
Univer sity of Amsterdam
Programming Research Group

Thread Algebra for Sequential
Poly-Threading

J.A. Bergstra
C.A. Middelburg

Report PRG0804 March 2008



J.A. Bergstra

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel. +31 20 525.7591
e-mail: janb@science.uva.nl

C.A. Middelburg

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

e-mail: kmiddelb@science.uva.nl

Programming Research Group Electronic Report Series



Thread Algebra for Sequential Poly-Threading?

J.A. Bergstra and C.A. Middelburg

Programming Research Group, University of Amsterdam,
P.O. Box 41882, 1009 DB Amsterdam, the Netherlands

J.A.Bergstra@uva.nl,C.A.Middelburg@uva.nl

Abstract. Threads as considered in basic thread algebra are primarily
looked upon as behaviours exhibited by sequential programs on execu-
tion. It is a fact of life that sequential programs are often fragmented.
Consequently, fragmented program behaviours are frequently found. In
this paper, we consider this phenomenon. We extend basic thread algebra
with the barest mechanism for sequencing of threads that are taken for
fragments. This mechanism, called sequential poly-threading, supports
both autonomous and non-autonomous thread selection in sequencing.
We relate the resulting theory to the algebraic theory of processes known
as ACP and use it to describe analytic execution architectures suited for
fragmented programs.
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selection, non-autonomous thread selection, process algebra, analytic ex-
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1 Introduction

In [10], we considered fragmentation of sequential programs that take the form of
instruction sequences in the setting of program algebra [4]. The objective of the
current paper is to develop a theory of the behaviours exhibited by sequential
programs on execution that covers the case where the programs have been split
into fragments. It is a fact of life that sequential programs are often fragmented.
We remark that an important reason for fragmentation of programs is that
the execution architecture at hand to execute them sets bounds to the size of
programs. However, there may also be other reasons for program fragmentation,
for instance business economical reasons.
In [4], a start was made with a line of research in which sequential programs

that take the form of instruction sequences and the behaviours exhibited by se-
quential programs on execution are investigated (see e.g. [3, 5, 15]). In this line of
research, the view is taken that the behaviour exhibited by a sequential program

? This research was partly carried out in the framework of the Jacquard-project Sym-
biosis, which is funded by the Netherlands Organisation for Scientific Research
(NWO).



on execution takes the form of a thread as considered in basic thread algebra [4].1

With the current paper, we carry on this line of research. Therefore, we consider
program behaviour fragments that take the form of threads as considered in
basic thread algebra.
We extend basic thread algebra with the barest mechanism for sequencing

of threads that are taken for program behaviour fragments. This mechanism
is called sequential poly-threading. Inherent in the behaviour exhibited by a
program on execution is that it does certain steps only for the sake of getting
reply values returned by some service provided by an execution environment and
that way having itself affected by that service. In the setting of thread algebra,
the use mechanism is introduced in [9] to allow for this kind of interaction.
Sequential poly-threading supports the initialization of one of the services used
every time a thread is started up. With sequential poly-threading, a thread
selection is made whenever a thread ends up with the intent to achieve the
start-up of another thread. That thread selection can be made in two ways: by
the terminating thread or externally. We show how thread selections of the latter
kind can be internalized.
Both threads and services look to be special cases of a more general no-

tion of process. Therefore, it is interesting to know the connections of threads
and services with processes as considered in theories about concurrent processes
such as ACP [1], CCS [14] and CSP [13]. We show that threads and services
as considered in the theory developed in this paper can be viewed as processes
that are definable over the extension of ACP with conditions introduced in [6].
An analytic execution architecture is a model of a hypothetical execution envi-
ronment for sequential programs that is designed for the purpose of explaining
how a program may be executed. The notion of analytic execution architecture
defined in [11] is suited to sequential programs that have not been split into frag-
ments. We use the theory developed in this paper to describe analytic execution
architectures suited to sequential programs that have been split into fragments.
The line of research carried on in this paper has two main themes: the theme

of instruction sequences and the theme of threads. Both [10] and the current
paper are concerned with program fragmentation, but [10] elaborates on the
theme of instruction sequences and the current paper elaborates on the theme
of threads. It happens that there are aspects of program fragmentation that can
be dealt with at the level of instruction sequences, but cannot be dealt with at
the level of threads. In particular, the ability to replace special instructions in
an instruction sequence fragment by different ordinary instructions every time
execution is switched over to that fragment cannot be dealt with at the level of
threads. Threads, which are intended for explaining the meaning of sequential
programs, turn out to be too abstract to deal with program fragmentation in
full.

1 In [4], basic thread algebra is introduced under the name basic polarized process
algebra. Prompted by the development of thread algebra [9], which is a design on
top of it, basic polarized process algebra has been renamed to basic thread algebra.
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This paper is organized as follows. First, we review basic thread algebra and
the use mechanism (Sections 2 and 3). Next, we extend basic thread algebra with
sequential poly-threading and show how external thread selections in sequential
poly-threading can be internalized (Sections 4 and 5). Following this, we review
ACP with conditions and relate the theory developed in this paper with ACP
with conditions (Sections 6 and 7). After that, we discuss analytic execution
architectures suited for programs that have been fragmented (Section 8). Finally,
we make some concluding remarks (Section 9).

2 Basic Thread Algebra

In this section, we review BTA, a form of process algebra which is tailored
to the description of the behaviour of deterministic sequential programs under
execution. The behaviours concerned are called threads.
In BTA, it is assumed that there is a fixed but arbitrary finite set of basic

actions A with tau 6∈ A. We write Atau for A∪ {tau}. The members of Atau are
referred to as actions.
The intuition is that each basic action performed by a thread is taken as a

command to be processed by a service provided by the execution environment of
the thread. The processing of a command may involve a change of state of the
service concerned. At completion of the processing of the command, the service
produces a reply value. This reply is either T or F and is returned to the thread
concerned.
Although BTA is one-sorted, we make this sort explicit. The reason for this

is that we will extend BTA with additional sorts in Sections 3 and 4.
The algebraic theory BTA has one sort: the sort T of threads. To build terms

of sort T, BTA has the following constants and operators:

– the deadlock constant D :T;
– the termination constant S :T;
– for each a ∈ Atau, the binary postconditional composition operator £ a¥ :

T×T→ T.

Terms of sort T are built as usual (see e.g. [16, 17]). Throughout the paper, we
assume that there are infinitely many variables of sort T, including x, y, z.
We introduce action prefixing as an abbreviation: a ◦ p, where p is a term of

sort T, abbreviates p£ a¥ p.
Let p and q be closed terms of sort T and a ∈ Atau. Then p £ a¥ q will

perform action a, and after that proceed as p if the processing of a leads to the
reply T (called a positive reply), and proceed as q if the processing of a leads
to the reply F (called a negative reply). The action tau plays a special role. It
is a concrete internal action: performing tau will never lead to a state change
and always lead to a positive reply, but notwithstanding all that its presence
matters.
BTA has only one axiom. This axiom is given in Table 1. Using the abbrevia-

tion introduced above, axiom T1 can be written as follows: x£ tau¥y = tau◦x.
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Table 1. Axiom of BTA

x£ tau¥ y = x£ tau¥ x T1

Table 2. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X= tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

Each closed BTA term of sort T denotes a finite thread, i.e. a thread of which
the length of the sequences of actions that it can perform is bounded. Guarded
recursive specifications give rise to infinite threads.
A guarded recursive specification over BTA is a set of recursion equations

E = {X = tX | X ∈ V }, where V is a set of variables of sort T and each tX
is a term of the form D, S or t £ a¥ t′ with t and t′ BTA terms of sort T that
contain only variables from V . We write V(E) for the set of all variables that
occur on the left-hand side of an equation in E. We are only interested in models
of BTA in which guarded recursive specifications have unique solutions, such as
the projective limit model of BTA presented in [2]. A thread that is the solution
of a finite guarded recursive specification over BTA is called a finite-state thread.
We extend BTA with guarded recursion by adding constants for solutions

of guarded recursive specifications and axioms concerning these additional con-
stants. For each guarded recursive specification E and each X ∈ V(E), we add a
constant of sort T standing for the unique solution of E for X to the constants
of BTA. The constant standing for the unique solution of E for X is denoted by
〈X|E〉. Moreover, we add the axioms for guarded recursion given in Table 2 to
BTA, where we write 〈tX |E〉 for tX with, for all Y ∈ V(E), all occurrences of
Y in tX replaced by 〈Y |E〉. In this table, X, tX and E stand for an arbitrary
variable of sort T, an arbitrary BTA term of sort T and an arbitrary guarded re-
cursive specification over BTA, respectively. Side conditions are added to restrict
the variables, terms and guarded recursive specifications for which X, tX and E
stand. The equations 〈X|E〉 = 〈tX |E〉 for a fixed E express that the constants
〈X|E〉 make up a solution of E. The conditional equations E ⇒ X = 〈X|E〉
express that this solution is the only one.
We will write BTA+REC for BTA extended with the constants for solutions

of guarded recursive specifications and axioms RDP and RSP.

3 Interaction of Threads with Services

A thread may perform certain basic actions only for the sake of having itself
affected by some service. When processing a basic action performed by a thread,
a service affects that thread by returning a reply value to the thread at comple-
tion of the processing of the basic action. In this section, we introduce the use
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mechanism, which is concerned with this kind of interaction between threads
and services.2

It is assumed that there is a fixed but arbitrary finite set F of foci and a fixed
but arbitrary finite setM of methods. Each focus plays the role of a name of a
service provided by the execution environment that can be requested to process
a command. Each method plays the role of a command proper. For the set A
of basic actions, we take the set {f.m | f ∈ F ,m ∈ M}. A thread performing a
basic action f.m is considered to make a request to a service that is known to
the thread under the name f to process command m.
We introduce yet another sort: the sort S of services. However, we will not

introduce constants and operators to build terms of this sort. S is considered to
stand for the set of all services. We identify services with functions H :M+ →
{T,F,B} that satisfy the following condition:

∀α ∈M+,m ∈M • (H(α) = B ⇒ H(α y 〈m〉) = B) .3

We write S for the set of all services and R for the set {T,F,B}. Given a service
H and a method m ∈ M, the derived service of H after processing m, written
∂
∂m

H, is defined by ∂
∂m

H(α) = H(〈m〉y α).
A service H can be understood as follows:

– if H(〈m〉) = T, then the request to process m is accepted by the service, the
reply is positive, and the service proceeds as ∂

∂m
H;

– if H(〈m〉) = F, then the request to process m is accepted by the service, the
reply is negative, and the service proceeds as ∂

∂m
H;

– if H(〈m〉) = B, then the request to process m is rejected by the service.

For each f ∈ F , we introduce the binary use operator /f : T × S → T.
Intuitively, p /f H is the thread that results from processing all basic actions
performed by thread p that are of the form f.m by service H. When a basic
action of the form f.m performed by thread p is processed by service H, it is
turned into the internal action tau and postconditional composition is removed
in favour of action prefixing on the basis of the reply value produced.
The axioms for the use operators are given in Table 3. In this table, f and g

stand for arbitrary foci from F and m stands for an arbitrary method fromM.
Axioms TSU3 and TSU4 express that the action tau and basic actions of the
form g.m with f 6= g are not processed. Axioms TSU5 and TSU6 express that a
thread is affected by a service as described above when a basic action of the form
f.m performed by the thread is processed by the service. Axiom TSU7 expresses
that deadlock takes place when a basic action to be processed is not accepted.

2 This version of the use mechanism was first introduced in [9]. In later papers, it is
also called thread-service composition.

3 We write D∗ for the set of all finite sequences with elements from set D and D+

for the set of all non-empty finite sequences with elements from set D. We use
the following notation for finite sequences: 〈 〉 for the empty sequence, 〈d〉 for the
sequence having d as sole element, σ y σ′ for the concatenation of finite sequences
σ and σ′, and len(σ) for the length of finite sequence σ.
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Table 3. Axioms for use operators

S /f H = S TSU1

D /f H = D TSU2

tau ◦ x /f H = tau ◦ (x /f H) TSU3

(x£ g.m¥ y) /f H = (x /f H)£ g.m¥ (y /f H) if ¬ f = g TSU4

(x£ f.m¥ y) /f H = tau ◦ (x /f
∂
∂m

H) if H(〈m〉) = T TSU5

(x£ f.m¥ y) /f H = tau ◦ (y /f
∂
∂m

H) if H(〈m〉) = F TSU6

(x£ f.m¥ y) /f H = D if H(〈m〉) = B TSU7

Let T stand for either BTA or BTA+REC. Then we will write T+TSU for
T , taking the set {f.m | f ∈ F ,m ∈M} for A, extended with the use operators
and the axioms from Table 3.

4 Sequential Poly-Threading

BTA is a theory of the behaviours exhibited by sequential programs on execution.
To cover the case where the programs have been split into fragments, we extend
BTA in this section with the barest mechanism for sequencing of threads that
are taken for fragments. The resulting theory is called TAspt.
Our general view on the way of achieving a joint behaviour of the program

fragments in a collection of program fragments between which execution can be
switched is as follows:

– there can only be a single program fragment being executed at any stage;
– the program fragment in question may make any program fragment in the
collection the one being executed;

– making another program fragment the one being executed is effected by
executing a special instruction for switching over execution;

– any program fragment can be taken for the one being executed initially.

In order to obtain such a joint behaviour from the behaviours of the program
fragments on execution, a mechanism is needed by which the start-up of an-
other program fragment behaviour is effectuated whenever a program fragment
behaviour ends up with the intent to achieve such a start-up. In the setting of
BTA, taking threads for program fragment behaviours, this requires the intro-
duction of an additional sort, additional constants and additional operators. In
doing so it is supposed that a collection of threads that corresponds to a collec-
tion of program fragments between which execution can be switched takes the
form of a sequence, called a thread vector.
Like in BTA+TSU, it is assumed that there is a fixed but arbitrary finite set

F of foci and a fixed but arbitrary finite setM of methods. It is also assumed
that tls ∈ F and init ∈M. The focus tls and the method init play special roles: tls
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is the focus of a service that is initialized each time a thread is started up by the
mechanism referred to above and init is the initialization method of that service.
For the set A of basic actions, we take again the set {f.m | f ∈ F ,m ∈M}.
TAspt has the sort T of BTA and in addition the sort TV of thread vectors.

To build terms of sort T, TAspt has the constants and operators of BTA and in
addition the following additional constants and operators:

– for each i ∈ N, the internally controlled switch-over constant Si :T;
– the externally controlled switch-over constant E :T;
– the binary sequential poly-threading operator ¤⊥ :T×TV → T;
– for each k ∈ N+,4 the k-ary external choice operator ¤k :T× · · · ×T

︸ ︷︷ ︸

k times

→ T.

To build terms of sort TV, TAspt has the following constants and operators:

– the empty thread vector constant 〈 〉 :TV;
– the unary singleton thread vector operator 〈 〉 :T→ TV;
– the binary thread vector concatenation operator y :TV ×TV → TV.

Throughout the paper, we assume that there are infinitely many variables of
sort TV, including α.
In the context of the sequential poly-threading operator ¤⊥, the constants Si

and E are alternatives for the constant S which produce additional effects. Let
p, p1, . . . , pn be closed terms of sort T. Then ¤⊥(p, 〈p1〉y . . .y 〈pn〉) first behaves
as p, but when p terminates:

– in the case where p terminates with S, it terminates;
– in the case where p terminates with Si:

• it continues by behaving as ¤⊥(pi, 〈p1〉y . . . y 〈pn〉) if 1 ≤ i ≤ n,
• it deadlocks otherwise;

– in the case where p terminates with E, it continues by behaving as one of
¤⊥(p1, 〈p1〉y . . . y 〈pn〉), . . . , ¤⊥(pn, 〈p1〉y . . . y 〈pn〉) or it deadlocks.

Moreover, the basic action tls.init is performed between termination and continu-
ation. In the case where p terminates with E, the choice between the alternatives
is made externally. Nothing is stipulated about the effect that the constants Si
and E produce in the case where they occur outside the context of the sequential
poly-threading operator.
The sequential poly-threading operator concerns sequencing of threads. A

thread selection involved in sequencing of threads is called an autonomous thread
selection if the selection is made by the terminating thread. Otherwise, it is called
a non-autonomous thread selection. The constants Si are meant for autonomous
thread selections and the constant E is meant for non-autonomous thread selec-
tions. We remark that non-autonomous thread selections are immaterial to the
joint behaviours of program fragments referred to above.
In the case of a non-autonomous thread selection, it comes to an external

choice between a number of threads. The external choice operator ¤k concerns

4 We write N+ for the set {n ∈ N | n > 0}.
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Table 4. Axiom for sequential poly-threading operator

¤⊥(S, α) = S SPT1

¤⊥(D, α) = D SPT2

¤⊥(x£ a¥ y, α) = ¤⊥(x, α)£ a¥¤⊥(y, α) SPT3

¤⊥(Si, 〈x1〉y . . . y 〈xn〉) = tls.init ◦¤⊥(xi, 〈x1〉y . . . y 〈xn〉) if 1 ≤ i ≤ n SPT4

¤⊥(Si, 〈x1〉y . . . y 〈xn〉) = D if i = 0 ∨ i > n SPT5

¤⊥(E, 〈x1〉y . . . y 〈xn+1〉) = SPT6

¤n+1(tls.init ◦¤⊥(x1, 〈x1〉y . . . y 〈xn+1〉), . . . , tls.init ◦¤⊥(xn+1, 〈x1〉y . . . y 〈xn+1〉))

¤⊥(E, 〈 〉) = D SPT7

external choice between k threads. Let p1, . . . , pk be closed terms of sort T.
Then ¤k(p1, . . . , pk) behaves as the outcome of an external choice between p1,
. . . , pk and D.
TAspt has the axioms of BTA and in addition the axioms given in Table 4.

In this table, a stands for an arbitrary action from Atau. The additional axioms
express that threads are sequenced by sequential poly-threading as described
above. There are no axioms for the external choice operators because their basic
properties cannot be expressed as equations or conditional equations. For each
k ∈ N+, the basic properties of ¤k are expressed by the following disjunction of
equations:

∨

i∈[1,k]¤k(x1, . . . , xk) = xi ∨¤k(x1, . . . , xk) = D.5

To be fully precise, we should give axioms concerning the constants and
operators to build terms of the sort TV as well. We refrain from doing so because
the constants and operators concerned are the usual ones for sequences.
Guarded recursion can be added to TAspt as it is added to BTA in Section 2.

We will write TAspt+REC for TAspt extended with the constants for solutions
of guarded recursive specifications and axioms RDP and RSP.
The use mechanism can be added to TAspt as it is added to BTA in Section 3.

Let T stand for either TAspt or TAspt+REC. Then we will write T+TSU for T
extended with the use operators and the axioms from Table 3.

5 Internalization of Non-Autonomous Thread Selection

In the case of non-autonomous thread selection, the selection of a thread is
made externally. In this section, we show how non-autonomous thread selection
can be internalized. For that purpose, we first extend TAspt with postcondi-
tional switching. Postconditional switching is like postconditional composition,
but covers the case where services processing basic actions produce reply val-
ues from the set N instead of reply values from the set {T,F}. Postconditional
switching is convenient when internalizing non-autonomous thread selection, but
it is not necessary.

5 We use the notation [n,m], where n,m ∈ N, for the set {i ∈ N | n ≤ i ≤ m}.
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Table 5. Axioms for postconditional switching operators

tau¥
k
(x1, . . . , xk) = tau¥

k
(x1, . . . , x1)

¤⊥(a¥
k
(x1, . . . , xk), α) = a¥

k
(¤⊥(x1, α), . . . ,¤⊥(xk, α))

tau¥
k
(x1, . . . , xk) /f H = tau¥

k
(x1 /f H, . . . , xk /f H)

g.m¥
k
(x1, . . . , xk) /f H = g.m¥

k
(x1 /f H, . . . , xk /f H) if ¬ f = g

f.m¥
k
(x1, . . . , xk) /f H = tau ◦ (xi /f

∂
∂m

H) if H(〈m〉) = i ∧ i ∈ [1, k]

f.m¥
k
(x1, . . . , xk) /f H = D if ¬ H(〈m〉) ∈ [1, k]

For each a ∈ Atau and k ∈ N+, we introduce the k-ary postconditional switch
operator a¥

k
:T× · · · ×T
︸ ︷︷ ︸

k times

→ T. Let p1, . . . , pk be closed terms of sort T.

Then a¥
k
(p1, . . . , pk) will first perform action a, and then proceed as p1 if the

processing of a leads to the reply 1, . . . , pk if the processing of a leads to the
reply k.
The axioms for the postconditional switching operators are given in Table 5.

In this table, a stands for an arbitrary action from Atau, f and g stand for
arbitrary foci from F , and m stands for an arbitrary method fromM.
We proceed with the internalization of non-autonomous thread selections. Let

p, p1, . . . , pk be closed terms of sort T. The idea is that ¤⊥(p, 〈p1〉y . . . y 〈pk〉)
can be internalized by:

– replacing in ¤⊥(p, 〈p1〉y . . . y 〈pk〉) all occurrences of E by Sk+1;
– appending a thread that can make the thread selections to the thread vector.

Simultaneous with the replacement of all occurrences of E by Sk+1, all occur-
rences of Sk+1 must be replaced by D to prevent inadvertent selections of the
appended thread. When making a thread selection, the appended thread has
to request the external environment to give the position of the thread that it
would have selected itself. We make the simplifying assumption that the external
environment can be viewed as a service.
Let p, p1, . . . , pk be closed terms of sort T. Then the internalization of

¤⊥(p, 〈p1〉y . . . y 〈pk〉) is

¤⊥(ρ(p), 〈ρ(p1)〉y . . . y 〈ρ(pk)〉y 〈ext.sel¥
k
(S1, . . . ,Sk)〉) ,

where ρ(p′) is p′ with simultaneously all occurrences of E replaced by Sk+1 and
all occurrences of Sk+1 replaced by D. Here, it is assumed that ext ∈ F and
sel ∈M.
Postconditional switching is not really necessary for internalization. Let k1 =

bk/2c, k2 = bk1/2c, k3 = b(k − k1)/2c, . . . . Using postconditional composition,
first a selection can be made between {p1, . . . , pk1

} and {pk1+1, . . . , pk}, next
a selection can be made between {p1, . . . , pk2

} and {pk2+1, . . . , pk1
} or between

{pk1+1, . . . , pk3
} and {pk3+1, . . . , pk}, depending on the outcome of the previous
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selection, etcetera. In this way, the number of actions performed to select a
thread is between b2log(k)c and d2log(k)e.

6 ACP with Conditions

In Section 7, we will investigate the connections of threads and services with the
processes considered in ACP-style process algebras. We will focus on ACPc, an
extension of ACP with conditions introduced in [6]. In this section, we shortly
review ACPc.
ACPc is an extension of ACP with conditional expressions in which the

conditions are taken from a Boolean algebra. ACPc has two sorts: (i) the sort
P of processes, (ii) the sort C of conditions. In ACPc, it is assumed that the
following has been given: a fixed but arbitrary set A (of actions), with δ 6∈ A,
a fixed but arbitrary set Cat (of atomic conditions), and a fixed but arbitrary
commutative and associative function | : A ∪ {δ} × A ∪ {δ} → A ∪ {δ} such that
δ | a = δ for all a ∈ A ∪ {δ}. The function | is regarded to give the result of
synchronously performing any two actions for which this is possible, and to be
δ otherwise. Henceforth, we write Aδ for A ∪ {δ}.
Let p and q be closed terms of sort P, ζ and ξ be closed term of sort C,

a ∈ A, H ⊆ A, and η ∈ Cat. Intuitively, the constants and operators to build
terms of sort P that will be used to define the processes to which threads and
services correspond can be explained as follows:

– δ can neither perform an action nor terminate successfully;
– a first performs action a unconditionally and then terminates successfully;
– p+ q behaves either as p or as q, but not both;
– p · q first behaves as p, but when p terminates successfully it continues as q;
– ζ :→ p behaves as p under condition ζ;
– p ‖ q behaves as the process that proceeds with p and q in parallel;
– ∂H(p) behaves the same as p, except that actions from H are blocked.

Intuitively, the constants and operators to build terms of sort C that will be
used to define the processes to which threads and services correspond can be
explained as follows:

– η is an atomic condition;
– ⊥ is a condition that never holds;
– > is a condition that always holds;
– −ζ is the opposite of ζ;
– ζ t ξ is either ζ or ξ;
– ζ u ξ is both ζ and ξ.

The remaining operators of ACPc are of an auxiliary nature. They are needed
to axiomatize ACPc. The axioms of ACPc are given in [6].
We write

∑

i∈I pi, where I = {i1, . . . , in} and pi1 , . . . , pin are terms of sort
P, for pi1 + . . .+ pin . The convention is that

∑

i∈I pi stands for δ if I = ∅. We
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use the notation p¢ ζ ¤ q, where p and q are terms of sort P and ζ is a term of
sort C, for ζ :→ p+−ζ :→ q.
A process is considered definable over ACPc if there exists a guarded recursive

specification over ACPc that has that process as its solution.
A recursive specification over ACPc is a set of recursion equations E =

{X = tX | X ∈ V }, where V is a set of variables and each tX is a term of
sort P that only contains variables from V . Let t be a term of sort P containing
a variable X. Then an occurrence of X in t is guarded if t has a subterm of
the form a · t′ where a ∈ A and t′ is a term containing this occurrence of X.
Let E be a recursive specification over ACPc. Then E is a guarded recursive

specification if, in each equation X = tX ∈ E, all occurrences of variables in tX
are guarded or tX can be rewritten to such a term using the axioms of ACPc

in either direction and/or the equations in E except the equation X = tX from
left to right. We only consider models of ACPc in which guarded recursive spec-
ifications have unique solutions, such as the full splitting bisimulation models of
ACPc presented in [6].
For each guarded recursive specification E and each variable X that occurs

as the left-hand side of an equation in E, we introduce a constant of sort P
standing for the unique solution of E for X. This constant is denoted by 〈X|E〉.
The axioms for guarded recursion are also given in [6].
In order to express the use operators, we need an extension of ACPc with

action renaming operators. Intuitively, the action renaming operator ρf , where
f : A → A, can be explained as follows: ρf (p) behaves as p with each action
replaced according to f . The axioms for action renaming are the ones given
in [12] and in addition the equation ρf (φ :→ x) = φ :→ ρf (x). We write ρa′ 7→a′′

for the renaming operator ρg with g defined by g(a
′) = a′′ and g(a) = a if a 6= a′.

In order to explain the connection of threads and services with ACPc fully,
we need an extension of ACPc with the condition evaluation operators CEh

introduced in [6]. Intuitively, the condition evaluation operator CEh, where h is
a function on conditions that is preserved by ⊥, >, −, t and u, can be explained
as follows: CEh(p) behaves as p with each condition replaced according to h. The
important point is that, if h(ζ) ∈ {⊥,>}, all subterms of the form ζ :→ q can be
eliminated. The axioms for condition evaluation are also given in [6].

7 Threads, Services and ACPc-Definable Processes

In this section, we relate threads and services as considered in TAspt+REC+TSU
to processes that are definable over ACPc with action renaming.
For that purpose, A, | and Cat are taken as follows:

A = {sf (d) | f ∈ F , d ∈M∪R} ∪ {rf (d) | f ∈ F , d ∈M∪R}

∪ {sext(n) | n ∈ N} ∪ {rext(n) | n ∈ N} ∪ {stop, stop, stop∗, i}

∪ {sserv(r) | r ∈ R} ∪ {rserv(m) | m ∈M} ;
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for all a ∈ A, f ∈ F , d ∈M∪R, m ∈M, r ∈ R and n ∈ N:

sf (d) | rf (d) = i ,

sf (d) | a = δ if a 6= rf (d) ,

a | rf (d) = δ if a 6= sf (d) ,

sext(n) | rext(n) = i ,

sext(n) | a = δ if a 6= rext(n) ,

a | rext(n) = δ if a 6= sext(n) ,

stop | stop = stop∗ ,

stop | a = δ if a 6= stop ,

a | stop = δ if a 6= stop ,

i | a = δ ,

sserv(r) | a = δ ,

a | rserv(m) = δ ;

and

Cat = {H(〈m〉) = r | H ∈ S,m ∈M, r ∈ R} .

For each f ∈ F , the set Af ⊆ A and the function Rf : A → A are defined as
follows:

Af = {sf (d) | d ∈M∪R} ∪ {rf (d) | d ∈M∪R} ;

for all a ∈ A, m ∈M and r ∈ R:

Rf (sserv(r)) = sf (r) ,

Rf (rserv(m)) = rf (m) ,

Rf (a) = a if
∧

r′∈R a 6= sserv(r
′) ∧

∧

m′∈M a 6= rserv(m
′) .

The sets Af and the functions Rf are used below to express the use operators
in terms of the operators of ACPc with action renaming.
For convenience, we introduce a special notation. Let α be a term of sort

TV, let p1, . . . , pn be terms of sort T such that α = 〈p1〉 y . . . y 〈pn〉, and let
i ∈ [1, n]. Then we write α[i] for pi.
We proceed with relating threads and services as considered in TAspt+REC+

TSU to processes definable over ACPc with action renaming. The underlying idea
is that threads and services can be viewed as processes that are definable over
ACPc with action renaming. We define those processes by means of a translation
function [[ ]] from the set of all terms of sort T to the set of all function from
the set of all terms of sort TV to the set of all terms of sort P and a translation
function [[ ]] from the set of all services to the set of all terms of sort P. These
translation functions are defined inductively by the equations given in Table 6,
where we write in the last equation tH′ for the term

∑

m∈M

rserv(m) · sserv(H
′(〈m〉)) · (X ∂

∂m
H′ ¢H ′(〈m〉)=T tH ′(〈m〉)=F¤XH′)

+ stop .

Let p be a closed term of sort T. Then the process algebraic interpretation of p
is [[p]](〈 〉). Henceforth, we write [[p]] for [[p]](〈 〉).
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Table 6. Definition of translation functions

[[X]](α) = X

[[S]](α) = stop

[[D]](α) = i · δ

[[t1 £ tau¥ t2]](α) = i · i · [[t1]](α)

[[t1 £ f.m¥ t2]](α) = sf (m) · (rf (T) · [[t1]](α) + rf (F) · [[t2]](α))

[[Si]](α) = tls.init · [[α[i]]](α) if 1 ≤ i ≤ len(α)

[[Si]](α) = i · δ if i = 0 ∨ i > len(α)

[[E]](α) =
∑

i∈[1,len(α)] rext(i) · tls.init · [[α[i]]](α) + i · δ

[[¤⊥(t, α′)]](α) = [[t]](α′)

[[¤k(t1, . . . , tk)]](α) =
∑

i∈[1,k] rext(i) · [[ti]](α) + i · δ

[[〈X|E〉]](α) = 〈X|{X = [[t]](α) | X = t ∈ E}〉

[[t /f H]](α) = ρstop∗ 7→stop(∂{stop,stop}(∂Af ([[t]](α) ‖ ρRf ([[H]]))))

[[H]] = 〈XH |{XH′ = tH′ | H ′ ∈ S}〉

Notice that ACP is sufficient for the translation of terms of sort T: no con-
ditional expressions occur in the translations. For the translation of services, we
need the full power of ACPc.
The translations given above preserve the axioms of TAspt+REC+TSU.

Roughly speaking, this means that the translations of these axioms are derivable
from the axioms of ACPc with action renaming and guarded recursion. Before we
make this fully precise, we have a closer look at the axioms of TAspt+REC+TSU.
A proper axiom is an equation or a conditional equation. In Tables 1–4, we

do not only find proper axioms. In addition to proper axioms, we find: (i) ax-
iom schemas without side conditions; (ii) axiom schemas with syntactic side
conditions; (iii) axiom schemas with semantic side conditions. The axioms of
TAspt+REC+TSU are obtained by replacing each axiom schema by all its in-
stances. Owing to the presence of axiom schemas with semantic side conditions,
the axioms of TAspt+REC+TSU include proper axioms and axioms with seman-
tic side conditions. Therefore, semantic side conditions take part in the transla-
tion of the axioms as well. The instances of TSU5, TSU6, and TSU7 are the only
axioms of TAspt+REC+TSU with semantic side conditions. These semantic side
conditions, being of the form H(〈m〉) = r, are looked upon as elements of Cat.
Consider the set that consists of:

– all equations t1 = t2, where t1 and t2 are terms of sort T;
– all conditional equations E ⇒ t1 = t2, where t1 and t2 are terms of sort T
and E is a set of equations t′1 = t′2 where t

′
1 and t

′
2 are terms of sort T;

– all expressions t1 = t2 if φ, where t1 and t2 are terms of sort T and φ ∈ Cat.
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We define a translation function [[ ]] from this set to the set of all equations of
ACPc with action renaming and guarded recursion as follows:

[[t1 = t2]] = [[t1]] = [[t2]] ,

[[E ⇒ t1 = t2]] = {[[t′1]] = [[t
′
2]] | t

′
1 = t′2 ∈ E} ⇒ [[t1]] = [[t2]] ,

[[t1 = t2 if φ]] = CEhΦ∪{φ}([[t1]]) = CEhΦ∪{φ}([[t2]]) ,

where

Φ = {
∧

r∈R ¬ (H(〈m〉) = r ∧
∨

r′∈R\{r}H(〈m〉) = r′) | H∈S,m∈M} .

Here hΨ is a function on conditions of ACP
c that preserves ⊥, >, −, t and u

and satisfies hΨ (ζ) = > iff ζ corresponds to a proposition derivable from Ψ and
hΨ (ζ) = ⊥ iff −ζ corresponds to a proposition derivable from Ψ .6

Theorem 1 (Preservation). Let ax be an axiom of TAspt+REC+TSU. Then
[[ax ]] is derivable from the axioms of ACPc with action renaming and guarded

recursion.

Proof. The proof is straightforward. In [7], we outline the proof for axiom TSU5.
The other axioms are proved in a similar way. ut

8 Execution Architectures for Fragmented Programs

An analytic execution architecture in the sense of [11] is a model of a hypothetical
execution environment for sequential programs that is designed for the purpose of
explaining how a program may be executed. An analytic execution architecture
makes explicit the interaction of a program with the components of its execution
environment. The notion of analytic execution architecture defined in [11] is
suited to sequential programs that have not been split into fragments. In this
section, we discuss analytic execution architectures suited to sequential programs
that have been split into fragments.
The notion of analytic execution architecture from [11] is defined in the set-

ting of program algebra. In [4], a thread extraction operation | | is defined which
gives, for each program considered in program algebra, the thread that is taken
for the behaviour exhibited by the program on execution. In the case of programs
that have been split into fragments, additional instructions for switching over
execution to another program fragment are needed. We assume that a collection
of program fragments between which execution can be switched takes the form
of a sequence, called an program fragment vector, and that there is an additional
instruction ###i for each i ∈ N. Switching over execution to the i-th program
fragment in the program fragment vector is effected by executing the instruction
###i. If i equals 0 or i is greater than the length of the program fragment

6 Here we use “corresponds to” for the wordy “is isomorphic to the equivalence class
with respect to logical equivalence of” (see also [6]).
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vector, execution of ###i results in deadlock. We extend thread extraction as
follows:

|###i| = Si , |###i ; x| = Si .

An analytic execution architecture for programs that have been split into
fragments consists of a component containing a program fragment, a component
containing a program fragment vector and a number of service components. The
component containing a program fragment is capable of processing instructions
one at a time, issuing appropriate requests to service components and awaiting
replies from service components as described in [11] in so far as instructions other
than switch-over instructions are concerned. This implies that, for each service
component, there is a channel for communication between the program fragment
component and that service component and that foci are used as names of those
channels. In the case of a switch-over instruction, the component containing a
program fragment is capable of loading the program fragment to which execution
must be switched from the component containing a program fragment vector.
The analytic execution architecture made up of a component containing the

program fragment P , a component containing the program fragment vector α =
〈P1〉y . . .y 〈Pn〉, and service components H1, . . . , Hk with channels named f1,
. . . , fk, respectively, is described by the thread

¤⊥(|P |, 〈|P1|〉y . . . y 〈|Pn|〉) /f1
H1 . . . /fk Hk .

In the case where instructions of the form ###i do not occur in P ,

[[¤⊥(|P |, 〈|P1|〉y . . . y 〈|Pn|〉) /f1
H1 . . . /fk Hk]]

agrees with the process-algebraic description given in [11] of the analytic execu-
tion architecture made up of a component containing the program P and service
components H1, . . . , Hk with channels named f1, . . . , fk, respectively.

9 Conclusions

We have developed a theory of the behaviours exhibited by sequential programs
on execution that covers the case where the programs have been split into frag-
ments and have used it to describe analytic execution architectures suited for
such programs. It happens that the resulting description is terse. We have also
shown that threads and services as considered in this theory can be viewed as
processes that are definable over an extension of ACP with conditions. Threads
and services are introduced for pragmatic reasons only: describing them as gen-
eral processes is awkward. For example, the description of analytic execution
architectures suited for programs that have been split into fragments would no
longer be terse if ACP with conditions had been used.
The object pursued with the line of research that we have carried on with

this paper is the development of a theoretical understanding of the concepts
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sequential program and sequential program behaviour. We regard the work pre-
sented in this paper also as a preparatory step in the development of a theoretical
understanding of the concept operating system. In systems resulting from con-
temporary programming, we find distributed multi-threading and threads that
are program behaviour fragments. For that reason, it is an interesting option for
future work to combine the theory of distributed strategic interleaving developed
in [8] with the theory developed in this paper.
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