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Abstract. Single-pass instruction sequences under execution are con-
sidered to produce behaviours to be controlled by some execution envi-
ronment. Threads as considered in thread algebra model such behaviours:
upon each action performed by a thread, a reply from its execution en-
vironment determines how the thread proceeds. Threads in turn can be
looked upon as producing processes as considered in process algebra. We
show that, by apposite choice of basic instructions, all processes that
can only be in a finite number of states can be produced by single-pass
instruction sequences.
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1 Introduction

With the current paper, we carry on the line of research with which a start
was made in [3]. The working hypothesis of this line of research is that single-
pass instruction sequence is a central notion of computer science which merits
investigation for its own sake. We take program algebra [3] for the basis of
our investigation. Program algebra is a setting suited for investigating single-
pass instruction sequences. It does not provide a notation for programs that is
intended for actual programming.
The starting-point of program algebra is the perception of a program as a

single-pass instruction sequence, i.e. a finite or infinite sequence of instructions of
which each instruction is executed at most once and can be dropped after it has
been executed or jumped over. This perception is simple, appealing, and links up
with practice. Single-pass instruction sequences under execution are considered
to produce behaviours to be controlled by some execution environment. Threads
as considered in basic thread algebra [3] model such behaviours: upon each action
performed by a thread, a reply from the execution environment determines how

? This research has been carried out as part of the project Thread Algebra for Strategic

Interleaving, which is funded by the Netherlands Organisation for Scientific Research
(NWO).



the thread proceeds.1 Threads in turn can be looked upon as producing processes
as considered in process algebras such as ACP [1, 7] and CCS [8]. This means that
single-pass instruction sequences under execution can be considered to produce
such processes.
Process algebra is considered relevant to computer science, as is witnesses by

the extent of the work on process algebra in theoretical computer science. This
means that there must be programmed systems whose behaviours are taken for
processes as considered in process algebra. This has motivated us to investigate
the connections between programs and the processes that they produce. In this
paper, we investigate those connections starting from the perception of a program
as a single-pass instruction sequence.
Regular threads are threads that can only be in a finite number of states.

The behaviours of all single-pass instruction sequences considered in program
algebra are regular threads and all regular threads can be produced by such
single-pass instruction sequences. Regular processes are processes that can only
be in a finite number of states. We show in this paper that, by apposite choice
of basic instructions, all regular processes can be produced by such single-pass
instruction sequences as well.
To obtain this result naturally, we use single-pass instruction sequences with

multiple-reply test instructions, which are more general than the test instruc-
tions considered in program algebra, and threads with postconditional switching,
which is more general than the behavioural counterpart of test instructions con-
sidered in basic thread algebra. We show that the result can also be obtained
without introducing multiple-reply test instructions and postconditional switch-
ing if we assume that the cluster fair abstraction rule (see e.g. [7]) is valid.
Single-pass instruction sequences under execution, and more generally

threads, may make use of services such as counters, stacks and Turing tapes.
The use operators introduced in [4] are concerned with the effect of services on
threads. An interesting aspect of making use of services is that it may turn a
regular thread into a non-regular thread. Because non-regular threads produce
non-regular processes, this means that single-pass instruction sequences under
execution that make use of services may produce non-regular processes. On that
account, we add the use operators to basic thread algebra with postconditional
switching and make precise what processes are produced by threads that make
use of services.
Programs written in an assembly language are finite instruction sequences

for which single-pass execution is usually not possible. However, the instruction
set of such a program notation may be such that all regular processes can as
well be produced by programs written in the program notation. To illustrate
this, we show that all regular processes can be produced by programs written in
a program notation which is close to existing assembly languages.
This paper is organized as follows. First, we review program algebra and

extend it with multiple-reply test instructions (Section 2). Next, we review basic

1 In [3], basic thread algebra is introduced under the name basic polarized process
algebra.
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thread algebra, extend it with postconditional switching (Section 3), and use the
result to make mathematically precise what threads are produced by the single-
pass instruction sequences considered in program algebra with multiple-reply test
instructions (Section 4). Then, we review process algebra (Section 5) and use it
to make mathematically precise what processes are produced by the threads
considered in basic thread algebra with postconditional switching (Section 6).
After that, we show that all regular processes can be produced by the single-
pass instruction sequences considered in program algebra with multiple-reply
test instructions (Section 7). Following this, we extend basic thread algebra with
postconditional switching further to threads that make use of services and make
precise what processes are produced by such threads (Section 8). After that, we
show that all regular processes can also be produced by programs written in
a program notation which is close to existing assembly languages (Section 9).
Finally, we make some concluding remarks (Section 10).

2 Program Algebra with Multiple-Reply Test Instructions

In this section, we first review PGA (ProGram Algebra) and then extend it with
multiple-reply test instructions. All regular processes can be produced by single-
pass instruction sequences as considered in PGA extended with multiple-reply
test instructions provided use is made of basic instructions of a particular kind.
Those basic instructions, which are called process construction instructions, are
also introduced.

2.1 Program Algebra

The perception of a program as a single-pass instruction sequence is the starting-
point of PGA.
In PGA, it is assumed that a fixed but arbitrary set A of basic instructions

has been given. PGA has the following primitive instructions:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a forward jump instruction #l;
– a termination instruction !.

We write I for the set of all primitive instructions of PGA.
The intuition is that the execution of a basic instruction a produces either T

or F at its completion. In the case of a positive test instruction +a, a is executed
and execution proceeds with the next primitive instruction if T is produced.
Otherwise, the next primitive instruction is skipped and execution proceeds with
the primitive instruction following the skipped one. If there is no next instruction
to be executed, deadlock occurs. In the case of a negative test instruction −a,
the role of the value produced is reversed. In the case of a plain basic instruction
a, execution always proceeds as if T is produced. The effect of a forward jump
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Table 1. Axioms of PGA

(X ; Y ) ; Z = X ; (Y ; Z) PGA1

(Xn)ω = Xω PGA2

Xω ; Y = Xω PGA3

(X ; Y )ω = X ; (Y ;X)ω PGA4

instruction #l is that execution proceeds with the l-th next instruction. If l
equals 0 or the l-th next instruction does not exist, deadlock occurs. The effect
of the termination instruction ! is that execution terminates.
PGA has the following constants and operators:

– for each u ∈ I, an instruction constant u ;
– the binary concatenation operator ; ;
– the unary repetition operator ω .

We assume that there are infinitely many variables, including X,Y, Z. Terms are
built as usual. We use infix notation for the concatenation operator and postfix
notation for the repetition operator.
A closed PGA term is considered to denote a non-empty, finite or periodic

infinite sequence of primitive instructions.2 Closed PGA terms are considered
equal if they denote the same instruction sequence. The axioms for instruction
sequence equivalence are given in Table 1. In this table, n stands for an arbitrary
natural number greater than 0. For each PGA term P , the term P n is defined by
induction on n as follows: P 1 = P and Pn+1 = P ; Pn. The unfolding equation
Xω = X ;Xω is derivable. Each closed PGA term is derivably equal to one of the
form P or P ;Qω, where P and Q are closed PGA terms in which the repetition
operator does not occur.
Notice that PGA2 is actually an axiom schema. Par abus de langage, ax-

iom schemas will be called axioms throughout the paper, with the exception of
Section 6.

2.2 Multiple-Reply Test Instructions

We introduce PGAmr, an extension of PGA with multiple-reply test instructions.
These additional instructions are like the test instructions of PGA, but cover the
case where a natural number greater than zero is produced at the completion of
the execution of a basic instruction.
In PGAmr, like in PGA, it is assumed that a fixed but arbitrary set A of

basic instructions has been given. PGAmr has the primitive instructions of PGA
and in addition:

– for each n ∈ N+ and a ∈ A, a positive multiple-reply test instruction ++n:a ;3

2 A periodic infinite sequence is an infinite sequence with only finitely many subse-
quences.

3 We write N+ for the set {n ∈ N | n > 0}.
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– for each n ∈ N+ and a ∈ A, a negative multiple-reply test instruction −−n:a .

We write Imr for the set of all primitive instructions of PGAmr.
The intuition is that the execution of a basic instruction a produces a natural

number greater than zero at its completion. In the case of a positive multiple-
reply test instruction ++n:a, a is executed and execution proceeds with the
i-th next primitive instruction if a natural number i ≤ n is produced. If there
is no next instruction to be executed or i > n, deadlock occurs. In the case of
a negative multiple-reply test instruction −−n:a, execution proceeds with the
n−i+1-th next primitive instruction instead of the i-th one if a natural number
i ≤ n is produced.
For each a ∈ A, the instructions +a and −a are considered essentially the

same as the instructions ++2:a and −−2:a, respectively. For that reason, the
reply T is identified with the reply 1 and the reply F is identified with the reply 2.
PGAmr has a constant u for each u ∈ Imr. The operators of PGAmr are the

same as the operators as PGA. Likewise, the axioms of PGAmr are the same as
the axioms as PGA.
The intuition concerning multiple-reply test instructions given above will

be made fully precise in Section 4, using an extension of basic thread algebra
introduced in Section 3.

2.3 Process Construction and Interaction with Services

Recall that, in PGAmr, it is assumed that a fixed but arbitrary set A of basic
instructions has been given. In the sequel, we will make use a version of PGAmr

in which the following additional assumptions relating to A are made:

– a fixed but arbitrary set F of foci has been given;
– a fixed but arbitrary setM of methods has been given;
– a fixed but arbitrary set AA of atomic actions has been given;
– A consists of:

• for each f ∈ F , m ∈M, a program-service interaction instruction f.m;
• for each n ∈ N+, for each e1, . . . , en ∈ AA, a process construction in-
struction ac(e1, . . . , en).

Each focus plays the role of a name of some service provided by an execution
environment that can be requested to process a command. Each method plays
the role of a command proper. Executing a basic instruction f.m is taken as
making a request to the service named f to process command m.
On execution of a basic instruction ac(e1, . . . , en), first a non-deterministic

choice between the atomic actions e1, . . . , en is made and then the chosen atomic
action is performed. The reply 1 is produced if e1 is performed, . . . , the reply
n is produced if en is performed. Basic instructions of this kind are material to
produce all regular processes by single-pass instruction sequences.
We will write PGApc

mr for the version of PGAmr in which the above-mentioned
additional assumptions are made.
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The intuition concerning program-service interaction instructions given
above will be made fully precise in Section 8, using an extension of basic thread
algebra. The intuition concerning process construction instructions given above
will be made fully precise in Section 6, using the process algebra introduced in
Section 5. It will not be made fully precise using an extension of basic thread
algebra because it is considered a basic property of threads that they are deter-
ministic behaviours.

3 Basic Thread Algebra with Postconditional Switching

In this section, we first review BTA (Basic Thread Algebra) and then extend it
with postconditional switching. All regular processes can be produced by threads
as considered in BTA extended with postconditional switching provided use
is made of basic actions of a particular kind. Those basic actions, which are
the counterparts of the process construction instructions from PGApc

mr, are also
introduced.

3.1 Basic Thread Algebra

BTA is concerned with the behaviours that sequential programs exhibit on exe-
cution. These behaviours are called threads.
In BTA, it is assumed that a fixed but arbitrary set A of basic actions, with

tau /∈ A, has been given. Besides, tau is a special basic action. We write Atau for
A ∪ {tau}. A thread performs basic actions in a sequential fashion. Upon each
basic action performed, a reply from the execution environment of the thread
determines how it proceeds. The possible replies are T and F. Performing tau,
which is considered performing an internal action, always leads to the reply T.
Although BTA is one-sorted, we make this sort explicit. The reason for this

is that we will extend BTA with an additional sort in Section 8.
BTA has one sort: the sort T of threads. To build terms of sort T, it has the

following constants and operators:

– the deadlock constant D :T;
– the termination constant S :T;
– for each a ∈ Atau, the binary postconditional composition operator EaD :

T×T→ T.

We assume that there are infinitely many variables of sort T, including x, y, z.
Terms of sort T are built as usual. We use infix notation for the postconditional
composition operator. We introduce basic action prefixing as an abbreviation:
a ◦ p abbreviates pEaD p.
The thread denoted by a closed term of the form pEaD q will first perform

a, and then proceed as the thread denoted by p if the reply from the execution
environment is T and proceed as the thread denoted by q if the reply from the
execution environment is F. The threads denoted by D and S will become inactive
and terminate, respectively.
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Table 2. Axiom of BTA

x E tauD y = x E tauD x T1

Table 3. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X= tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

Table 4. Approximation induction principle

∧

n≥0
πn(x) = πn(y)⇒ x = y AIP

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(x EaD y) = πn(x) EaD πn(y) P3

BTA has only one axiom. This axiom is given in Table 2. Using the abbrevia-
tion introduced above, axiom T1 can be written as follows: xE tauDy = tau◦x.
Notice that each closed BTA term denotes a thread that will become inactive

or terminate after it has performed finitely many actions. Infinite threads can
be described by guarded recursion.
A guarded recursive specification over BTA is a set of recursion equations

E = {X = tX | X ∈ V }, where V is a set of variables of sort T and each tX is a
BTA term of the form D, S or tEaD t′ with t and t′ that contain only variables
from V . We write V(E) for the set of all variables that occur in E. We are
only interested in models of BTA in which guarded recursive specifications have
unique solutions, such as the projective limit model of BTA presented in [2].
For each guarded recursive specification E and each X ∈ V(E), we introduce

a constant 〈X|E〉 of sort T standing for the unique solution of E for X. The
axioms for these constants are given in Table 3. In this table, we write 〈tX |E〉
for tX with, for all Y ∈ V(E), all occurrences of Y in tX replaced by 〈Y |E〉.
X, tX and E stand for an arbitrary variable of sort T, an arbitrary BTA term of
sort T and an arbitrary guarded recursive specification over BTA, respectively.
Side conditions are added to restrict what X, tX and E stand for.
Closed terms that denote the same infinite thread cannot always be proved

equal by means of the axioms given in Table 3. We introduce AIP (Approxi-
mation Induction Principle) to remedy this. AIP is based on the view that two
threads are identical if their approximations up to any finite depth are identical.
The approximation up to depth n of a thread is obtained by cutting it off after it
has performed n actions. In AIP, the approximation up to depth n is phrased in
terms of the unary projection operator πn :T→ T. AIP and the axioms for the
projection operators are given in Table 4. In this table, a stands for an arbitrary
bascic action from Atau.
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3.2 Postconditional Switching

We introduce BTApcs, an extension of BTA with postconditional switching. Post-
conditional switching is like postconditional composition, but covers the case
where the execution environment produces reply values from the set N+ instead
of the set {T,F}. Postconditional switching was first introduced in [6].
In BTApcs, like in BTA, it is assumed that a fixed but arbitrary set A of basic

actions, with tau /∈ A, has been given. BTApcs has the constants and operators
of BTA and in addition:

– for each a ∈ Atau and k ∈ N+, the k-ary postconditional switch operator
aD

k
:T× · · · ×T
︸ ︷︷ ︸

k times

→ T.

The thread denoted by a closed terms of the form aD
k
(p1, . . . , pk) will first

perform a, and then proceed as the thread denoted by p1 if the processing of a
leads to the reply 1, . . . , proceed as the thread denoted by pk if the processing
of a leads to the reply k.
For each a ∈ Atau, the operator EaD is considered essentially the same as

the operator aD
2
. For that reason, the reply T is identified with the reply 1 and

the reply F is identified with the reply 2.
Without additional assumptions about the set A of basic actions, axioms S1

and T2 from Table 5 are the only axioms for postconditional switching. Axiom
S1 expresses that the operators EaD and aD

2
are essentially the same. Like

axiom T1, axiom T2 reflects that performing tau always leads to the reply 1.
Guarded recursion can be added to BTApcs as it is added to BTA in Sec-

tion 3.1.

3.3 Process Construction and Interaction with Services

Recall that, in BTApcs, it is assumed that a fixed but arbitrary set A of basic
actions has been given. Like in the case of PGAmr, we will make use in the sequel
of a version of BTApcs in which the following additional assumptions relating to
A are made:

– a fixed but arbitrary set F of foci has been given;
– a fixed but arbitrary setM of methods has been given;
– a fixed but arbitrary set AA of atomic actions has been given;
– A consists of:

• for each f ∈ F and m ∈M, a thread-service interaction action f.m;
• for each n ∈ N+, for each e1, . . . , en ∈ AA, a process construction action

ac(e1, . . . , en).

Like in the case of PGAmr, performing a basic instruction f.m is taken as
making a request to the service named f to process command m.
Like in the case of PGAmr, on performing a basic action ac(e1, . . . , en), first

a non-deterministic choice between the atomic actions e1, . . . , en is made and

8



Table 5. Axioms for postconditional switching

x EaD y = aD
2
(x, y) S1

ac(e1, . . . , en)Dk
(x1, . . . , xk) = ac(e1, . . . , en)Dn(x1, . . . , xn) if n < k S2

ac(e1, . . . , en)Dk
(x1, . . . , xk) = ac(e1, . . . , en)Dn(x1, . . . , xk,D, . . . ,D

︸ ︷︷ ︸

n−k times

) if n > k S3

tauD
k
(x1, . . . , xk) = tauD

k
(

k times
︷ ︸︸ ︷
x1, . . . , x1) T2

then the chosen atomic action is performed. The reply 1 is produced if e1 is
performed, . . . , the reply n is produced if en is performed.
In Table 5, axioms are given for the postconditional switching operators

which cover the case where the above-mentioned additional assumptions about
A are made. In this table, a stands for an arbitrary basic action from Atau and
e1, . . . , en stand for arbitrary atomic actions from AA.
Axioms S2 and S3 stipulate that a thread denoted by a term of the form

ac(e1, . . . , en)Dk
(p1, . . . , pk) behaves as if it concerns a n-ary postconditional

switch if n 6= k. The n-ary postconditional switch in question is obtained by
removing pn+1, . . . , pk if n < k, and is obtained by adding D sufficiently many
times if n > k.
We will write BTApc

pcs for the version of BTApcs in which the above-mentioned
additional assumptions are made.

4 Thread Extraction

In this short section, we use BTApcs with guarded recursion to make mathemati-
cally precise what threads are produced by the single-pass instruction sequences
denoted by closed PGAmr terms.
The thread extraction operation | | determines, for each closed PGAmr term

P , a closed term of BTApcs with guarded recursion that denotes the thread
produced by the single-pass instruction sequence denoted by P . The thread
extraction operation is defined by the equations given in Table 6 (for a ∈ A,
n ∈ N+, l ∈ N, and u ∈ Imr) and the rule that |#l ; X| = D if #l is the
beginning of an infinite jump chain. This rule is formalized in e.g. [5].
The equations in Table 6 relating to the primitive instructions of PGA are the

equations that have been used to define the thread extraction operation for PGA
in most earlier work on PGA (see e.g. [5, 9]). The additional equations relating
to multiple-reply test instructions are obvious generalizations of the equations
relating to the test instructions of PGA.
Let P be a closed PGAmr term. Then we say that |P | is the thread produced

by P .
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Table 6. Defining equations for thread extraction operation

|a| = a ◦ D

|a ;X| = a ◦ |X|

|+a| = a ◦ D

|+a ;X| = |X|EaD |#2 ;X|

|−a| = a ◦ D

|−a ;X| = |#2 ;X|EaD |X|

|++n:a| = a ◦ D

|++n:a ;X| = aDn(|#1 ;X|, . . . , |#n ;X|)

|−−n:a| = a ◦ D

|−−n:a ;X| = aDn(|#n ;X|, . . . , |#1 ;X|)

|#l| = D

|#0 ;X| = D

|#1 ;X| = |X|

|#l + 2 ; u| = D

|#l + 2 ; u ;X| = |#l + 1 ;X|

|!| = S

|! ;X| = S

5 Process Algebra

In this section, we review ACPτ (Algebra of Communicating Processes with
abstraction). This is the process algebra that will be used in Section 6 to make
precise what processes are produced by the single-pass instruction sequences
denoted by closed PGApc

mr terms.
In ACPτ , it is assumed that a fixed but arbitrary set A of atomic actions,

with τ, δ /∈ A, and a fixed but arbitrary commutative and associative function
| :A∪{τ}×A∪{τ} → A∪{δ}, with τ |e = δ for all e ∈ A∪{τ}, have been given.
The function | is regarded to give the result of synchronously performing any two
atomic actions for which this is possible, and to give δ otherwise. In ACPτ , τ is a
special atomic action, called the silent step. The act of performing the silent step
is considered unobservable. Because it would otherwise be observable, the silent
step is considered an atomic action that cannot be performed synchronously
with other atomic actions. We write Aτ for A ∪ {τ}.
ACPτ has the following constants and operators:

– for each e ∈ A, the atomic action constant e ;
– the silent step constant τ ;
– the deadlock constant δ ;
– the binary alternative composition operator + ;
– the binary sequential composition operator · ;
– the binary parallel composition operator ‖ ;
– the binary left merge operator bb ;
– the binary communication merge operator | ;
– for each H ⊆ A, the unary encapsulation operator ∂H ;
– for each I ⊆ A, the unary abstraction operator τI .

We assume that there are infinitely many variables. Terms are built as usual.
We use infix notation for the binary operators.
Let p and q be closed ACPτ terms, e ∈ A, and H, I ⊆ A. Intuitively, the

constants and operators to build ACPτ terms can be explained as follows:

10



– e first performs atomic action e and next terminates successfully;
– τ performs an unobservable atomic action and next terminates successfully;
– δ can neither perform an atomic action nor terminate successfully;
– p+ q behaves either as p or as q, but not both;
– p · q first behaves as p and on successful termination of p it next behaves
as q;

– p ‖ q behaves as the process that proceeds with p and q in parallel;
– p bb q behaves the same as p ‖ q, except that it starts with performing an
atomic action of p;

– p | q behaves the same as p ‖ q, except that it starts with performing an
atomic action of p and an atomic action of q synchronously;

– ∂H(p) behaves the same as p, except that atomic actions from H are blocked;
– τI(p) behaves the same as p, except that atomic actions from I are turned
into unobservable atomic actions.

The operators bb and | are of an auxiliary nature. They are needed to axiomatize
ACPτ . The axioms of ACPτ are given in e.g. [7].
We write

∑

i∈S pi, where S = {i1, . . . , in} and pi1 , . . . , pin are ACP
τ terms,

for pi1 + . . .+ pin . The convention is that
∑

i∈S pi stands for δ if S = ∅.
A recursive specification over ACPτ is a set of recursion equations E =

{X = tX | X ∈ V }, where V is a set of variables and each tX is an ACP
τ term

containing only variables from V . Let t be an ACPτ term without occurrences
of abstraction operators containing a variable X. Then an occurrence of X in
t is guarded if t has a subterm of the form e · t′ where e ∈ A and t′ is a term
containing this occurrence of X. Let E be a recursive specification over ACPτ .
Then E is a guarded recursive specification if, in each equation X = tX ∈ E:
(i) abstraction operators do not occur in tX and (ii) all occurrences of variables
in tX are guarded or tX can be rewritten to such a term using the axioms of
ACPτ in either direction and/or the equations in E except the equation X = tX
from left to right. We only consider models of ACPτ in which guarded recursive
specifications have unique solutions, such as the models of ACPτ presented in [1].
For each guarded recursive specification E and each variable X that occurs

in E, we introduce a constant 〈X|E〉 standing for the unique solution of E for
X. The axioms for these constants are given in [7].

6 Process Extraction

In this section, we use ACPτ with guarded recursion to make mathematically
precise what processes are produced by the single-pass instruction sequences
denoted by closed PGApc

mr terms.
For that purpose, A and | are taken such that:

AA ⊆ A ,

A \ AA = {sf (d) | f ∈ F , d ∈M∪ N} ∪ {rf (d) | f ∈ F , d ∈M∪ N}
∪ {sserv(r) | r ∈ N} ∪ {rserv(m) | m ∈M} ∪

{
stop, stop, stop∗, i

}
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Table 7. Defining equations for process extraction operation

|X|′ = X

|S|′ = stop

|D|′ = i · δ

|t1 E tauD t2|
′ = i · i · |t1|

′

|t1 E f.mD t2|
′ = sf (m) · (rf (1) · |t1|

′ + rf (2) · |t2|
′)

|t1 E ac(e1, . . . , en)D t2|
′ = e1 · |t1|

′ + e2 · |t2|
′ + . . .+ en · |t2|

′

| tauD
k
(t1, . . . , tk)|

′ = i · i · |t1|
′

| f.mD
k
(t1, . . . , tk)|

′ = sf (m) · (rf (1) · |t1|
′ + . . .+ rf (k) · |tk|

′)

| ac(e1, . . . , en)Dk
(t1, . . . , tk)|

′ = e1 · |t1|
′ + . . .+ en · |tn|

′
if n ≤ k

| ac(e1, . . . , en)Dk
(t1, . . . , tk)|

′ =

e1 · |t1|
′ + . . .+ ek · |tk|

′ + ek+1 · i · δ + . . .+ en · i · δ if n > k

|〈X|E〉|′ = 〈X| {X ′ = |tX′ |′ | X ′ = tX′ ∈ E}〉

and for all e, e′ ∈ A, f ∈ F , d ∈M∪ N, m ∈M, and r ∈ N:

sf (d) | rf (d) = i ,

sf (d) | e = δ if e 6= rf (d) ,

e | rf (d) = δ if e 6= sf (d) ,

sserv(r) | e = δ ,

e | rserv(m) = δ ,

stop | stop = stop∗ ,

stop | e = δ if e 6= stop ,

e | stop = δ if e 6= stop ,

i | e = δ ,

e′ | e = δ if e′ ∈ AA .

The process extraction operation | | determines, for each closed BTApc
pcs term

p, a closed term of ACPτ with guarded recursion that denotes the process pro-
duced by the thread denoted by p. The process extraction operation | | is defined
by |p| = τ{stop}(|p|

′), where | |′ is defined by the equations given in Table 7 (for
f ∈ F , m ∈M, and e1, . . . , en ∈ AA).
Two atomic actions are involved in performing a basic action of the form

f.m: one for sending a request to process command m to the service named
f and another for receiving a reply from that service upon completion of the
processing. Performing a basic action of the form ac(e1, . . . , en) always gives rise
to a non-deterministic choice between n alternatives, where ei is the first atomic
action of the i-th alternatives.
For each closed BTApc

pcs term p, |p|′ denotes a process that will perform a
special termination action just before successful termination. Abstracting from
this termination action yields the process denoted by |p|. In Section 8, BTApc

pcs

is extended with use operators, which are concerned with threads making use of
services. The process extraction operation | | for BTApc

pcs is defined here in terms
of | |′ to allow for the process extraction operation for the extension of BTApc

pcs

with use operators to be defined easily.
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Some actions introduced above are not used in the definition of the process
extraction operation for BTApc

pcs. Those actions are used in the definition of the
process extraction operation for the extension of BTApc

pcs with use operators.
Let p be a closed BTApc

pcs term and P be a closed PGA
pc
mr term. Then we say

that |p| is the process produced by p and ||P || is the process produced by P .
The process extraction operation preserves the axioms of BTApc

pcs with
guarded recursion. Roughly speaking, this means that the translations of these
axioms are derivable from the axioms of ACPτ with guarded recursion. Before
we make this fully precise, we have a closer look at the axioms of BTApc

pcs with
guarded recursion.
A proper axiom is an equation or a conditional equation. In Tables 3 and 5,

we do not find proper axioms. Instead of proper axioms, we find axiom schemas
without side conditions and axiom schemas with syntactic side conditions. The
axioms of BTApc

pcs with guarded recursion are obtained by replacing each axiom
schema by all its instances.
We define a function | | from the set of all equations and conditional equations

of BTApc
pcs with guarded recursion to the set of all equations of ACP

τ with
guarded recursion as follows:

|t1 = t2| = |t1| = |t2| ,

|E ⇒ t1 = t2| = {|t′1| = |t
′
2| | t

′
1 = t′2 ∈ E} ⇒ |t1| = |t2| .

Proposition 1. Let φ be an axiom of BTApc
pcs with guarded recursion. Then |φ|

is derivable from the axioms of ACPτ with guarded recursion.

Proof. The proof is trivial. ut

Proposition 1 would go through if no abstraction of the above-mentioned special
termination action was made. However, the expressiveness results for PGApc

mr

relating to processes that are presented in Section 7 would not go through.
Notice further that ACPτ without the silent step constant and the abstraction
operator, better known as ACP, would suffice if no abstraction of the special
termination action was made.

7 Expressiveness of PGApc

mr

In this section, we show that all regular processes can be produced by the single-
pass instruction sequences considered in program algebra with multiple-reply test
instructions.
We begin by making precise what it means that a thread can only be in a

finite number of states. We assume that a fixed but arbitrary modelM of BTApcs

extended with guarded recursion has been given, we use the term thread only
for the elements from the domain of M, and we denote the interpretations of
constants and operators in M by the constants and operators themselves.
Let p be a thread. Then the set of states or residual threads of p, written

Res(p), is inductively defined as follows:

13



– p ∈ Res(p);
– if q EaD r ∈ Res(p), then p, q ∈ Res(p);
– if aD

k
(p1, . . . , pk) ∈ Res(p), then p1, . . . , pk ∈ Res(p).

Let p be a thread and let A′ ⊆ Atau. Then p is regular over A
′ if the following

conditions are satisfied:

– Res(p) is finite;
– for all q, r ∈ Res(p) and a ∈ Atau, q EaD r ∈ Res(p) implies a ∈ A′;
– for all p1, . . . , pk ∈ Res(p) and a ∈ Atau, aD

k
(p1, . . . , pk) ∈ Res(p) implies

a ∈ A′.

We say that p is regular if p is regular over Atau.
We will make use of the fact that being a regular thread coincides with being

the solution of a finite guarded recursive specification in which the right-hand
sides of the recursion equations are of a restricted form.
A linear recursive specification over BTApcs is a guarded recursive specifica-

tion E = {X = tX | X ∈ V } over BTApcs, where each tX is a term of the form
D, S, Y EaD Z with Y,Z ∈ V or aD

k
(X1, . . . , Xk) with X1, . . . , Xk ∈ V .

Proposition 2. Let p be a thread and let A′ ⊆ Atau. Then p is regular over A
′

iff there exists a finite linear recursive specification E over BTApcs in which only
basic actions from A′ occur such that p is the solution of E for some X ∈ V(E).

Proof. This proposition generalizes Theorem 1 from [9] from BTA to BTApcs

and from the projective limit model of BTA to an arbitrary model of BTApcs.
However, the proof of that theorem is applicable to any model of BTA and
the adaptations needed to take postconditional switching operators and their
interpretations into account are trivial. ut

All regular threads over A can be produced by the single-pass instruction
sequences considered in program algebra with multiple-reply test instructions.

Proposition 3. For each thread p that is regular over A, there exists a closed
PGAmr term P such that p is the thread denoted by |P |.

Proof. This proposition generalizes one direction of Proposition 2 from [9] from
PGA to PGAmr and from the projective limit model of BTA to an arbitrary
model of BTApcs. However, the proof of that proposition is applicable to any
model of BTA and the adaptations needed to take multiple-reply test instructions
and the interpretations of postconditional switching operators into account are
trivial. ut

We proceed by making precise what it means that a process can only be
in a finite number of states. We assume that a fixed but arbitrary model M′

of ACPτ with guarded recursion has been given, we use the term process only
for the elements from the domain of M′, and we denote the interpretations of
constants and operators in M′ by the constants and operators themselves.
Let p be a process. Then the set of states or subprocesses of p, written Sub(p),

is inductively defined as follows:
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– p ∈ Sub(p);
– if e · q ∈ Sub(p), then q ∈ Sub(p);
– if e · q + r ∈ Sub(p), then q ∈ Sub(p).

Let p be a process and let A′ ⊆ Aτ . Then p is regular over A′ if the following
conditions are satisfied:

– Sub(p) is finite;
– for all q ∈ Sub(p) and e ∈ Aτ , e · q ∈ Sub(p) implies e ∈ A′;
– for all q, r ∈ Sub(p) and e ∈ Aτ , e · q + r ∈ Sub(p) implies e ∈ A′.

We say that p is regular if p is regular over Aτ .
We will make use of the fact that being a regular process over A coincides

with being the solution of a finite guarded recursive specification in which the
right-hand sides of the recursion equations are linear terms. Linearity of terms
is inductively defined as follows:

– δ is linear;
– if e ∈ Aτ , then e is linear;
– if e ∈ Aτ and X is a variable, then e ·X is linear;
– if t and t′ are linear, then t+ t′ is linear.

A linear recursive specification over ACPτ is a guarded recursive specification
E = {X = tX | X ∈ V } over ACPτ , where each tX is linear.

Proposition 4. Let p be a process and let A′ ⊆ A. Then p is regular over A′

iff there exists a finite linear recursive specification E over ACPτ in which only
atomic actions from A′ occur such that p is the solution of E for some X ∈ V(E).

Proof. The proof follows the same line as the proof of Proposition 2. ut

Remark. Proposition 4 is concerned with processes that are regular over A. We
can also prove that being a regular process over Aτ coincides with being the
solution of a finite linear recursive specification over ACPτ if we assume that the
cluster fair abstraction rule [7] holds in the model M′. However, we do not need
this more general result.

All regular processes over AA can be produced by the single-pass instruction
sequences considered in program algebra with multiple-reply test instructions.

Theorem 1. For each process p that is regular over AA, there exists a closed
PGApc

mr term P such that p is the process denoted by ||P ||.

Proof. By Propositions 2, 3 and 4, it is sufficient to show that, for each finite
linear recursive specification E over ACPτ in which only atomic actions from
AA occur, there exists a finite linear recursive specification E ′ over BTApc

pcs such
that 〈X|E〉 = |〈X|E′〉| for all X ∈ V(E).
Take the finite linear recursive specification E over ACPτ that consists of

the recursion equations

Xi = ei1 ·Xi1 + . . .+ eiki
·Xiki

+ e′i1 + . . .+ e
′
ili
,
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where ei1, . . . , eiki
, e′i1, . . . , e

′
ili
∈ AA, for i ∈ {1, . . . n}. Then construct the fi-

nite linear recursive specification E ′ over BTApc
pcs that consists of the recursion

equations

Xi = ac(ei1, . . . , eiki
, e′i1, . . . , e

′
ili
)D

ki+li
(Xi1, . . . , Xiki

,S, . . . ,S
︸ ︷︷ ︸

li times

)

for i ∈ {1, . . . n}. It follows immediately from the definition of the process ex-
traction operation that 〈X|E〉 = |〈X|E ′〉| for all X ∈ V(E). ut

Multiple-reply test instructions and postconditional switching have been intro-
duced because process construction instructions of the form ac(e1, . . . , en) with
n > 2 look to be necessary to obtain this result. However, a similar result can
also be obtained for closed PGApc

mr terms in which only basic instructions of the
form ac(e1, e2) occur if we assume that the cluster fair abstraction rule [7] holds
in the model M′.

Theorem 2. Assume that CFAR (Cluster Fair Abstraction Rule) holds in M′.
Let t ∈ AA. Then, for each process p that is regular over AA\{t}, there exists a
closed PGApc

mr term P in which only basic instructions of the form ac(e, t) occur
such that τ · p is the process denoted by τ · τ{t}(||P ||).

Proof. By Propositions 2, 3 and 4 and the definition of the thread extraction
operation, it is sufficient to show that, for each finite linear recursive specification
E over ACPτ in which only atomic actions from AA \ {t} occur, there exists a
finite linear recursive specification E ′ over BTApc

pcs in which only basic actions of
the form ac(e, t) occur such that τ · 〈X|E〉 = τ · τ{t}(|〈X|E

′〉|) for all X ∈ V(E).
Take the finite linear recursive specification E over ACPτ that consists of

the recursion equations

Xi = ei1 ·Xi1 + . . .+ eiki
·Xiki

+ e′i1 + . . .+ e
′
ili
,

where ei1, . . . , eiki
, e′i1, . . . , e

′
ili
∈ AA \ {t}, for i ∈ {1, . . . n}. Then construct the

finite linear recursive specification E ′ over BTApc
pcs that consists of the recursion

equations

Xi = Xi1 E ac(ei1, t)D (. . . (Xiki
E ac(eiki

, t)D

(S E ac(e′i1, t)D (. . . (S E ac(e′ili , t)DXi) . . .))) . . .)

for i ∈ {1, . . . n}; and the finite linear recursive specification E ′′ over ACPτ that
consists of the recursion equations

Xi = ei1 ·Xi1 + t · Yi2 ,

Yi2 = ei2 ·Xi2 + t · Yi3 ,
...

Yiki
= eiki

·Xiki
+ t · Zi1 ,

Zi1 = e′i1 + t · Zi2 ,

Zi2 = e′i2 + t · Zi3 ,
...

Zili = e′ili + t ·Xi ,

where Yi2, . . . , Yiki
, Zi1, . . . , Zili are fresh variables, for i ∈ {1, . . . n}. It fol-

lows immediately from the definition of the process extraction operation that
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|〈X|E′〉| = 〈X|E′′〉 for all X ∈ V(E). Moreover, it follows from CFAR that
τ ·〈X|E〉 = τ ·τ{t}(〈X|E

′′〉) for all X ∈ V(E). Hence, τ ·〈X|E〉 = τ ·τ{t}(|〈X|E
′〉|)

for all X ∈ V(E). ut

8 Services

An instruction sequence under execution may make use of services. That is,
certain instructions may be executed for the purpose of having the behaviour
produced by the instruction sequence affected by a service that takes those in-
structions as commands to be processed. Likewise, a thread may perform certain
actions for the purpose of having itself affected by a service that takes those ac-
tions as commands to be processed. The processing of an action may involve a
change of state of the service and at completion of the processing of the action
the service returns a reply value to the thread. The reply value determines how
the thread proceeds. In this section, we first review the use operators, which are
concerned with threads making such use of services, and then extend the pro-
cess extraction operation to the use operators. The use operators can be used
in combination with the thread extraction operation from Section 4 to describe
the behaviour produced by instruction sequences that make use of services.

8.1 Use Operators

A service H consists of

– a set S of states;
– an effect function eff :M× S → S;
– a yield function yld :M× S → N;
– an initial state s0 ∈ S;

satisfying the following condition:

∀m ∈M, s ∈ S • (yld(m, s) = 0⇒ ∀m′ ∈M • yld(m′, eff (m, s)) = 0) .

The set S contains the states in which the service may be, and the functions eff
and yld give, for each method m and state s, the state and reply, respectively,
that result from processing m in state s. By the condition imposed on services,
once the service has returned 0 as reply, it keeps returning 0 as reply.
Let H = (S, eff , yld , s0) be a service and letm ∈M. Then the derived service

of H after processing m, written ∂
∂m
H, is the service (S, eff , yld , eff (m, s0)); and

the reply of H after processing m, written H(m), is yld(m, s0).
When a thread makes a request to the service to process m:

– if H(m) 6= 0, then the request is accepted, the reply is H(m), and the service
proceeds as ∂

∂m
H;

– ifH(m) = 0, then the request is rejected and the service proceeds as a service
that rejects any request.
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Table 8. Axioms for use operators

S /f H = S U1

D /f H = D U2

(x E tauD y) /f H = (x /f H) E tauD (y /f H) U3

(x E g.mD y) /f H = (x /f H) E g.mD (y /f H) if f 6= g U4

(x E f.mD y) /f H = tau ◦ (x /f
∂

∂m
H) if H(m) = 1 U5

(x E f.mD y) /f H = tau ◦ (y /f
∂

∂m
H) if H(m) = 2 U6

(x E f.mD y) /f H = D if H(m) = 0 U7

(x E ac(e1, . . . , en)D y) /f H = (x /f H) E ac(e1, . . . , en)D (y /f H) U8

tauD
k
(x1, . . . , xk) /f H = tauD

k
(x1 /f H, . . . , xk /f H) U9

g.mD
k
(x1, . . . , xk) /f H =

g.mD
k
(x1 /f H, . . . , xk /f H) if f 6= g U10

f.mD
k
(x1, . . . , xk) /f H = tau ◦ (xi /f

∂
∂m

H) if H(〈m〉) = i ∧ i ∈ [1, k] U11

f.mD
k
(x1, . . . , xk) /f H = D if H(〈m〉) /∈ [1, k] U12

ac(e1, . . . , en)Dk
(x1, . . . , xk) /f H = ac(e1, . . . , en)Dk

(x1 /f H, . . . , xk /f H) U13

πn(x /f H) = πn(πn(x) /f H) U14

We introduce the sort S of services and, for each f ∈ F , the binary use
operator /f :T×S→ T. The axioms for these operators are given in Table 8.
Intuitively, p/fH is the thread that results from processing all actions performed
by thread p that are of the form f.m by service H. When a basic action of the
form f.m performed by thread p is processed by service H, it is turned into
the basic action tau and postconditional composition or postconditional switch
is removed in favour of basic action prefixing on the basis of the reply value
produced.
We add the use operators to PGApc

mr as well. We will only use the extension
in combination with the thread extraction operation | | and define |P /f H| =
|P | /f H. Hence, |P /f H| denotes the thread produced by P if P makes use of
H. If H is a service such as an unbounded counter, an unbounded stack or a
Turing tape, then a non-regular thread may be produced.

8.2 Extending Process Extraction to the Use Operators

In order to extend the process extraction operation to the use operators, we
need an extension of ACPτ with action renaming operators. The unary action
renaming operator ρR, for R :Aτ → Aτ such that R(τ) = τ , can be explained as
follows: ρR(p) behaves as p with each atomic action replaced according to R. The
axioms for action renaming are given in [7]. We write ρe′ 7→e′′ for the renaming
operator ρR with R defined by R(e

′) = e′′ and R(e) = e if e 6= e′.
We also need to define a set Af ⊆ A and a function Rf : Aτ → Aτ for each

f ∈ F :

Af = {sf (d) | d ∈M∪ N} ∪ {rf (d) | d ∈M∪ N} ;
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Table 9. Additional defining equations for process extraction operation

|t /f H|′ = ρstop∗ 7→stop(∂{stop,stop}(∂Af
(|t|′ ‖ ρRf

(|H|′))))

|H|′ = 〈XH |{XH′ =
∑

m∈M rserv(m) · sserv(H
′(m)) ·X ∂

∂m
H′ + stop | H ′ ∈ ∆(H)}〉

for all e ∈ Aτ , m ∈M and r ∈ N:

Rf (sserv(r)) = sf (r) ,

Rf (rserv(m)) = rf (m) ,

Rf (e) = e if
∧

r′∈N
e 6= sserv(r

′) ∧
∧

m′∈M e 6= rserv(m
′) .

The additional defining equations for the process extraction operation con-
cerning the use operators are given in Table 9, where ∆(H) is inductively defined
as follows:

– H ∈ ∆(H);
– if m ∈M and H ′ ∈ ∆(H), then ∂

∂m
H ′ ∈ ∆(H).

The extended process extraction operation preserves the axioms for the use
operators. Owing to the presence of axiom schemas with semantic side conditions
in Table 8, the axioms for the use operators include proper axioms and axioms
that have a semantic side condition of the form H(m) = n. By that, the precise
formulation of the preservation result is somewhat complicated.

Proposition 5.

1. Let φ be a proper axiom for the use operators. Then |φ| is derivable from the
axioms of ACPτ with action renaming and guarded recursion.

2. Let φ if ψ be an axiom with semantic side condition for the use operators.
Then |φ| is derivable from the axioms of ACPτ with action renaming and
guarded recursion under the assumption that ψ holds.

Proof. The proof is straightforward. We sketch the proof for axiom U4, writing
EH for {XH′ =

∑

m∈M rserv(m) · sserv(H
′(m)) · X ∂

∂m
H′ + stop | H ′ ∈ ∆(H)}.

By the definition of the process extraction operation, it is sufficient to show that
|(xE f.mDy)/f H|

′ = |tau◦ (x/f
∂
∂m
H)|′ is derivable under the assumption that

H(m) = 1 holds. In outline, this goes as follows:

|(xE f.mD y) /f H|
′

= ρstop∗ 7→stop(∂{stop,stop}(∂Af
(sf (m) · (rf (1) · x+ rf (2) · y) ‖ ρRf

(〈XH |EH〉))))

= i · i · ρstop∗ 7→stop(∂{stop,stop}(∂Af
(x ‖ ρRf

(〈X ∂
∂m

H |EH〉))))

= |tau ◦ (x /f
∂
∂m
H)|′ .

In the first and third step, we apply defining equations of | |′. In the second step,
we apply axioms of ACPτ with action renaming and guarded recursion, and use
the assumption that H(m) = 1. ut
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Let P be a closed PGApc
mr term and H be a service. Then ||P /f H|| denotes

the process produced by P if P makes use of H. Instruction sequences that make
use of services such as unbounded counters, unbounded stacks or Turing tapes
are interesting because they may produce non-regular processes.

9 PGLDmr Programs and the Use of Boolean Registers

In this section, we show that all regular processes can also be produced by
programs written in a program notation which is close to existing assembly
languages, and even by programs in which no atomic action occurs more than
once. The latter result requires programs that make use of Boolean registers.

9.1 The Program Notation PGLDmr

A hierarchy of program notations rooted in program algebra is introduced in [3].
One program notation that belongs to this hierarchy is PGLD, a very simple
program notation which is close to existing assembly languages. It has absolute
jump instructions and no explicit termination instruction. Here, we introduce
PGLDmr, an extension of PGLD with multiple-reply test instructions.
In PGLDmr, like in PGAmr, it is assumed that there is a fixed but arbitrary

finite set of basic instructions A. The primitive instructions of PGLDmr differ
from the primitive instructions of PGAmr as follows: for each l ∈ N, there is
an absolute jump instruction ##l instead of a forward jump instruction #l.
PGLDmr programs have the form u1; . . . ;uk, where u1, . . . , uk are primitive in-
structions of PGLDmr.
The effects of all instructions in common with PGAmr are as in PGAmr with

one difference: if there is no next instruction to be executed, termination occurs.
The effect of an absolute jump instruction ##l is that execution proceeds with
the l-th instruction of the program concerned. If ##l is itself the l-th instruction,
then deadlock occurs. If l equals 0 or l is greater than the length of the program,
then termination occurs.
We define the meaning of PGLDmr programs by means of a function

pgldmr2pga from the set of all PGLDmr programs to the set of all closed PGAmr

terms. This function is defined by

pgldmr2pga(u1 ; . . . ; uk) = (φ1(u1) ; . . . ; φk(uk) ; ! ; !)
ω ,

where the auxiliary functions φj from the set of all primitive instructions of
PGLDmr to the set of all primitive instructions of PGAmr are defined as follows
(1 ≤ j ≤ k):

φj(##l) = #l − j if j ≤ l ≤ k ,

φj(##l) = #k + 2− (j − l) if 0 < l < j ,

φj(##l) = ! if l = 0 ∨ l > k ,

φj(u) = u if u is not a jump instruction .

PGLDmr is as expressive as PGAmr.
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Proposition 6. For each closed PGAmr term P , there exists a PGLDmr pro-
gram P ′ such that |P | = |pgldmr2pga(P ′)|.

Proof. In [3], a number of functions (called embeddings in that paper) are de-
fined, whose composition gives, for each closed PGA term P , a PGLD program P ′

such that |P | = |pgld2pga(P ′)|, where pgld2pga is the restriction of pgldmr2pga
to PGLD programs. The extensions of the above-mentioned embeddings to cover
multiple-reply test instructions are trivial because the embeddings change only
jump and termination instructions. ut

Below, we will write PGLDpc
mr for the version of PGLDmr in which the ad-

ditional assumptions relating to A mentioned in Section 2.3 are made. As a
corollary of Theorem 1 and Proposition 6, we have that all regular processes
over AA can be produced by PGLDpc

mr programs.

Corollary 1. For each process p that is regular over AA, there exists a PGLDpc
mr

program P such that p is the process denoted by ||pgldmr2pga(P )||.

9.2 PGLDmr Programs Acting on Boolean Registers

First, we describe services that make up Boolean registers.
A Boolean register service accepts the following methods:

– a set to true method set:T;
– a set to false method set:F;
– a get method get.

We writeMBR for the set {set:T, set:F, get}. It is assumed thatMBR ⊆M.
The methods accepted by Boolean register services can be explained as fol-

lows:

– set:T : the contents of the Boolean register becomes T and the reply is T;
– set:F : the contents of the Boolean register becomes F and the reply is F;
– get : nothing changes and the reply is the contents of the Boolean register.

Let s ∈ {T,F,B}. Then the Boolean register service with initial state s, writ-
ten BRs, is the service ({T,F,B} , eff , eff , s), where the function eff is defined
as follows (b ∈ {T,F}):

eff (set:T, b) = T ,

eff (set:F, b) = F ,

eff (get, b) = b ,

eff (m, b) = B if m 6∈ MBR ,

eff (m,B) = B .

Notice that the effect and yield functions of a Boolean register service are the
same.
We have that, by making use of Boolean registers, PGLDpc

mr programs in
which no atomic action from AA occurs more than once can produce all regular
processes over AA.
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Theorem 3. For each process p that is regular over AA, there exists a PGLDpc
mr

program P in which each atomic action from AA occurs no more than once such
that p is the process denoted by |(. . . (|pgldmr2pga(P )| /br:1 BRF) . . . /br:k BRF)|,
where k is the length of P .

Proof. By the proof of Theorem 2 given in Section 7, it is sufficient to show that,
for each thread p that is regular over A, there exist a PGLDmr program P in
which each atomic action from A occurs no more than once and a k ∈ N+ such
that p is the thread denoted by (. . . (|pgldmr2pga(P )| /br:1 BRF) . . . /br:k BRF).
Let p be a thread that is regular over A. We may assume that p is produced

by a PGLDmr program P ′ of the following form:

+a1 ; ##(3 · k1 + 1) ; ##(3 · k
′
1 + 1) ;

...

+an ; ##(3 · kn + 1) ; ##(3 · k
′
n + 1) ;

##0 ; ##0 ; ##0 ; ##(3 · n+ 4) ,

where, for each i ∈ [1, n], ki, k
′
i ∈ [0, n − 1] (cf. the proof of Proposition 2

from [9]). It is easy to see that the PGLDmr program P that we are looking for
can be obtained by transforming P ′: by making use of n Boolean registers, P
can distinguish between different occurrences of the same basic instruction in
P ′, and in that way simulate P ′. ut

10 Conclusions

Because process algebra is considered relevant to computer science, there must
be programmed systems whose behaviours are taken for processes as considered
in process algebra. In that light, we have investigated the connections between
programs and the processes that they produce, starting from the perception of a
program as a single-pass instruction sequence. We have shown that, by apposite
choice of basic instructions, all regular processes can be produced by single-pass
instruction sequences as considered in program algebra.
We have also made precise what processes are produced by threads that make

use of services. The reason for this is that single-pass instruction sequences under
execution are regular threads and regular threads that make use of services such
as unbounded counters, unbounded stacks or Turing tapes may produce non-
regular processes. An option for future work is to characterize the classes of
processes that can be produced by single-pass instruction sequences that make
use of such services.
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