
Univer sity of Amsterdam
Programming Research Group

Tuplix Calculus Specifications of Financial
Transfer Networks

J.A. Bergstra
S. Nolst Trenite

M.B. van der Zwaag

Report PRG0805 May 2008

J.A. Bergstra

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel. +31 20 525.7591
e-mail: janb@science.uva.nl

S. Nolst Trenite

Faculty of Science
University of Amsterdam

e-mail: sanne@science.uva.nl

M.B. van der Zwaag

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel. +31 20 525.7584
e-mail: mbz@science.uva.nl

Programming Research Group Electronic Report Series

Tuplix Calculus Specifications of Financial

Transfer Networks

Jan A. Bergstra1∗ Sanne Nolst Trenité2

Mark B. van der Zwaag1

1Section Software Engineering, Informatics Institute, University of Amsterdam
2Faculty of Science, University of Amsterdam

Email: {janb,sanne,mbz}@science.uva.nl

Contents

1 Introduction 1

2 Financial Transfer Networks 2

3 Flux over a Network 4

4 Visualizing Internal Streams 7

5 Function Definition and Binding 9

A Derivations 10

B Primer on Tuplix Calculus 13

B.1 Cancellation Meadows . 14
B.2 Basic Tuplix Calculus . 15
B.3 Zero-Test Logic . 17
B.4 Generalized Alternative Composition and Auxiliary Operators . . 18

1 Introduction

In [3] we described the application of Tuplix Calculus (TC, see [6]) in the formal-
ization of financial budgets. Here, we explore this application further starting
with the definition of financial transfer networks. We consider the notion of flux
of money over a network, and define a flux constraint operator that enforces
matching influx and outflux for units. We exploit so-called signed attribute

∗Partially supported by the Dutch NWO Jaquard Project Symbiosis, project number

638.003.611.

1

notation to make internal streams visible through encapsulations. Finally, we
propose a Tuplix Calculus construct for the definition of data functions. We
assume familiarity with Tuplix Calculus; its syntax and axioms are collected in
Appendix B.

2 Financial Transfer Networks

Implicit starting point in the modular budget design in [3] is the assumption
of an underlying (organizational) structure: tuplix expressions specify budgets
for certain parties, and by composition we obtain budgets for larger parts (of
an organization). Of importance is also the identification of attributes, that
are used in the specification of payments between parts, or between parts and
external parties.

Example 1. As a simple example, consider an organization consisting of parts
P and Q, and assume that attribute a is used to specify payments between these
parts. Using the names P and Q also as tuplix meta-variables, we define

P = a(10), Q = a(−10).

So, P will pay amount 10, while Q intends to receive amount 10. When we com-
pose P and Q, expressed as ∂{a}(P � Q), these entries synchronize successfully.

We find it worthwhile to introduce a mathematical format for organizational
structures. We define a financial transfer network (FTN) as a set of units with
in-going and outgoing channels: a channel is a directed link between units, or
between a unit and an external party, that is labeled with an attribute. Labels
of in-going channels of a unit are used in the specification of payments to the
unit, and the labels of outgoing channels are used to specify payments made
by the unit. We require that any channel is in-going for at most one unit and
outgoing for at most one unit.

Definition 1. An FTN consists of:

1. a set Attr of attributes;

2. a set Unit of units;

3. a function in : Unit → 2Attr ;

4. a function out : Unit → 2Attr ;

such that for all distinct g, h ∈ Unit , in(g) ∩ in(h) = ∅ and out(g) ∩ out(h) = ∅.
An attribute a is internal if there are units g, h ∈ Unit with a ∈ in(g) ∩

out(h). An attribute is external if it is not internal.

An FTN can be depicted in a graph-like manner, with units as nodes, and
arrows (called channels) labeled with attributes between units, or between a
unit and an external party. Because an attribute of an FTN can be the label

2

of at most one channel, we shall also speak of the channel a, rather than the
channel labeled with attribute a. A channel is internal if its label is internal;
this is the case if it connects units of the network, see the following example.

Example 2. Consider the FTN with Attr = {a, b, c}, Unit = {g, h}, and

in(g) = {a}, out(g) = in(h) = {b}, in(h) = {c}.

This network is depicted as
a
−→ g

b
−→ h

c
−→

The channels a, c are external, b is internal.

Given an FTN, a specification of a unit g is a tuplix expression Pg that uses
only the elements of in(g) ∪ out(g) as attributes.

Example 3. This example is a shortened, simplified version of the example
presented in [3]. We have added the presentation of the organizational structure
as an FTN.

We consider an FTN as depicted in the following picture:

P1
d1 //

S
a // Q

c

��

b1 77ppppp

b2
''NNNNN

P2
d2 //

The units and their specifications (for a given period of time, e.g., the cal-
endar year 2008):

• S is a financial source that rewards production: for each product that is
produced, a constant reward rew is allocated to unit Q. For production
unit Pi (see below) the data variable ni stands for the number of products
produced by Pi during the period that is covered.

Specification:

S
def

= a(rew · (n1 + n2)).

• The control unit Q will dispatch the rewards to the production units after
deduction of a fixed fraction k (a value between 0 and 1) that is paid via
c to an external service center. It further distributes the remainder of the
rewards equally among the production units:

Q
def

=
∑

x(a(−x) �

c(k · x) �

(1 − k) · (b1(x/2) � b2(x/2))).

3

• The production units Pi, for i = 1, 2, receive money from Q via bi and
pay for their expenses via di (in this simplified example, these units act
as serial buffers only, that is, they simply pass on what they receive):

Pi
def

=
∑

x(bi(−x) � di(x)).

A combined budget B is specified by the encapsulated composition of these
specifications:

B
def

= ∂{a,b1,b2}(S � Q � P1 � P2).

The encapsulation enforces synchronization on the internal channels and then
hides these internal streams (in Section 3 we elaborate on the notion of streams).

We find (see Appendix A for the derivation):

B =
∑

x(γ(x = rew · (n1 + n2)) �

c(k · x) �

(1 − k) · (d1(x/2) � d2(x/2))).

Alternatively, we may redefine Q so that it pays the production units pro-
portionally to their contribution to the total production:

Q
def

=
∑

x(a(−x) �

c(k · x) �

(1 − k) · x · (b1(n1/(n1 + n2)) � b2(n2/(n1 + n2)))).

Then we find, for the combined budget:

B = c(k · rew · (n1 + n2)) � (1 − k) · (d1(rew · n1) � d2(rew · n2))

with a similar derivation.

3 Flux over a Network

Unit specifications of an FTN can be thought of as determining an unrealized
flux over the internal channels of a network. Take for instance the channel

g
a
−→ h.

We speak of a stream over a, when the total amounts specified for a by g and
by h match (that is, add up to zero). We then also say that g has outflux
over a and h has influx over a. When there is no match, there is no flux; the
flux is realized when we compose unit specifications, and encapsulation over the
internal attributes is successful.

A very simple example: consider

g
a
−→ h

4

with specifications Pg = a(t) and Ph = a(−s). We say that g has outflux of size
t along a, and that h has influx of size s along a. If the outflux of g along a
matches the influx of h along a, that is, if t equals s, then there is a stream of
this size from g to h. This matching corresponds to the success of encapsulation
of the composed unit specifications: we find

∂{a}(Pg � Ph) = γ(t = s).

This encapsulation reduces to an equality test; unsuccessful encapsulation yields
the null tuplix δ. Note that encapsulation hides the internal transactions; in
Section 4 we look at a way to make successful internal transactions (i.e., flux)
of units visible.

Flux dynamics comes into play with generalized alternative composition
(summation) over amounts. For example, redefine Ph so that it will receive
any amount, and send this along:

Pg = a(t), Ph =
∑

xa(−x) � b(x),

then we find that successful encapsulation determines the outflux of h:

∂{a}(Pg � Ph) = b(t).

Working with this perspective we find it natural to be able to require for
certain units that ‘what goes in also comes out.’ For example, specify that h
will receive any amount along a and will transfer any amount along b:

Pg = a(t), Ph =
∑

xa(−x) �
∑

yb(y).

Encapsulation over a will enforce the transfer of amount t along a, and an
additional requirement that the total flux of h equals zero would turn h into a
serial buffer that forwards amount t along b.

We define a unary flux constraint operator that does exactly this: it adds
to its argument the constraint that its total flux equals zero. This operator
(written K, after Kirchhoff) is defined as follows:

K(X) = K0(X) (1)

Kt(δ) = δ (2)

Kt(ε) = γ(t) (3)

Kt(γ(x) � X) = γ(x) � Kt(X) (4)

Kt(a(x) � X) = a(x) � Kt+x(X) (5)

Kt(X + Y) = Kt(X) + Kt(Y) (6)

Kt(
∑

xP) =
∑

x(Kt(P)) x 6∈ FV (t) (7)

Example 4. We define periodic specifications for a unit Q and a reserve R. The
unit Q receives income from and has expenditures to external parties. Every
period it withdraws a fixed amount from R, and it reserves a fixed percentage

5

a0

�� b0||yy
yy

yy
yy

R0

c0

 B
BB

BB
BB

B

a1

��

Q0

b1~~||
||

||
||

oo
e0

d0 //

R1

c1

 B
BB

BB
BB

B

a2

��

Q1

b2~~||
||

||
||

oo
e1

d1 //

R2

Figure 1: Reserve buffers example

of its income to the reserves of the next period. Any reserves that are not
withdrawn are transferred to the next period. The flux constraint operator is
used to enforce this transfer of reserves. It is also applied to Q so that it will
spend any income that is not reserved.

We make this more precise. We define Qn and Rn for the unit Q and the
reserve R in period n. The following attributes are used:

• an+1 for the transfer from Rn to Rn+1

• bn+1 for the reservation from Qn to Rn+1

• cn for the withdrawal from Rn by Qn

• dn for the external income of Qn

• en for the external expenditures of Qn

The network is depicted in Figure 1.
Define

Rn = K(
∑

u,v,w,xan(−u) � bn(−v) � cn(w) � an+1(x))

which can be rewritten to

Rn =
∑

u,v,w,xγ(u + v = w + x) � an(−u) � bn(−v) � cn(w) � an+1(x).

In the specification of Qn we use the free data variables pw (periodic with-
drawal), incn (income in period n), and k (reserve fraction, a value between 0

6

and 1). Define

Qn = K(
∑

ucn(−pw) � dn(−incn) � bn+1(k · incn) � en(u))

=
∑

uγ(u = pw + (1 − k) · incn) �

cn(−pw) � dn(−incn) � bn+1(k · incn) � en(u)

= cn(−pw) � dn(−incn) � bn+1(k · incn) � en(pw + (1 − k) · incn)

Define
Pn = ∂Hn

(Q0 � · · · � Qn � R0 � · · · � Rn+1)

where
Hn = {ai+1, bi+1, ci | 0 ≤ i ≤ n}.

For P0 and P1 we find (see derivations in Section A):

P0 = K(
∑

u,v,w,x

a0(−u) � b0(−v) �

d0(−inc0) � e0(pw + (1 − k) · inc0)) �

c1(w) � a2(x)),

P1 = K(
∑

u,v,w,x

a0(−u) � b0(−v) �

d0(−inc0) � e0(pw + (1 − k) · inc0) �

d1(−inc1) � e1(pw + (1 − k) · inc1)

c2(w) � a3(x)),

and this generalizes to

Pn = K(
∑

u,v,w,x

a0(−u) � b0(−v) �

cn+1(w) � an+2(x)) �

�i=0,...,n di(−inci) � ei(pw + (1 − k) · inci)).

4 Visualizing Internal Streams

In an FTN with unit specifications we speak of an internal stream over a channel,
if encapsulation over that channel is successful (does not yield the null tuplix
δ). In an encapsulation

P = ∂H(P0 � · · · � Pk)

of unit specifications Pi, all information on internal streams is lost, that is, due
to the encapsulation no entries with attributes from H occur in P . Still, it may
be useful to see the internal streams of a unit under influence of composition
and encapsulation. We shall exploit signed attribute notation to retain focus on
encapsulated specifications: we add copies of internal entries that will remain
visible after encapsulation.

7

Signed Attribute Notation

So far we have used flat attribute notation for entries: for a unit g, if a ∈ in(g),
then an entry a(t) is interpreted as influx of amount −t to g, and if a ∈ out(g),
then a(t) is interpreted as outflux of amount t from g. The notation is neutral
in this respect (and this is the basis for the definition of encapsulation).

An alternative is signed attribute notation: for attribute a, assume fresh
attributes −a, +a, and write −a(t) for influx of amount t, and +a(t) for outflux
of amount t. We have not defined encapsulation for this notation.

Clearly, tuplix expressions in signed attribute notation can be transformed
to flat attribute notation by replacing entries +a(t) by a(t), and −a(t) by a(−t).
Vice versa, for a given unit g, transform a(t) to −a(−t) if a ∈ in(g), and to +a(t)
if a ∈ out(g).

Combined Flat and Signed Attribute Notation

For a unit g and a set of (internal) attributes H , the mapping ζg,H will add a
signed copy of internal entries of g in a specification using flat attribute notation.

ζg,H(δ) = δ (8)

ζg,H (ε) = ε (9)

ζg,H (γ(x)) = γ(x) (10)

ζg,H (a(x)) =

+a(x) � a(x) if a ∈ out(g) ∩ H

−a(−x) � a(x) if a ∈ in(g) ∩ H

a(x) otherwise

(11)

ζg,H(X � Y) = ζg,H(X) � ζg,H(Y) (12)

ζg,H(X + Y) = ζg,H(X) + ζg,H(Y) (13)

ζg,H (
∑

xX) =
∑

xζg,H (X) (14)

The resulting specification combines flat and signed attribute notation.

Encapsulation

Assume we have units g0, . . . , gk with corresponding specifications P0, . . . , Pk,
and we want to see what composition and encapsulation with P1, . . . , Pk do
to P0. Let H be the set of attributes that are internal to g0, . . . , gk. The
encapsulation

P = ∂H(ζg0,H(P0) � P1 � · · · � Pk),

will, if successful, contain signed copies of the internal transactions of g0. We
can now focus on g0 by letting

J = {a, +a,−a | a ∈ in(g0) ∪ out(g0)},

and selecting (see definition on page 18) on the attributes in this set:

SelectJ(P)

8

shows all the transactions of g0 under influence of the encapsulation.
Of course, we can also make all internal streams of the composition visible:

∂H(ζg0,H(P0) � ζg1 ,H(P1) � · · · � ζgk ,H(Pk)).

Example 5. Consider the following network:

a
−→ g

b
−→ h

c
−→

Take unit specifications

Pg = a(−1) � b(1),

Ph = b(−1) � c(1),

and observe that
∂{b}(Pg � Ph) = a(−1) � c(1).

The encapsulation enforces synchronization on b, and leaves no trace of this
synchronization.

Now consider

P = ∂{b}(ζg,{b}(Pg) � Ph) = a(−1) � +b(1) � c(1)

where the signed copy of the internal outflux of g on b remains visible. Finally,
let

J = {a, +a,−a | a ∈ in(g) ∪ out(g)},

and find
SelectJ(P) = a(−1) � +b(1).

5 Function Definition and Binding

We extend Tuplix Calculus with a construct to define data functions, and with
summation over functions. We only sketch how this extension can be achieved;
a fully worked-out technical account is future work. We extend the signature
of the data type with lambda abstraction and application in order to express
functions. For example,

λx.x + x

is the function that doubles its argument, and

(λx.x + x)2

is the function applied to argument 2. Adopting β-conversion as usual, this
reduces to 2 + 2. We also assume standard α-conversion (renaming of bound
variables). We further assume for each arity a set of function variables. If f is
a function variable of arity k, we write

f(t1, . . . , tk)

9

for the application of f to arguments t1, . . . , tk. We write λx̄.t(x̄) for the lambda
abstraction over some given, implicit number of variables x, and f(x̄) for the
application of f to arguments x̄, where the number of arguments is always
assumed to be equal to the arity of f .

A function definition
f = λx̄.t(x̄),

where f is a function variable, is expressed in the Tuplix Calculus by the con-
struct

Γ(f, λx̄.t(x̄)),

and we would have, e.g.,

Γ(f, λx.x + x) � a(f(1)) = Γ(f, λx.x + x) � a(2).

To derive such identities we adopt the axiom scheme

Γ(f, λx̄.t(x̄)) = Γ(f, λx̄.t(x̄)) � γ(f(s̄) − t(s̄)), (FD)

for any data terms s̄.
Final step: we extend Tuplix Calculus with summation

∑
f over function

variables f . This is very similar to summation over data variables.
With these features we can define and use functions in a ‘let-like’ manner in

specifications. The general form

∑
f (Γ(f, λx̄.t(x̄)) � P)

may be read as ‘let f be defined as λx̄.t(x̄) in tuplix P .’
For an example application we refer to [4]. In that paper we define a budget

allocation to faculties at a university-level. The allocation for a faculty F can
be given by a faculty-independent function f , which takes as input a number of
parameter values specific to F . So, say that

Γ(f, λx̄.t(x̄))

defines f , and that the allocation to F is defined as f(x̄F). The total of budget
allocations is then specified by

∑
f (Γ(f, λx̄.t(x̄)) � �F (aF (f(x̄F)))),

where aF is a channel name used in the transfer of money to F .

A Derivations

Note: a zero test γ(t − s) may be written as γ(t = s).

10

Derivation for Example 3:

B = ∂{a,b1,b2}(S � Q � P1 � P2)

= ∂{a,b1,b2}(

a(rew · (n1 + n2)) �
∑

u(a(−u) � c(k · u) � (1 − k) · (b1(u/2) � b2(u/2))) �
∑

u(b1(−u) � d1(u)) �
∑

u(b2(−u) � d2(u)))

=
∑

u,v,w∂{a,b1,b2}(

a(rew · (n1 + n2)) �

a(−u) � c(k · u) � (1 − k) · (b1(u/2) � b2(u/2)) �

b1(−v) � d1(v) �

b2(−w) � d2(w))

=
∑

u,v,w(γ(u = rew · (n1 + n2)) �

γ(v = (1 − k)u/2) �

γ(w = (1 − k)u/2) �

c(k · u) � d1(v) � d2(w))

=
∑

u(γ(u = rew · (n1 + n2)) �

c(k · u) �

(1 − k) · (d1(u/2) � d2(u/2)))

Derivation for Example 4:

P0 = ∂{a1,b1,c0}(Q0 � R0 � R1)

= ∂{a1,b1,c0}(

c0(−pw) � d0(−inc0) � b1(k · inc0) � e0(pw + (1 − k) · inc0) �
∑

u,v,w,xγ(u + v = w + x) �

a0(−u) � b0(−v) � c0(w) � a1(x) �
∑

u′,v′,w′,x′γ(u′ + v′ = w′ + x′) �

a1(−u′) � b1(−v′) � c1(w
′) � a2(x

′))

=
∑

u,u′,v,v′,w,w′,x,x′

γ(u + v = w + x) � γ(u′ + v′ = w′ + x′) �

d0(−inc0) � e0(pw + (1 − k) · inc0) �

a0(−u) � b0(−v) � c1(w
′) � a2(x

′) �

∂H(c0(−pw) � b1(k · inc0) �

c0(w) � a1(x) � a1(−u′) � b1(−v′))

11

=
∑

u,u′,v,v′,w,w′,x,x′

γ(u + v = w + x) � γ(u′ + v′ = w′ + x′) �

d0(−inc0) � e0(pw + (1 − k) · inc0) �

a0(−u) � b0(−v) � c1(w
′) � a2(x

′) �

γ(w = pw) � γ(v′ = k · inc0) � γ(x = u′)

=
∑

u,v,w′,x′

γ(u + v = pw + w′ + x′ − k · inc0) �

d0(−inc0) � e0(pw + (1 − k) · inc0) �

a0(−u) � b0(−v) � c1(w
′) � a2(x

′)

=
∑

u,v,w,x

γ(u + v = w + x + pw − k · inc0) �

a0(−u) � b0(−v) � d0(−inc0) �

a2(x) � c1(w) � e0(pw + (1 − k) · inc0)

= K(
∑

u,v,w,x

a0(−u) � b0(−v) � d0(−inc0) �

a2(x) � c1(w) � e0(pw + (1 − k) · inc0))

P1 = ∂{a2,b2,c1}(P0 � Q1 � R2)

= ∂{a2,b2,c1}(∑
u,v,w,x

γ(u + v = w + x + pw − k · inc0) �

a0(−u) � b0(−v) � d0(−inc0) �

a2(x) � c1(w) � e0(pw + (1 − k) · inc0) �

c1(−pw) � d1(−inc1) �

b2(k · inc1) � e1(pw + (1 − k) · inc1) �
∑

u,v,w,x

γ(u + v = w + x) �

a2(−u) � b2(−v) � c2(w) � a3(x))

12

=
∑

u,v,w,x,u′,v′,w′,x′

γ(u′ = x) � γ(v′ = k · inc1) � γ(w = pw) �

γ(u + v = w + x + pw − k · inc0) �

a0(−u) � b0(−v) � d0(−inc0) �

e0(pw + (1 − k) · inc0) �

d1(−inc1) �

e1(pw + (1 − k) · inc1)

γ(u′ + v′ = w′ + x′) �

c2(w
′) � a3(x

′)

=
∑

u,v,x,w′,x′

γ(u + v = x + 2pw − k · inc0) �

γ(x + k · inc1 = w′ + x′) �

a0(−u) � b0(−v) � d0(−inc0) �

e0(pw + (1 − k) · inc0) �

d1(−inc1) �

e1(pw + (1 − k) · inc1)

c2(w
′) � a3(x

′)

=
∑

u,v,w,x

γ(u + v = w + x + 2pw − k · (inc0 + inc1)) �

a0(−u) � b0(−v) �

d0(−inc0) � e0(pw + (1 − k) · inc0) �

d1(−inc1) � e1(pw + (1 − k) · inc1)

c2(w) � a3(x)

= K(
∑

u,v,w,x

a0(−u) � b0(−v) �

d0(−inc0) � e0(pw + (1 − k) · inc0) �

d1(−inc1) � e1(pw + (1 − k) · inc1)

c2(w) � a3(x))

B Primer on Tuplix Calculus

This appendix is an excerpt from [6]. For further reading on meadows we refer
to [7, 5]. We remark that the operators + for alternative composition and ∂H

for encapsulation stem from the process algebra ACP [2], see also [1, 8]. The
summation operator

∑
(binding of data variables that generalizes alternative

composition) is also part of the specification language µCRL [9], which combines
ACP with equationally specified abstract data types.

13

B.1 Cancellation Meadows

Tuplix Calculus builds on a data type for quantities. This data type is required
to be a non-trivial cancellation meadow, or, equivalently, a zero-totalized field [7,
5]. A zero-totalized field is the well-known algebraic structure ‘field’ with a
total operator for division so that the result of division by zero is zero (and, for
example, in a 47-totalized field one has chosen 47 to represent the result of all
divisions by zero).

A meadow is a commutative ring with unit equipped with a total unary
operation ()−1 named inverse that satisfies the axioms

(x−1)−1 = x and x · (x · x−1) = x,

and in which 0−1 = 0. For Tuplix Calculus we also require the cancellation
axiom

x 6= 0 & x · y = x · z ⇒ y = z

to hold, thus obtaining cancellation meadows, which we take as the mathemat-
ical structure for quantities, requiring further that 0 6= 1 to exclude (trivial)
one-point models. These axioms for cancellation meadows characterize exactly
the equational theory of zero-totalized fields [5]. The property of cancellation
meadows that is exploited in the Tuplix Calculus is that division by zero yields
zero, while x · x−1 = 1 for x 6= 0.

We define a data type (signature and axioms) for quantities which comprises
the constants 0, 1, the binary operators + and ·, and the unary operators − and
()−1. We often write x − y instead of x + (−y), x/y instead of x · y−1, and xy
instead of x · y, and we shall omit brackets if no confusion can arise following
the usual binding conventions. Finally, we use numerals in the common way (2
abbreviates 1 + 1, etc.). The axiomatization consists of the cancellation axiom

x 6= 0 & x · y = x · z ⇒ y = z,

the separation axiom
0 6= 1,

and the following 10 axioms for meadows (see [5]):

(x + y) + z = x + (y + z),

x + y = y + x.

x + 0 = x,

x + (−x) = 0,

(x · y) · z = x · (y · z),

x · y = y · x,

1 · x = x,

x · (y + z) = x · y + x · z,

(x−1)−1 = x,

x · (x · x−1) = x.

14

The following identities are derivable from the axioms for meadows.

(0)−1 = 0

(−x)−1 = −(x−1)

(x · y)−1 = x−1 · y−1

0 · x = 0

x · −y = −(x · y)

−(−x) = x

Furthermore, the cancellation axiom and axiom x · (x · x−1) = x imply the
general inverse law

x 6= 0 ⇒ x · x−1 = 1

of zero-totalized fields.

B.2 Basic Tuplix Calculus

Core Tuplix Calculus (CTC) is parametrized with a nonempty set A of at-
tributes. Its signature contains the constants ε (the empty tuplix) and δ (the
null tuplix), and two further kinds of atomic tuplices: entries (attribute-value
pairs) of the form

a(t)

with a ∈ A, and t a data term, and, for any data term t, the zero test

γ(t)

(γ 6∈ A). Finally, CTC has one binary infix operator: the conjunctive composi-
tion operator �. This operator is commutative and associative. Axioms are in
Table 1.

In CTC, a tuplix is a conjunctive composition of tests and entries, with ε
representing an empty tuplix, and δ representing an erroneous situation which
nullifies the entire composition. Entries with the same attribute can be com-
bined to a single entry containing the sum of the quantities involved.

A zero test γ(t) acts as a conditional: if the argument t equals zero, then
the test is void and disappears from conjunctive compositions. If the argument
is not equal to zero, the test nullifies any conjunctive composition containing it.
Observe how we exploit the property of zero-totalized fields that t/t is always
defined, and that the division t/t yields zero if t equals zero, and 1 otherwise.
Further note that an equality test t = s can be expressed as γ(t − s).

A tuplix term is closed if it is does not contain tuplix variables and also does
not contain data variables. A tuplix term is tuplix-closed if it does not contain
tuplix variables (but it may contain data variables).

The tuplix calculus is two-sorted. On the tuplix side we have the axioms
T1–T10 and we use the proof rules of equational logic. On the data side, we

15

Table 1: Axioms for Basic Tuplix Calculus

X � Y = Y � X (T1)

(X � Y) � Z = X � (Y � Z) (T2)

X � ε = X (T3)

X � δ = δ (T4)

a(x) � a(y) = a(x + y) (T5)

γ(x) = γ(x/x) (T6)

γ(0) = ε (T7)

γ(1) = δ (T8)

γ(x) � γ(y) = γ(x/x + y/y) (T9)

γ(x − y) � a(x) = γ(x − y) � a(y) (T10)

X + Y = Y + X (C1)

(X + Y) + Z = X + (Y + Z) (C2)

X + X = X (C3)

X + δ = X (C4)

X � (Y + Z) = (X � Y) + (X � Z) (C5)

γ(x) + γ(y) = γ(xy) (C6)

16

refrain from giving a precise proof theory. The rule De lifts valid data identities
to the tuplix calculus: for all (open) data terms t and s,

D |= t = s implies γ(t) = γ(s), (De)

where D (a non-trivial cancellation meadow) is our model of the data type.
This axiom system with axioms T1–T10 plus proof rule De is denoted by CTC.

The axiom system CTC is extended to Basic Tuplix Calculus (BTC), by
addition of the binary operator + called alternative composition or choice to
the signature, and by adoption of axioms C1–C6 (see Table 1).

The following two proof rules are derivable:

D |= t = s implies P [t/x] = P [s/x],

and
P � γ(x − t) = P [t/x] � γ(x − t),

for tuplix terms P and with substitution P [t/x] defined as usual for two-sorted
equational logic (replacement of all data variables x in P by t).

B.3 Zero-Test Logic

We present some observations on the use of the zero-test operator which lead
to a simple logic.

First, the empty tuplix ε with ε = γ(0) by axiom T7 may be read as ‘true’,
and the null tuplix δ with δ = γ(1) by axiom T8 may be read as ‘false’.

Negation. Define the test ‘not x = 0’ by

γ̃(x)
def

= γ(1 − x/x).

Conjunctive composition of tests may be read as logical conjunction:

γ(x) � γ(y)
(T9)
= γ(x/x + y/y)

tests ‘x = 0 and y = 0’.
Alternative composition of tests may be read as logical disjunction:

γ(x) + γ(y)
(C6)
= γ(x · y)

tests ‘x = 0 or y = 0’.
A formula would then be a tuplix-closed (no tuplix variables) BTC term

without entries. Any formula can be expressed as a single test γ(t) using ax-
ioms T7–T9 and C6, and the definition of negation. We find that this logic has
all the usual properties. Clearly, conjunction and disjunction are commutative,
associative, and idempotent, and it is not difficult to derive distributivity, ab-
sorption, and double negation elimination. As usual, implication can be defined
in terms of negation and disjunction:

γ̃(x) + γ(y) = γ((1 − x/x) · y)

tests ‘x = 0 implies y = 0’.

17

B.4 Generalized Alternative Composition and Auxiliary

Operators

The generalized alternative composition (or: summation) operator
∑

x is a
unary operator that binds data variable x and can be seen as a data-parametric
generalization of the alternative composition operator +. We add this binder
to the signature of BTC and write FV (P) for the set of free data variables
occurring in tuplix term P . We write Var(t) for the set of data variables oc-
curring in data term t (there is no variable binding within data terms). Define
substitution P [t/x] as: replace every free occurrence of data variable x in tuplix
term P by the data term t, such that no variables of t become bound in these
replacements. E.g., recall the proof rule

P � γ(x − t) = P [t/x] � γ(x − t).

This rule remains sound in the setting with summation, but application of the
rule may require the renaming of bound variables in P , so that the substitution
can be performed. When considering substitutions we implicitly assume that
bound variables are renamed properly. The axiom schemes for summation are
listed in Table 2.

Auxiliary Operators. For BTC with summation, we define three auxiliary
operators: scalar multiplication, clearing, and encapsulation. Axioms are listed
in Table 2.

• Scalar multiplication t ·P multiplies the quantities contained in entries in
tuplix term P by t. Axiom Sc7 is an axiom scheme with t ranging over
data terms and P ranging over tuplix terms.

• Clearing: For set of attributes I ⊆ A, the operator εI(X) renames all
entries of X with attribute in I to ε. It “clears” the attributes contained
in I . For a set of attributes J ⊆ A we further define

SelectJ(X)
def

= εA\J(X).

This function allows to focus on those entries with attribute from J .

• Encapsulation can be seen as ‘conditional clearing’. For set of attributes
H ⊆ A, the operator ∂H(X) encapsulates all entries in X with attribute
a ∈ H . That is, for a ∈ H , if the accumulation of quantities in entries with
attribute a equals zero, the encapsulation on a is considered successful and
the a-entries are cleared (become ε); if the accumulation is not equal to
zero, they become null (δ). This accumulation of quantities is computed
per alternative: the encapsulation operator distributes over alternative
composition.

We further define
∂H∪H′ (X)

def

= ∂H ◦ ∂H′ (X).

18

Table 2: Axiom schemes for generalization and auxiliary operators. Terms P
and Q range over tuplix terms and t ranges over data terms.

P
x
P = P if x 6∈ FV (P) (S1)

P
x
P =

P
y
P [y/x] if y 6∈ FV (P) (S2)

P
x
(P � Q) = P �

P
x
Q if x 6∈ FV (P) (S3)

P
x
(P + Q) =

P
x
P +

P
x
Q (S4)

P
x
γ(x − t) = ε if x 6∈ Var(t) (S5)

P
xeγ(x − t) = ε if x 6∈ Var(t) (S6)

x · ε = ε (Sc1)

x · δ = δ (Sc2)

x · γ(y) = γ(y) (Sc3)

x · a(y) = a(x · y) (Sc4)

x · (X � Y) = x · X � x · Y (Sc5)

x · (X + Y) = x · X + x · Y (Sc6)

t ·
P

yP =
P

y(t · P) if y 6∈ Var(t) (Sc7)

εI(ε) = ε (Cl1)

εI(δ) = δ (Cl2)

εI(γ(x)) = γ(x) (Cl3)

εI(a(x)) =

(
ε if a ∈ I

a(x) otherwise
(Cl4)

εI(X � Y) = εI(X) � εI(Y) (Cl5)

εI(X + Y) = εI(X) + εI(Y) (Cl6)

εI(
P

x
P) =

P
x
(εI(P)) (Cl7)

∂H(ε) = ε (E1)

∂H(δ) = δ (E2)

∂H(γ(x)) = γ(x) (E3)

∂H(a(x)) =

(
γ(x) if a ∈ H

a(x) if a 6∈ H
(E4)

∂H(X � ∂H(Y)) = ∂H(X) � ∂H(Y) (E5)

∂H(X + Y) = ∂H(X) + ∂H(Y) (E6)

∂H(
P

x
P) =

P
x
(∂H(P)) (E7)

19

References

[1] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in
Theoretical Computer Science 18, Cambridge University Press, 1990.

[2] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communica-
tion. Information and Control 60(1–3):109–137, 1984.

[3] J.A. Bergstra, S. Nolst Trenité and M.B. van der Zwaag. Towards a formal-
ization of budgets. arXiv.org, arXiv:0802.3617v1 [cs.LO], 2008.

[4] J.A. Bergstra, S. Nolst Trenité and M.B. van der Zwaag. UvA budget al-
location model. Report PRG0805, Section Software Engineering, University
of Amsterdam, 2008.

[5] J.A. Bergstra and A. Ponse. A generic basis theorem for cancellation mead-
ows. arXiv.org, arXiv:0803.3969v2 [math.RA], 2008.

[6] J.A. Bergstra, A. Ponse and M.B. van der Zwaag. Tuplix Calculus. arXiv.org,
arXiv:0712.3423v1 [cs.LO], 2007.

[7] J.A. Bergstra and J.V. Tucker. The rational numbers as an abstract data
type. Journal of the ACM 54(2), 2007.

[8] W. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science, Springer-Verlag, 2000.

[9] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In: A.
Ponse, C. Verhoef and S.F.M. van Vlijmen (editors), Algebra of Communi-
cating Processes ’94, pages 26–62, Workshops in Computing Series, Springer-
Verlag, 1995.

20

Electronic Reports Series of the Programming Research Group

Within this series the following reports appeared.

[PRG0806] J.A. Bergstra and C.A. Middelburg, Data Linkage Algebra, Data Linkage Dynamics, and Priority
Rewriting, Programming Research Group - University of Amsterdam, 2008.

[PRG0805] J.A. Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, UvA Budget Allocatie Model, Programming
Research Group - University of Amsterdam, 2008.

[PRG0804] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Sequential Poly-Threading, Programming
Research Group - University of Amsterdam, 2008.

[PRG0803] J.A. Bergstra and C.A. Middelburg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0802] A. Barros and T. Hou, A Constructive Version of AIP Revisited, Programming Research Group -
University of Amsterdam, 2008.

[PRG0801] J.A. Bergstra and C.A. Middelburg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - University of Amsterdam, 2008.

[PRG0713] J.A. Bergstra, A. Ponse, and M.B. van der Zwaag, Tuplix Calculus, Programming Research Group -
University of Amsterdam, 2007.

[PRG0712] J.A. Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, Towards a Formalization of Budgets,
Programming Research Group - University of Amsterdam, 2007.

[PRG0711] J.A. Bergstra and C.A. Middelburg, Program Algebra with a Jump-Shift Instruction, Programming
Research Group - University of Amsterdam, 2007.

[PRG0710] J.A. Bergstra and C.A. Middelburg, Instruction Sequences with Dynamically Instantiated Instructions,
Programming Research Group - University of Amsterdam, 2007.

[PRG0709] J.A. Bergstra and C.A. Middelburg, Instruction Sequences with Indirect Jumps, Programming
Research Group - University of Amsterdam, 2007.

[PRG0708] B. Diertens, Software (Re-)Engineering with PSF III: an IDE for PSF, Programming Research Group
- University of Amsterdam, 2007.

[PRG0707] J.A. Bergstra and C.A. Middelburg, An Interface Group for Process Components, Programming
Research Group - University of Amsterdam, 2007.

[PRG0706] J.A. Bergstra, Y. Hirschfeld, and J.V. Tucker, Skew Meadows, Programming Research Group -
University of Amsterdam, 2007.

[PRG0705] J.A. Bergstra, Y. Hirschfeld, and J.V. Tucker, Meadows, Programming Research Group - University of
Amsterdam, 2007.

[PRG0704] J.A. Bergstra and C.A. Middelburg, Machine Structure Oriented Control Code Logic (Extended
Version), Programming Research Group - University of Amsterdam, 2007.

[PRG0703] J.A. Bergstra and C.A. Middelburg, On the Operating Unit Size of Load/Store Arc hitectures,
Programming Research Group - University of Amsterdam, 2007.

[PRG0702] J.A. Bergstra and A. Ponse, Interface Groups and Financial Transfer Architectures, Programming
Research Group - University of Amsterdam, 2007.

[PRG0701] J.A. Bergstra, I. Bethke, and M. Burgess, A Process Algebra Based Framework for Promise Theory,
Programming Research Group - University of Amsterdam, 2007.

[PRG0610] J.A. Bergstra and C.A. Middelburg, Parallel Processes with Implicit Computational Capital,
Programming Research Group - University of Amsterdam, 2006.

[PRG0609] B. Diertens, Software (Re-)Engineering with PSF II: from architecture to implementation,
Programming Research Group - University of Amsterdam, 2006.

[PRG0608] A. Ponse and M.B. van der Zwaag, Risk Assessment for One-Counter Threads, Programming
Research Group - University of Amsterdam, 2006.

[PRG0607] J.A. Bergstra and C.A. Middelburg, Synchronous Cooperation for Explicit Multi-Threading,
Programming Research Group - University of Amsterdam, 2006.

[PRG0606] J.A. Bergstra and M. Burgess, Local and Global Trust Based on the Concept of Promises,
Programming Research Group - University of Amsterdam, 2006.

[PRG0605] J.A. Bergstra and J.V. Tucker, Division Safe Calculation in Totalised Fields, Programming Research
Group - University of Amsterdam, 2006.

[PRG0604] J.A. Bergstra and A. Ponse, Projection Semantics for Rigid Loops, Programming Research Group -
University of Amsterdam, 2006.

[PRG0603] J.A. Bergstra and I. Bethke, Predictable and Reliable Program Code: Virtual Machine-based
Projection Semantics (submitted for inclusion in the Handbook of Network and Systems
Administration), Programming Research Group - University of Amsterdam, 2006.

[PRG0602] J.A. Bergstra and A. Ponse, Program Algebra with Repeat Instruction, Programming Research Group
- University of Amsterdam, 2006.

[PRG0601] J.A. Bergstra and A. Ponse, Interface Groups for Analytic Execution Architectures, Programming
Research Group - University of Amsterdam, 2006.

[PRG0505] B. Diertens, Software (Re-)Engineering with PSF, Programming Research Group - University of
Amsterdam, 2005.

[PRG0504] P.H. Rodenburg, Piecewise Initial Algebra Semantics, Programming Research Group - University of
Amsterdam, 2005.

[PRG0503] T.D. Vu, Metric Denotational Semantics for BPPA, Programming Research Group - University of
Amsterdam, 2005.

[PRG0502] J.A. Bergstra, I. Bethke, and A. Ponse, Decision Problems for Pushdown Threads, Programming
Research Group - University of Amsterdam, 2005.

[PRG0501] J.A. Bergstra and A. Ponse, A Bypass of Cohen’s Impossibility Result, Programming Research Group -
University of Amsterdam, 2005.

[PRG0405] J.A. Bergstra and I. Bethke, An Upper Bound for the Equational Specification of Finite State Services,
Programming Research Group - University of Amsterdam, 2004.

[PRG0404] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Strategic Interleaving, Programming
Research Group - University of Amsterdam, 2004.

[PRG0403] B. Diertens, A Compiler-projection from PGLEc.MSPio to Parrot, Programming Research Group -
University of Amsterdam, 2004.

[PRG0402] J.A. Bergstra and I. Bethke, Linear Projective Program Syntax, Programming Research Group -
University of Amsterdam, 2004.

[PRG0401] B. Diertens, Molecular Scripting Primitives, Programming Research Group - University of
Amsterdam, 2004.

[PRG0302] B. Diertens, A Toolset for PGA, Programming Research Group - University of Amsterdam, 2003.

[PRG0301] J.A. Bergstra and P. Walters, Projection Semantics for Multi-File Programs, Programming Research
Group - University of Amsterdam, 2003.

[PRG0201] I. Bethke and P. Walters, Molecule-oriented Java Programs for Cyclic Sequences, Programming
Research Group - University of Amsterdam, 2002.

The above reports and more are available through the website: www.science.uva.nl/research/prog/

Electronic Report Series

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

