= q = 40
100 . We will

return to this example in Section 5, where p and q are taken as interest rates on
savings and loans, respectively.

To prove a statement for all tuplix-closed TTC terms of sort T, it is sufficient
to prove it for all tuplix-closed TTC canonical terms. The set of TTC canonical

terms is inductively defined by the following rules:
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– if t is a CTC canonical term, then t is a TTC canonical term;
– if t is a CTC canonical term and t′ is a TTC canonical term, then t´ σ(t′)
is a TTC canonical term.

Proposition 2. For all tuplix-closed TTC terms t of sort T, there exists a

tuplix-closed TTC canonical term t′ such that t = t′ is derivable from the axioms

of TTC.

Proof. The proof is straightforward by induction on the structure of t, and in the
cases t ≡ tI(s) and t ≡ ∂p

H(s) (where we can restrict ourselves to tuplix-closed
TTC canonical terms s) by induction on the structure of s. The following easy
to prove fact is used in the proof for the case t ≡ ∂p

H(s): for all TTC terms
t1 of sort T and all tuplix-closed TTC terms t2 of sort T in which no element
of H occurs, ∂u

H(t1 ´ t2) = ∂u
H(t1) ´ t2 is derivable from the axioms of TTC

(cf. Lemma 5 in [6]). ut

5 Pure Financial Products

TTC is concerned with financial behaviours. A financial product exhibits a fi-
nancial behaviour. In [10], Wesseling and van den Bergh propose a cumulative
interest compliant conservation requirement as a criterion for pure financial prod-
ucts: the sum of all transfers relating to the product, transposed to some point of
time by means of cumulative interest at the actual interest rate of the product,
is zero. In this section we formalize this requirement and show how financial
behaviours may profit from using pure financial products.
Let p be a closed term of sort Q. Then the cumulative interest compliant

conservation requirement for interest rate p is formalized by the equation

∂p

{t}(tA(x)) = ε .

This equation is called theWesseling and van den Bergh equation or shortly the
W-vdB equation. Suppose that p represents the actual interest rate of a financial
product. Then a tuplix that represents the behaviour of that financial product
is a tuplix that represent the behaviour of a pure financial product if it satisfies
the W-vdB equation for interest rate p.
Let p be a closed term of sortQ and t be a closed term of sortT. Suppose that

p represents the actual interest rate of a pure financial product and t represents
the behaviour of that pure financial product. If that pure financial product is a
financial product of credit type, then usually Qp(t) = 0. However, if that pure
financial product is a financial product of savings type, then Qp(t) > 0.
Let p and q be closed terms of sortQ and let t and t′ be closed terms of sortT.

Suppose that p represents the expected interest rate on savings and q represents
the actual interest rate of a pure financial product of credit type. Moreover,
suppose that t represents the behaviour of that pure financial product and t′

represents some wanted financial behaviour. We say that the wanted financial
behaviour t′ profits from using the pure financial product whose behaviour is

10



t with interest rate p on savings if Qp(t ´ t′) < Qp(t′). In any case, we have
Qp(t ´ t′) ≤ Qp(t) + Qp(t′). The important observation is that we may have
Qp(t´ t′) < Qp(t′). As an example, we take the case where p and q are such that
D |= 1

1+p
· (1+q)2 ≤ 8

5 , t ≡ b(−5)´σ2(b′((1+q)2 ·5)), and t′ ≡ a(7)´σ(a′(−8)).

We have that ∂p

{t}(tA(t)) = ε, so t actually represents the behaviour of a pure

financial product. We can easily derive that Qp(t) = 0 and Qp(t′) = 7. In
Example 2, we have already derived that Qp(t´ t′) = 2. This means that in this
case Qp(t´t′) < Qp(t′). In other words, the wanted financial behaviour t′ profits
from the pure financial product t with interest rate p on savings.
Let p be a closed term of sort Q, and let t′ be a closed term of sort T.

Suppose that p represents the expected interest rate on savings and t′ represents
some wanted financial behaviour. Then there exists a closed term t of sort T

that represents the behaviour of a pure financial product of credit type such
that Qp(t) = 0 and Qp(t´ t′) = 0:

– if Qp(t′) = 0, then take t ≡ ε;
– if Qp(t′) > 0, then take t ≡ a(−Qp(t′))´σn(a′((1+ p)n ·Qp(t′))), where n is
the greatest number of nested occurrences of terms of the form σ(t′′) in t′.

In other words, we arrive at the conclusion that any wanted financial behaviour
can be exhibited without capital by using a pure financial product of credit type
if we take the actual interest rate of the pure financial product as the expected
interest rate on savings.

6 Standard Model of TTC

In this section, we construct the standard model of TTC. The standard model
of CTC presented in [6] lies at the root of this model. However, the use of partial
functions is circumvented.
We write D for the domain of the signed cancellation meadow D, and we write

♦, where ♦ is a constant or operator from the signature of signed cancellation
meadows, for the interpretation of ♦ in D. To prevent confusion, we write 0 and
1 for the identity elements of addition and multiplication on natural numbers.
We define the set T E of tuplix elements, the set UT of untimed tuplices, and

the set T T of timed tuplices as follows:

T E =
⋃

A′⊆A
(A′ → D) ,

UT = {U ⊆ T E | card(U) ≤ 1} ,

T T = {T : N → UT | ∀i ∈ N • card(T (i)) = 0 ∨ ∀i ∈ N • card(T (i)) = 1} .

In the definition of the standard model of TTC, the auxiliary set T T − defined by

T T − = {T ∈ T T | ∀i ∈ N • card(T (i)) = 1}

is used as well. We write el(U), where U ∈ UT , for the unique element f ∈ T E
such that f ∈ U if card(U) = 1, and an arbitrary f ∈ T E otherwise.
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Table 7. Interpretation of constants and operators of TTC

ε(i) = {[ ]}

δ(i) = ∅

a(d)(i) =

{

{[a 7→ d]}

{[ ]}

if i = 0

otherwise

γ(d)(i) =

{

{[ ]}

∅

if d = 0

otherwise

(T ´ T ′)(i) = {f ˆ́ f ′ | f ∈ T (i) ∧ f ′ ∈ T ′(i)}

σ(T )(i) =















T (i− 1)

{[ ]}

∅

if i > 0 ∧ T (i) 6= ∅

if i = 0 ∧ T (i) 6= ∅

otherwise

tI(T )(i) = {t̂I(f) | f ∈ T (i)}

∂d
H(T )(i) = {ε̂H(f) | f ∈ T (i) ∧ ∀a ∈ H • Totalda(T ) = 0}

Qd(T ) =

{

Q̂d(T )

−1

if ∃i ≥ 0 • T (i) 6= ∅

otherwise

The standard model of TTC, writtenM(D, A), is the expansion of the signed
cancellation meadow D with

– for the sort T, the set T T ;
– for each additional constant ♦0 :T of TTC, the element ♦0 ∈ T T defined in
Table 7;

– for each additional operator ♦n :S1× . . .×Sn → Sn+1 of TTC, the operation
♦n :D1 × . . . Dn → Dn+1, where Di = T T if Si ≡ T and Di = D if Si ≡ Q,
defined in Table 7.1

In Table 7, the following auxiliary functions are used:

– the function ˆ́ : T E × T E → T E defined by
• dom(f ˆ́ f ′) = dom(f) ∪ dom(f ′);
• for each a ∈ dom(f ˆ́ f ′):

(f ˆ́ f ′)(a) =











f(a) + f ′(a)

f(a)

f ′(a)

if a ∈ dom(f) ∩ dom(f ′)

if a ∈ dom(f) \ dom(f ′)

if a ∈ dom(f ′) \ dom(f) ;

– for each I ⊆ A, the function t̂I : T E → T E defined by
• dom(̂tI(f)) = (dom(f) \ I) ∪ {t | dom(f) ∩ I 6= ∅};
• for each a ∈ dom(̂tI(f)):

t̂I(f)(a) =

{

f(a)
∑

a′∈I f(a
′)

if a 6= t

if a = t ;

1 We write [ ] for the empty function and [e 7→ e′] for the function f with dom(f) = {e}
such that f(e) = e′.
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– for each H ⊆ A, the function ε̂H : T E → T E defined by
• dom(ε̂H(f)) = dom(f) \H;
• for each a ∈ dom(ε̂H(f)):

ε̂H(f)(a) = f(a) ;

– for each a ∈ A, the function Totala :D × T T → D defined by

Totalda(T ) =
∑

i s.t. a∈dom(el(T (i)))

(1 + d)i · el(T (i))(a) ;

– the function Q̂ :D × T T − → D defined by

Q̂u(T ) =

{

max(q0(T ), 0)

max(q0(T ) +
1

1+u
· Q̂u(sh(T )), 0)

if ∀i > 0 • T (i) = {[ ]}

if ∃i > 0 • T (i) 6= {[ ]} ,

where:
• sh : T T − → T T − is defined by sh(T )(i) = T (i+ 1) for all i ∈ N;
• q0 : T T

− → D is defined by q0(T ) =
∑

a∈dom(el(T (0))) el(T (0))(a).

It is easy to establish the following soundness result: for all terms t and t′ of
sort T, t = t′ is derivable from the axioms of TTC and the proof rule DE only
ifM(D, A) |= t = t′. We also have a completeness result.

Theorem 1. For all closed terms t and t′ of sort T, M(D, A) |= t = t′ only if

t = t′ is derivable from the axioms of TTC and the proof rule DE.

Proof. By Proposition 2, it is sufficient to show that, for all closed TTC canonical
terms t and t′, M(D, A) |= t = t′ only if t = t′ is derivable from the axioms of
TTC and the proof rule DE. This is easy to prove by induction on the structure
of t using Theorem 1 from [6]. ut

7 Conclusions

We have developed a timed extension of tuplix calculus. The result can be looked
upon as a special purpose timed process algebra in which processes are considered
at a level of detail where the time slices in which actions are performed matter,
but not their order within the time slices. This makes it suited for the description
and analysis of financial products: financial products exhibit financial behaviours
where the day, week, month or year in which actions are performed and the
amounts of money are transferred in doing so are relevant, but not their order
within the periods concerned.
We have formalized the cumulative interest compliant conservation require-

ment for pure financial products proposed by Wesseling and van den Bergh by
an equation in the timed tuplix calculus developed. Thus, a formalization of the
starting-point of the material on the mathematics of finance presented in [10]
has been achieved. Moreover, we have used the timed tuplix calculus developed
to show how wanted financial behaviours may profit from using pure financial
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products. The timed tuplix calculus appears to be a reasonable setting for further
work in this area.
Like Wesseling and van den Bergh, we consider only financial products of

which the interest rate is not dependent on changes in the financial market. If the
interest rate of a financial product is made dependent on changes in the financial
market, then the expressiveness of the timed tuplix calculus is insufficient. In this
more dynamic case, discrete time process algebra [2] looks to be a reasonable
setting for the formalization of an adapted version of the cumulative interest
compliant conservation requirement.
Wesseling and van den Bergh have informed us that their conservation re-

quirement for pure financial products has been formulated under the influence
of basic ideas on the mathematics of finance presented in [8].
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