
Univer sity of Amsterdam
Programming Research Group

Thread Extraction for Polyadic
Instruction Sequences

J.A. Bergstra
C.A. Middelburg

Report PRG0803 February 2008

J.A. Bergstra

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel. +31 20 525.7591
e-mail: janb@science.uva.nl

C.A. Middelburg

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

e-mail: kmiddelb@science.uva.nl

Programming Research Group Electronic Report Series

Thread Extraction for

Polyadic Instruction Sequences?

J.A. Bergstra1,2 and C.A. Middelburg1

1 Programming Research Group, University of Amsterdam,
P.O. Box 41882, 1009 DB Amsterdam, the Netherlands

2 Department of Philosophy, Utrecht University,
P.O. Box 80126, 3508 TC Utrecht, the Netherlands
J.A.Bergstra@uva.nl,C.A.Middelburg@uva.nl

Abstract. Instruction sequences are often fragmented. An important
reason for instruction sequence fragmentation is that the execution archi-
tecture at hand to execute instruction sequences sets bounds to the size of
instruction sequences. In this paper, we study instruction sequences that
have been split into fragments. The purpose is to develop a theoretical
understanding of this matter. The possible joint behaviours exhibited by
a collection of fragments on execution are explained in terms of threads
as considered in basic thread algebra. In this way, a setting is provided in
which the slow-down results of instruction sequence fragmentation can
be analysed.

Keywords: instruction sequence fragmentation, polyadic instruction se-
quence, thread extraction, basic thread algebra.

1998 ACM Computing Classification: D.3.1, D.3.3, F.1.1, F.3.2, F.3.3.

1 Introduction

In this paper, we consider fragmentation of sequential programs that take the
form of instruction sequences. With that we carry on the line of research with
which a start was made in [3]. This line of research concerns the development
of a theoretical understanding of possible forms of sequential programs and as-
sociated ways of programming. It is a fact of life that instruction sequences are
often fragmented. An important reason for instruction sequence fragmentation
is that the execution architecture at hand to execute instruction sequences sets
bounds to the size of instruction sequences. However, there may also be other
reasons for instruction sequence fragmentation, for instance business economical
reasons. In this paper, we look for a direct approach to the formalization of in-
struction sequences that have been split into fragments and we investigate their
relationship with sequential programs.

The question is how a joint behaviour of the fragments in a collection of
fragments is achieved. The view of this matter is that there can only be a single

? This research was partly carried out in the framework of the Jacquard-project Sym-
biosis, which is funded by the Netherlands Organisation for Scientific Research
(NWO).

fragment being executed at any stage, but the fragment in question may make
any fragment in the collection the one being executed by means of a special
instruction for switching over execution to another fragment. Each fragment can
be taken for the one being executed initially. This means that there is generally
not a unique joint behaviour. Therefore, the fragments are not considered to con-
stitute a single sequential program. As the view is taken in the line of research
carried on in this paper that the behaviour exhibited by a sequential program
on execution is a thread as considered in basic thread algebra [3],3 so the view
is taken here that the possible joint behaviours exhibited by the fragments on
execution are threads as considered in basic thread algebra. In execution archi-
tectures, a fragment must be loaded in order to become the one being executed.
Hence, making a fragment the one being executed can be looked upon as loading
that fragment for execution.

The instruction sequences taken for fragments are called polyadic instruction
sequences in this paper. We introduce polyadic instruction sequences in the
setting of program algebra [3], an algebra of programs in which programs are
looked upon as instruction sequences. In [3], a hierarchy of program notations
rooted in program algebra is presented as well. Included in this hierarchy are very
simple program notations which are close to existing assembly languages up to
and including simple program notations that support structured programming
by offering a rendering of conditional and loop constructs. All of these program
notations are referred to in this paper, but only one of them is actually used.
That program notation is introduced under the name PGLD in [3].

This paper is organized as follows. First, we review basic thread algebra,
program algebra, and the program notation PGLD (Sections 2, 3, and 4). Next,
we introduce polyadic instruction sequences in the setting of program algebra,
explain the possible joint behaviours of a collection of polyadic instruction se-
quences using basic thread algebra, and give an example of the use of polyadic
instruction sequences (Sections 5 and 6). Following this, we extend basic thread
algebra with a mechanism for interaction between threads and services, introduce
a state-based approach to describe services, and give a state-based description of
instruction register file services (Sections 7, 8, and 9). After that, we show that,
for each possible joint behaviour of a collection of polyadic instruction sequences,
a sequential program can be synthesized from the collection of polyadic instruc-
tion sequences that exhibits on execution essentially the behaviour in question
by interaction with an instruction register file service (Section 10). Finally, we
make some concluding remarks (Section 11).

2 Basic Thread Algebra

In this section, we review BTA, a form of process algebra which is tailored
to the description of the behaviour of deterministic sequential programs under

3 In [3], basic thread algebra is introduced under the name basic polarized process
algebra. Prompted by the development of thread algebra [8], which is a design on
top of it, basic polarized process algebra has been renamed to basic thread algebra.

2

Table 1. Axiom of BTA

x E ιD y = x E ιD x T1

execution. The behaviours concerned are called threads.
In BTA, it is assumed that there are fixed but arbitrary finite sets A and I

with A∩I = ∅ and tau ∈ I. The members of A are called basic actions and the
members of I are called internal actions. The members of A∪ I are referred to
as actions.

The intuition is that each basic action performed by a thread is taken as a
command to be processed by a service provided by the execution environment of
the thread. The processing of a command may involve a change of state of the
service concerned. At completion of the processing of the command, the service
produces a reply value. This reply is either T or F and is returned to the thread
concerned. Performing an internal action will never lead to a state change and
always lead to the reply T, but notwithstanding all that it is a concrete action:
its presence matters.

In previous work, we take in essence the singleton set {tau} for I. The gener-
alization made here permits internal actions with differences relevant for analysis
to be distinguished.

Although BTA is one-sorted, we make this sort explicit. The reason for this
is that we will extend BTA with an additional sort in Section 7.

The algebraic theory BTA has one sort: the sort T of threads. To build terms
of sort T, BTA has the following constants and operators:

– the deadlock constant D :T;
– the termination constant S :T;
– for each a ∈ A∪I, the binary postconditional composition operator E aD :

T×T→ T.

Terms of sort T are built as usual (see e.g. [11, 12]). Throughout the paper, we
assume that there are infinitely many variables of sort T, including x, y, z.

We use infix notation for postconditional composition. We introduce action
prefixing as an abbreviation: a ◦ p, where p is a term of sort T, abbreviates
pE aD p.

Let p and q be closed terms of sort T and a ∈ A ∪ I. Then p E aD q will
perform action a, and after that proceed as p if the processing of a leads to the
reply T (called a positive reply), and proceed as q if the processing of a leads to
the reply F (called a negative reply).

BTA has only one axiom. This axiom is given in Table 1. In this table, ι
stands for an arbitrary member of I. Using the abbreviation introduced above,
axiom T1 can be written as follows: xE ιD y = ι ◦ x.

Each closed BTA term of sort T denotes a finite thread, i.e. a thread of which
the length of the sequences of actions that it can perform is bounded. Guarded
recursive specifications give rise to infinite threads.

3

Table 2. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X= tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

A guarded recursive specification over BTA is a set of recursion equations
E = {X = tX | X ∈ V }, where V is a set of variables of sort T and each tX
is a term of the form D, S or t E aD t′ with t and t′ BTA terms of sort T that
contain only variables from V . We write V(E) for the set of all variables that
occur on the left-hand side of an equation in E. We are only interested in models
of BTA in which guarded recursive specifications have unique solutions, such as
the projective limit model of BTA presented in [1]. A thread that is the solution
of a finite guarded recursive specification over BTA is called a finite-state thread.

We extend BTA with guarded recursion by adding constants for solutions
of guarded recursive specifications and axioms concerning these additional con-
stants. For each guarded recursive specification E and each X ∈ V(E), we add a
constant of sort T standing for the unique solution of E for X to the constants
of BTA. The constant standing for the unique solution of E for X is denoted by
〈X|E〉. Moreover, we add the axioms for guarded recursion given in Table 2 to
BTA, where we write 〈tX |E〉 for tX with, for all Y ∈ V(E), all occurrences of
Y in tX replaced by 〈Y |E〉. In this table, X, tX and E stand for an arbitrary
variable of sort T, an arbitrary BTA term of sort T and an arbitrary guarded re-
cursive specification over BTA, respectively. Side conditions are added to restrict
the variables, terms and guarded recursive specifications for which X, tX and E
stand. The equations 〈X|E〉 = 〈tX |E〉 for a fixed E express that the constants
〈X|E〉 make up a solution of E. The conditional equations E ⇒ X = 〈X|E〉
express that this solution is the only one.

We will use the following abbreviation: aω, where a ∈ A ∪ I, abbreviates
〈X|{X = a ◦X}〉.

We will write BTA+REC for BTA extended with the constants for solutions
of guarded recursive specifications and axioms RDP and RSP.

In [5], we show that the threads considered in BTA+REC can be viewed as
processes that are definable over ACP [10].

Closed terms of sort T from the language of BTA+REC that denote the
same infinite thread cannot always be proved equal by means of the axioms
of BTA+REC. We introduce the approximation induction principle to remedy
this. The approximation induction principle, AIP in short, is based on the view
that two threads are identical if their approximations up to any finite depth are
identical. The approximation up to depth n of a thread is obtained by cutting
it off after performing a sequence of actions of length n.

AIP is the infinitary conditional equation given in Table 3. Here, following [3],
approximation of depth n is phrased in terms of a unary projection operator
πn : T → T. The axioms for the projection operators are given in Table 4. In
this table, a stands for an arbitrary member of A ∪ I.

4

Table 3. Approximation induction principle

∧
n≥0 πn(x) = πn(y) ⇒ x = y AIP

Table 4. Axioms for projection operators

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(x E aD y) = πn(x) E aD πn(y) P3

We will write BTA+REC+AIP for BTA+REC extended with the projection
operators and the axioms from Tables 3 and 4.

3 Program Algebra

In this section, we review PGA, an algebra of sequential programs based on
the idea that sequential programs are in essence sequences of instructions. PGA
provides a program notation for finite-state threads.

In PGA, it is assumed that there is a fixed but arbitrary finite set A of basic
instructions. PGA has the following primitive instructions:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a forward jump instruction #l;
– a termination instruction !.

We write I for the set of all primitive instructions.
The intuition is that the execution of a basic instruction a may modify a

state and produces T or F at its completion. In the case of a positive test in-
struction +a, basic instruction a is executed and execution proceeds with the
next primitive instruction if T is produced and otherwise the next primitive
instruction is skipped and execution proceeds with the primitive instruction fol-
lowing the skipped one. In the case where T is produced and there is not at least
one subsequent primitive instruction and in the case where F is produced and
there are not at least two subsequent primitive instructions, deadlock occurs.
In the case of a negative test instruction −a, the role of the value produced is
reversed. In the case of a plain basic instruction a, the value produced is disre-
garded: execution always proceeds as if T is produced. The effect of a forward
jump instruction #l is that execution proceeds with the l-th next instruction of
the program concerned. If l equals 0 or the l-th next instruction does not exist,
then #l results in deadlock. The effect of the termination instruction ! is that
execution terminates.

PGA has the following constants and operators:

5

Table 5. Axioms of PGA

(x ; y) ; z = x ; (y ; z) PGA1

(xn)ω = xω PGA2

xω ; y = xω PGA3

(x ; y)ω = x ; (y ; x)ω PGA4

Table 6. Defining equations for thread extraction operation of PGA

|a| = a ◦ D

|a ; x| = a ◦ |x|

|+a| = a ◦ D

|+a ; x| = |x|E aD |#2 ; x|

|−a| = a ◦ D

|−a ; x| = |#2 ; x|E aD |x|

|#l| = D

|#0 ; x| = D

|#1 ; x| = |x|

|#l + 2 ; u| = D

|#l + 2 ; u ; x| = |#l + 1 ; x|

|!| = S

|! ; x| = S

– for each u ∈ I, an instruction constant u ;
– the binary concatenation operator ; ;
– the unary repetition operator ω .

Terms are built as usual. Throughout the paper, we assume that there are in-
finitely many variables, including x, y, z.

We use infix notation for concatenation and postfix notation for repetition.
Closed PGA terms are considered to denote programs. The intuition is that

a program is in essence a non-empty, finite or periodic infinite sequence of prim-
itive instructions.4 These sequences are called single pass instruction sequences

because PGA has been designed to enable single pass execution of instruction
sequences: each instruction can be dropped after it has been executed. Programs
are considered equal if they represent the same single pass instruction sequence.
The axioms for instruction sequence equivalence are given in Table 5. In this ta-
ble, n stands for an arbitrary natural number greater than 0. For each n > 0, the
term xn is defined by induction on n as follows: x1 = x and xn+1 = x ; xn. The
unfolding equation xω = x ; xω is derivable. Each closed PGA term is derivably
equal to a term in canonical form, i.e. a term of the form P or P ;Qω, where P
and Q are closed PGA terms that do not contain the repetition operator.

Each closed PGA term is considered to denote a program of which the be-
haviour is a finite-state thread, taking the set A of basic instructions for the set
A of basic actions. The thread extraction operation | | assigns a thread to each
program. The thread extraction operation is defined by the equations given in
Table 6 (for a ∈ A, l ∈ N and u ∈ I) and the rule given in Table 7. This rule is ex-

4 A periodic infinite sequence is an infinite sequence with only finitely many subse-
quences.

6

Table 7. Rule for cyclic jump chains

x ∼= #0 ; y ⇒ |x| = D

Table 8. Defining formulas for structural congruence predicate

#n+ 1 ; u1 ; . . . ; un ; #0 ∼= #0 ; u1 ; . . . ; un ; #0

#n+ 1 ; u1 ; . . . ; un ; #m ∼= #m+ n+ 1 ; u1 ; . . . ; un ; #m

(#n+ l + 1 ; u1 ; . . . ; un)
ω ∼= (#l ; u1 ; . . . ; un)

ω

#m+ n+ l + 2 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)
ω ∼=

#n+ l + 1 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)
ω

x ∼= x

x1
∼= y1 ∧ x2

∼= y2 ⇒ x1 ; x2
∼= y1 ; y2 ∧ x1

ω ∼= y1
ω

pressed in terms of the structural congruence predicate ∼= , which is defined by
the formulas given in Table 8 (for n,m, l ∈ N and u1, . . . , un, v1, . . . , vm+1 ∈ I).

The equations given in Table 6 do not cover the case where there is a cyclic
chain of forward jumps. Programs are structural congruent if they are the same
after removing all chains of forward jumps in favour of single jumps. Because
a cyclic chain of forward jumps corresponds to #0, the rule from Table 7 can
be read as follows: if x starts with a cyclic chain of forward jumps, then |x|
equals D. It is easy to see that the thread extraction operation assigns the same
thread to structurally congruent programs. Therefore, the rule from Table 7 can
be replaced by the following generalization: x ∼= y ⇒ |x| = |y|.

The behaviour of each closed PGA term, is a thread that is definable by a
finite guarded recursive specification over BTA. The other way round, each finite
guarded recursive specification over BTA in which no internal actions occur can
be translated into a closed PGA term of which the behaviour is the solution of
the finite guarded recursive specification concerned.

Closed PGA terms are considered to denote programs and therefore they
constitute an elementary program notation. Closed PGA terms are also called
PGA programs.

In [3], a hierarchy of program notations rooted in PGA is presented. In this
hierarchy, the program notations PGLA, PGLB, PGLC, PGLD, PGLDg, PGLE,
and PGLS appear. PGLA programs are translated into PGA programs by means
of a function pgla2pga, PGLB programs are translated into PGLA programs
by means of a function pglb2pgla, PGLC programs are translated into PGLB
programs by means of a function pglc2pglb, etcetera. These functions are called
projections in [3]. Each of them translates each of the programs from a program
notation higher in the hierarchy into a program from a program notation lower
in the hierarchy that exhibits the same behaviour on execution. Moreover, PGA
programs are translated into PGLA programs by means of a function pga2pgla,
PGLA programs are translated into PGLB programs by means of a function
pgla2pglb, PGLB programs are translated into PGLC programs by means of a

7

function pglb2pglc, etcetera. These functions are called embeddings in [3]. Each
of them translates each of the programs from a program notation lower in the
hierarchy into a program from a program notation higher in the hierarchy that
exhibits the same behaviour on execution. We remark that there does not exist a
function by which each PGLE program is translated into a PGLS program that
exhibits the same behaviour on execution: PGLS is strictly weaker than PGLE.

In Section 5, we will use the function pgla2pga and in addition the functions
pglb2pga, pglc2pga, . . . defined by pglb2pga(P) = pgla2pga(pglb2pgla(P))
for all PGLB programs P , pglc2pga(P) = pglb2pga(pglc2pglb(P)) for all
PGLC programs P , etcetera. In Section 10, we will use the function pglc2pgld

and in and in addition the functions pga2pglc defined by pga2pglc(P) =
pglb2pglc(pgla2pglb(pga2pgla(P))) for all PGA programs P .

PGLC, PGLD and PGLS are the most interesting program notations of the
ones mentioned above. PGLC and PGLD are close to existing assembly lan-
guages. The main difference between them is that PGLC has relative jump in-
structions and PGLD has absolute jump instructions. PGLS supports structured
programming by offering a rendering of conditional and loop constructs instead
of (unstructured) jump instructions.

4 The Program Notation PGLD

In this section, we review the program notation PGLD. This program notation
will be used later on in Sections 6 and 10.

In PGLD, like in PGA, it is assumed that there is a fixed but arbitrary finite
set A of basic instructions. Again, the intuition is that the execution of a basic
instruction a may modify a state and produces T or F at its completion.

PGLD has the following primitive instructions:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, an absolute jump instruction ##l.

PGLD programs have the form u1; . . . ;uk, where u1, . . . , uk are primitive in-
structions of PGLD.

The plain basic instructions, the positive test instructions, and the negative
test instructions are as in PGA. The effect of an absolute jump instruction ##l
is that execution proceeds with the l-th instruction of the program concerned.
If ##l is itself the l-th instruction, then deadlock occurs. If l equals 0 or l is
greater than the length of the program, then termination occurs.

The function pgld2pga from the set of all PGLD programs to the set of all
PGA programs can be defined directly as follows:

pgld2pga(u1 ; . . . ; uk) = (ψ1(u1) ; . . . ; ψk(uk) ; ! ; ! ; #0 ; #0)
ω ,

where the auxiliary functions ψj from the set of all primitive instructions of
PGLD to the set of all primitive instructions of PGA are defined as follows
(1 ≤ j ≤ k):

8

ψj(##l) = #l − j if j ≤ l ≤ k ,

ψj(##l) = #k + 2− (j − l) if 0 < l < j ,

ψj(##l) = ! if l = 0 ∨ l > k ,

ψj(u) = u if u is not a jump instruction .

5 Polyadic Instruction Sequences

In this section, we look for a direct approach to the formalization of instruc-
tion sequences that have been split into fragments. The fragments resulting
from a splitting are considered instruction sequences with special instructions
for switching over execution from one fragment to another. The instruction se-
quences concerned are called polyadic instruction sequences.

It is assumed that a special version of PGLA, PGLB, PGLC, PGLD, PGLDg,
PGLE or PGLS is used for each polyadic instruction sequence. Moreover, it is
assumed that a collection of polyadic instruction sequences between which exe-
cution can be switched takes the form of a sequence, called a polyadic instruction
sequence vector, in which each polyadic instruction sequence is coupled with the
program notation used for it.

Our general view on the way of achieving a joint behaviour of the polyadic
instruction sequences in a polyadic instruction sequence vector is as follows:

– there can only be a single polyadic instruction sequence being executed at
any stage;

– the polyadic instruction sequence in question may make any polyadic in-
struction sequence in the vector the one being executed;

– making another polyadic instruction sequence the one being executed is ef-
fected by executing a special instruction for switching over execution;

– any polyadic instruction sequence can be taken for the one being executed
initially.

In addition to special instructions for switching over execution, polyadic in-
struction sequences may contain special instructions for putting instructions
into instruction registers and special instructions which are actually instruction
place-holders: each of them is replaced by the instruction contained in one of the
instruction registers on making a polyadic instruction sequence the one being
executed. The presence of special instructions of the latter kind turns a polyadic
instruction sequence into a parameterized instruction sequence of which the pa-
rameters are filled in each time it is made the one being executed. This feature
accounts for the use of the prefix polyadic. Its merit is primarily that it allows
for execution to proceed in effect from different positions each time a polyadic
instruction sequence is loaded for execution. An example of this is given in Sec-
tion 6.

We take the line that different program notations can be used for different
polyadic instruction sequences in a polyadic instruction sequence vector. On
making a polyadic instruction sequence in the vector the one being executed, it
is considered to be translated into a PGAp program.

9

PGAp is a variant of PGA in which the above-mentioned special instructions
are incorporated. In PGAp, it is assumed that there is a fixed but arbitrary finite
set Ac of core basic instructions. In PGAp, a basic instruction is either a core
basic instruction or a supplementary basic instructions.

PGAp has the following core primitive instructions:

– for each a ∈ Ac, a plain basic instruction a;
– for each a ∈ Ac, a positive test instruction +a;
– for each a ∈ Ac, a negative test instruction −a;
– for each l ∈ N, a forward jump instruction #l;
– a termination instruction !.

We write Ic for the set of all core primitive instructions. The core primitive
instructions of PGAp are the pendants of the primitive instructions of PGA.

PGAp has the following supplementary basic instructions:

– for each i ∈ N, a switch-over instruction ###i;
– for each i ∈ N and u ∈ Ic, a put instruction $put:i:u;
– for each i ∈ N, a get instruction $get:i.

We write As for the set of all supplementary basic instructions. In the pres-
ence of a polyadic instruction sequence vector, a switch-over instruction ###i
is the instruction for switching over execution to the i-th polyadic instruction
sequence in the vector. A put instruction $put:i:u is the instruction for putting
instruction u in the instruction register with number i. A get instruction $get:i
is the instruction place-holder of which each occurrence in a polyadic instruction
sequence is replaced by the contents of the instruction register with number i
on switching over execution to that polyadic instruction sequence.

The supplementary basic instructions of PGAp can be viewed as built-in ba-
sic instructions. However, as laid down below, supplementary basic instructions
do not occur in positive or negative test instructions. Thus, the core primi-
tive instructions and supplementary basic instructions make up the primitive
instructions of PGAp.

PGAp has the following constants and operators:

– for each u ∈ Ic ∪ As, an instruction constant u ;
– the binary concatenation operator ; ;
– the unary repetition operator ω .

The axioms of PGAp are the same as the axioms of PGA.
Suppose that in PGA the restriction is dropped that A must be a finite set.

Then PGAp can be viewed as the specialization of PGA obtained by taking the
set Ac∪As for A and excluding terms in which basic instructions from As occur in
positive or negative test instructions. Henceforth, we actually drop the restriction
that A must be a finite set. This simplifies the definitions of the different program
notations that can be used for polyadic instruction sequences and also enables
the use of the functions pgla2pga, pglb2pga, etcetera for translating programs
in those program notations into PGAp programs.

10

The different program notations that can be used for polyadic instruction
sequences are PGLAp, PGLBp, PGLCp, PGLDp, PGLDgp, PGLEp, and PGLSp.
The set of all PGLAp programs is the subset of the set of all PGLA programs,
taking the set Ac∪As for A, in which the basic instructions from As do not occur
in positive or negative test instructions. PGLBp, PGLCp, PGLDp, PGLDgp,
PGLEp, and PGLSp are defined similarly.

If the set Ac ∪ As is taken for A, the function pgla2pga translates each
PGLAp program into a PGAp program that exhibits the same behaviour on ex-
ecution. Similar remarks apply to PGLBp, PGLCp, PGLDp, PGLDgp, PGLEp,
and PGLSp.

A polyadic instruction sequence is either a PGLAp program, a PGLBp pro-
gram, a PGLCp program, a PGLDp program, a PGLDgp program, a PGLEp

program or a PGLSp program.
A polyadic instruction sequence vector is a sequence of pairs consisting of a

polyadic instruction sequence and a member of the set {A,B,C,D,Dg,E, S} of
program notation indices.

Let α be a polyadic instruction sequence vector, let P1, . . . , Pn and c1, . . . , cn
be polyadic instruction sequences and program notation indices, respectively,
such that α = 〈(P1, c1)〉 y . . . y 〈(Pn, cn)〉,

5 and let i ∈ [1, n]. Then we write
pg(α, i) and pgn(α, i) for Pi and ci, respectively.

Let α be a polyadic instruction sequence vector of length n, and let i ∈ [1, n].
Then program notation index pgn(α, i) indicates which program notation is used
for polyadic instruction sequence pg(α, i). A stands for PGLAp, B stands for
PGLBp, etcetera. The program notation used is made explicit because it can-
not always be determined uniquely from the polyadic instruction sequence con-
cerned, whereas the behaviour that this polyadic instruction sequence exhibits
on execution may be different for each of the program notations in question.

The set of instruction registers that contain an instruction and the contents
of each of those registers matter when a polyadic instruction sequence is made
the one being executed. That makes us introduce the notion of an instruction
register file state and special notation relating to this notion.

An instruction register file state is a function σ : I → Ic, where I is a finite
subset of N.

Let p be a PGAp program and σ be a instruction register file state. Then we
write p[σ] for p with, for all i ∈ dom(σ), all occurrences of $get:i in p replaced
by σ(i).

Let i, n ∈ N be such that 1 ≤ i ≤ n, let α be a polyadic instruction sequence
vector of length n, and let σ be a instruction register file state. Then we write
valid(α, i, σ) to indicate that instructions of the form $get:i do not occur in
prj pgn(α,i)(pg(α, i))[σ].

5 We write D∗ for the set of all finite sequences with elements from set D. We use
the following notation for finite sequences: 〈 〉 for the empty sequence, 〈d〉 for the
sequence having d as sole element, σ y σ′ for the concatenation of finite sequences
σ and σ′, and len(σ) for the length of finite sequence σ.

11

We also use special notation relating to the program notation indices. Let c
be a program notation index. Then we write prj c for the projection pgla2pga if
c = A, the projection pglb2pga if c = B, etcetera.

An obvious choice of the thread extraction operation of PGAp is the thread
extraction operation of PGA, taking the set Ac ∪ As for A, restricted to the
set of closed terms of PGAp. This thread extraction operation is considered not
to be the proper one, because it treats the supplementary basic instructions
as arbitrary basic instructions and thus disregards the fixed effects that they
produce on execution. Moreover, this thread extraction operation requires that
in BTA the restriction is dropped that A must be a finite set.

As regards the proper thread extraction for PGAp, the idea is that it yields,
for each PGAp program P , a function that gives, for each polyadic instruction
sequence vector α, the thread that is the joint behaviour of P and the polyadic in-
struction sequences in α if P is the polyadic instruction sequence being executed
initially. Because this behaviour depends upon the set of instruction registers
that contain an instruction and the contents of each of those registers, we need
a thread extraction operation for each instruction register file state.

For each instruction register file state σ, we introduce the thread extraction

operation | |σ. These thread extraction operations are defined by the equations
given in Table 9 (for a ∈ A, l, i ∈ N, u ∈ Ic ∪As and v ∈ Ic). and the rule given
in Table 10. Here, it is assumed that gl ∈ I. The internal action gl (generate
and load) represents the internal activity involved in switching over execution.
The internal actions tau and gl are distinguished because tau is considered to
represent a negligible internal activity, whereas gl is considered to represent a
substantial internal activity.

We can couple nominal indices as labels with some of the polyadic instruction
sequences in a polyadic instruction sequence vector. This would permit the use
of alternative switch-over instructions with nominal indices instead of ordinal
indices, like with the goto instructions from PGLDg. In the notational style
of [2], the form of those alternative switch-over instructions would be ###[i].

6 Example

In this section, we consider the splitting of a PGLD program P of 10000 instruc-
tions into two fragments.

We write ν1(l) for the number of absolute jump instructions ##l′ with l′ >
5000 from position 1 up to position l and ν2(l) for the number of absolute jump
instructions ##l′ with l′ ≤ 5000 from position 5001 up to position l.

The polyadic instruction sequence P ′ corresponding to the first half of P is
obtained from the first half of P as follows:

– the instruction $get:1 is prefixed to it;
– each absolute jump instructions ##l with l ≤ 5000 is replaced by the abso-
lute jump instructions ##l′, where l′ = l + ν1(l) + 1;

– each absolute jump instructions ##l with l > 5000 is replaced by the in-
struction sequence $put:2:#l′ ; ###2, where l′ = (l − 5000) + ν2(l − 5000);

12

Table 9. Defining equations for thread extraction operations of PGAp

|a|σ(α) = a ◦ D

|a ; x|σ(α) = a ◦ |x|σ(α)

|+a|σ(α) = a ◦ D

|+a ; x|σ(α) = |x|σ(α) E aD |#2 ; x|σ(α)

|−a|σ(α) = a ◦ D

|−a ; x|σ(α) = |#2 ; x|σ(α) E aD |x|σ(α)

|#l|σ(α) = D

|#0 ; x|σ(α) = D

|#1 ; x|σ(α) = |x|σ(α)

|#l + 2 ; u|σ(α) = D

|#l + 2 ; u ; x|σ(α) = |#l + 1 ; x|σ(α)

|!|σ(α) = S

|! ; x|σ(α) = S

|###i|σ(α) = gl ◦ |prj pgn(α,i)(pg(α, i))[σ]|σ(α) if 1 ≤ i ≤ n ∧ valid(α, i, σ)

|###i|σ(α) = D if 1 ≤ i ≤ n ∧ ¬ valid(α, i, σ)

|###i|σ(α) = S if i = 0 ∨ i > n

|###i ; x|σ(α) = gl ◦ |prj pgn(α,i)(pg(α, i))[σ]|σ(α) if 1 ≤ i ≤ n ∧ valid(α, i, σ)

|###i ; x|σ(α) = D if 1 ≤ i ≤ n ∧ ¬ valid(α, i, σ)

|###i ; x|σ(α) = S if i = 0 ∨ i > n

|$put:i:v|σ(α) = tau ◦ D

|$put:i:v ; x|σ(α) = tau ◦ |x|σ⊕[i7→u](α)

|$get:i|σ(α) = D

|$get:i ; x|σ(α) = D

Table 10. Rule for cyclic jump chains

x ∼= #0 ; y ⇒ |x|σ(α) = D

and the polyadic instruction sequence P ′′ corresponding to the second half of P
is obtained from the second half of P as follows:

– the instruction $get:2 is prefixed to it;
– each absolute jump instructions ##l with l > 5000 is replaced by the abso-
lute jump instructions ##l′, where l′ = (l − 5000) + ν2(l − 5000) + 1;

– each absolute jump instructions ##l with l ≤ 5000 is replaced by the in-
struction sequence $put:1:#l′ ; ###1, where l′ = l + ν1(l).

Notice that the positions occurring in jump instructions are adapted to the
prefixing of a get instruction to each half of P and the replacement of each jump
instructions that gives rise to a jump into the other half of P by two instructions.

13

For any instruction register file state σ, we have that |P | coincides with
|$put:1:#1 ; ###1|σ(〈(P

′, D)〉 y 〈(P ′′, D)〉) after the presence of the internal
actions tau and gl in the latter behaviour has been concealed. In Section 7, we
will introduce operators to conceal the presence of internal actions.

In this section, we have illustrated by means of an example that splitting
a program into fragments is relatively simple. In Section 10, we will show that
synthesizing a program from a collection of fragments is fairly complicated.

7 Interaction of Threads with Services

A thread may perform certain basic actions only for the sake of having itself
affected by some service. When processing a basic action performed by a thread,
a service affects that thread by returning a reply value to the thread at comple-
tion of the processing of the basic action. In this section, we introduce the use
mechanism, which is concerned with this kind of interaction between threads
and services.6 In the current paper, we will use the use mechanism to have
behaviours of PGA programs affected by some service. We also introduce an
abstraction mechanism. This mechanism serves for concealment of the presence
of internal actions, which arise among other things from the use mechanism.

It is assumed that there is a fixed but arbitrary finite set F of foci and a fixed
but arbitrary finite set M of methods. Each focus plays the role of a name of a
service provided by the execution environment that can be requested to process
a command. Each method plays the role of a command proper. For the set A of
basic actions, we take the set {f.m | f ∈ F ,m ∈M}. Performing a basic action
f.m is taken as making a request to the service named f to process command m.

We introduce yet another sort: the sort S of services. However, we will not
introduce constants and operators to build terms of this sort. S is considered to
stand for the set of all services. We identify services with functions H :M+ →
{T,F,B} that satisfy the following condition:

∀α ∈M+,m ∈M • (H(α) = B ⇒ H(α y 〈m〉) = B) .

Given a service H and a method m ∈M, the derived service of H after process-
ing m, written ∂

∂m
H, is defined by ∂

∂m
H(α) = H(〈m〉y α).

A service H can be understood as follows:

– if H(〈m〉) = T, then the request to process m is accepted by the service, the
reply is positive, and the service proceeds as ∂

∂m
H;

– if H(〈m〉) = F, then the request to process m is accepted by the service, the
reply is negative, and the service proceeds as ∂

∂m
H;

– if H(〈m〉) = B, then the request to process m is rejected by the service.

For each f ∈ F , we introduce the binary use operator /f : T × S → T.
Intuitively, p /f H is the thread that results from processing all basic actions

6 This version of the use mechanism was first introduced in [8]. In later papers, it is
also called thread-service composition.

14

Table 11. Axioms for use operators

S /f H = S TSC1

D /f H = D TSC2

tau ◦ x /f H = tau ◦ (x /f H) TSC3

(x E g.mD y) /f H = (x /f H) E g.mD (y /f H) if f 6= g TSC4

(x E f.mD y) /f H = tau ◦ (x /f
∂
∂m

H) if H(〈m〉) = T TSC5

(x E f.mD y) /f H = tau ◦ (y /f
∂
∂m

H) if H(〈m〉) = F TSC6

(x E f.mD y) /f H = D if H(〈m〉) = B TSC7

Table 12. Axioms for abstraction operators

τι(S) = S TT1

τι(D) = D TT2

τι(ι ◦ x) = τι(x) TT3

τι(x E aD y) = τι(x) E aD τι(y) if a 6= ι TT4

performed by thread p that are of the form f.m by service H. When a basic
action of the form f.m performed by thread p is processed by service H, it is
turned into the internal action tau and postconditional composition is removed
in favour of action prefixing on the basis of the reply value produced.

The axioms for the use operators are given in Table 11. In this table, f
and g stand for an arbitrary foci from F and m stands for an arbitrary method
fromM. Axioms TSC3 and TSC4 express that internal actions and basic actions
of the form g.m with f 6= g are not processed. Axioms TSC5 and TSC6 express
that a thread is affected by a service as described above when a basic action of
the form f.m performed by the thread is processed by the service. Axiom TSC7
expresses that deadlock takes place when a basic action to be processed is not
accepted.

Let T stand for either BTA, BTA+REC or BTA+REC+AIP. Then we will
write T+TSC for T , taking the set {f.m | f ∈ F ,m ∈M} for A, extended with
the use operators and the axioms from Table 11.

In [5], we show that the services considered here can be viewed as processes
that are definable over an extension of ACP with conditionals introduced in [4].

Both basic actions and internal actions are actions whose presence matters.
For each ι ∈ I, we introduce the unary abstraction operator τι :T→ T to conceal
the presence of internal action ι in the case where its presence does not matter
after all.

The axioms for the abstraction operators are given in Table 12. In this table,
a stands for an arbitrary action from A ∪ I.

A main difference between the version of the use mechanism introduced here
and the version of the use mechanism introduced in [9] is that the former version
does not incorporate abstraction and the latter version incorporates abstraction.

15

Let T stand for either BTA, BTA+REC, BTA+REC+AIP, BTA+TSC,
BTA+REC+TSC or BTA+REC+AIP+TSC. Then we will write T+ABSTR
for T extended with the abstraction operators and the axioms from Table 12.

For each ι ∈ I, the equation τι(ι
ω) = D is derivable from the axioms of

BTA+REC+AIP+ABSTR.

8 State-Based Description of Services

In this section, we introduce the state-based approach to describe families of
services that will be used in Section 9. This approach is similar to the approach
to describe state machines introduced in [9].

In this approach, a family of services is described by

– a set of states S;
– an effect function eff :M× S → S;
– a yield function yld :M× S → {T,F,B};

satisfying the following conditions:

∃s ∈ S • ∀m ∈M •

(yld(m, s) = B ∧ ∀s′ ∈ S • (yld(m, s′) = B ⇒ eff (m, s′) = s)) .

The set S contains the states in which the services may be, and the functions eff
and yld give, for each method m and state s, the state and reply, respectively,
that result from processing m in state s.

We define, for each s ∈ S, a cumulative effect function ceff s :M
∗ → S in

terms of s and eff as follows:

ceff s(〈 〉) = s ,

ceff s(α y 〈m〉) = eff (m, ceff s(α)) .

We define, for each s ∈ S, a service Hs in terms of ceff s and yld as follows:

Hs = yld(m, ceff s(α)) .

Hs is called the service with initial state s described by S, eff and yld . We say
that {Hs | s ∈ S} is the family of services described by S, eff and yld .

The condition that is imposed on S, eff and yld implies that, for each s ∈ S,
Hs is a service indeed. It is worth mentioning that ∂

∂m
Hs = Heff (m,s).

9 Instruction Register File Services

In this section, we give a state-based description of a simple family of services
that constitute a register file with a finite set of registers that can contain in-
structions from a finite set of core primitive instructions. These services will be
used in Section 10.

16

It is assumed that a fixed but arbitrary set I ⊆ N such that I = [1, n] for
some n ∈ N and a fixed but arbitrary finite set U ⊆ Ic have been given. The set
I is considered to contain the positions of the registers in the instruction register
file and the set U is considered to contain the instructions that can be put in
those registers.

We write IRFS for the set
⋃
I′⊆I I

′ → U . The members of IRFS are consid-
ered to be the possible instruction register file states. It is assumed that a fixed
but arbitrary bijection θ : IRFS → [1, card(IRFS)] has been given.

The instruction register file services accept the following methods:

– for each i ∈ I and u ∈ U , a register put method put:i:u;
– for each j ∈ rng(θ), a register file test method eq:j.

We write Mirf for the set {put:i:u | i ∈ I ∧ u ∈ U} ∪ {eq:j | j ∈ rng(θ)}.
It is assumed that Mirf ⊆M.
The methods accepted by instruction register file services can be explained

as follows:

– put:i:u : the contents of register i becomes instruction u and the reply is T;
– eq:j : if the state of the instruction register file equals θ−1(j), then nothing
changes and the reply is T; otherwise nothing changes and the reply is F.

Let s ∈ IRFS . Then we write IRFs for the service with initial state s
described by S = IRFS ∪ {↑}, where ↑ 6∈ IRFS , and the functions eff and yld

defined as follows (σ ∈ IRFS):7

eff (put:i:u, σ) = σ ⊕ [i 7→ u] ,

eff (eq:j, σ) = σ ,

eff (m,σ) = ↑ if m 6∈ Mirf ,

eff (m, ↑) = ↑ ,

yld(put:i:n, σ) = T ,

yld(eq:j, σ) = T if θ(σ) = j ,

yld(eq:j, σ) = F if θ(σ) 6= j ,

yld(m,σ) = B if m 6∈ Mirf ,

yld(m, ↑) = B .

10 Program Synthesis

In this section, we show that, for each PGAp program P and polyadic instruction
sequence vector α, a PGA program P ′ can be synthesized from P and α such
that, for all relevant instruction register file states σ, |P ′|/irfIRFσ coincides with
|P |σ(α) after the presence of the internal actions tau and gl has been concealed.

Let P be a PGAp program and α be a polyadic instruction sequence vector.
The general idea is that:

7 We use the following notation for functions: [] for the empty function; [d 7→ r] for
the function f with dom(f) = {d} such that f(d) = r; and f ⊕ g for the function
h with dom(h) = dom(f) ∪ dom(g) such that, for all d ∈ dom(h), h(d) = f(d) if
d 6∈ dom(g) and h(d) = g(d) otherwise.

17

– each polyadic instruction sequence in α is translated into a PGAp program
and an appropriate finite collection of instances of this PGAp program in
which occurrences of get instructions are replaced by core primitive instruc-
tions is generated;

– P and all the generated programs are translated into PGLCp programs and
these PGLCp programs are concatenated;

– the resulting PGLCp program is translated into a PGLDp program and this
program is translated into a PGLD program by replacing all occurrences of
the supplementary instructions by core primitive instructions as follows:
• a switch-over instruction ###i is replaced by an absolute jump instruc-
tion whose effect is a jump to the beginning of an appended instruction
sequence whose execution leads, after the state of the instruction register
file has been found by a linear search, to a jump to the beginning of the
right instance of the PGAp program that corresponds to the ith polyadic
instruction sequence in α;

• a put instruction $put:i:u is simply replaced by the plain basic instruction
irf.put:i:u;

• a get instruction $get:i is simply replaced by the absolute jump instruc-
tion whose effect is a jump to the position of the instruction itself.

A collection of instances of the PGAp program corresponding to a polyadic
instruction sequence in α is considered appropriate if it includes all instances
that may become the one being executed. P and all the generated programs are
translated into PGLCp programs because PGLCp programs are relocatable: they
can be concatenated without disturbing the meaning of jump instructions. The
PGLCp program resulting from the concatenation is translated into a PGLDp

program before the supplementary instructions are replaced because the replace-
ment of a switch-over instruction by an absolute jump instruction is simpler than
its replacement by a relative jump instruction.

Following the general idea outlined above, we define a function pgap2pgld

that yields, for each PGAp program P , a function that gives, for each polyadic
instruction sequence vector α, a PGLD program P ′ such that, for each relevant
instruction register file service state σ, |pgld2pga(P ′)| /irf IRFσ coincides with
|P |σ(α) after the presence of the internal actions tau and gl has been concealed.

The function pgap2pgld from the set of all PGAp programs to the set all
functions from the set of all polyadic instruction sequence vectors to the set of
all PGLD programs is defined as follows:

pgap2pgld(x)(α) =

translate(pglc2pgld(expand(x)(α))) ;

+irf.eq:1 ; ##l1,1 ; . . . ; +irf.eq:n′ ; ##l1,n′ ;
...

+irf.eq:1 ; ##ln,1 ; . . . ; +irf.eq:n′ ; ##ln,n′ ,

18

where n = len(α), n′ = max(rng(θ)), the function expand from the set of all
PGAp programs to the set all functions from the set of all polyadic instruction
sequence vectors to the set of all PGLCp programs is defined as follows:

expand(x)(α) =

pga2pglc(x) ;

pga2pglc(gen(α, 1, θ−1(1))) ; . . . ; pga2pglc(gen(α, 1, θ−1(n′))) ;
...

pga2pglc(gen(α, n, θ−1(1))) ; . . . ; pga2pglc(gen(α, n, θ−1(n′))) ,

where n = len(α), n′ = max(rng(θ)), and the function gen from the set
of all polyadic instruction sequence vectors, the set of all natural numbers
and the set of all instruction register file states to the set of all PGAp

programs is defined as follows:

gen(α, i, σ) = prj pgn(α,i)(pg(α, i))[σ] if 1 ≤ i ≤ len(α) ∧ valid(α, i, σ) ,

gen(α, i, σ) = #0 if 1 ≤ i ≤ len(α) ∧ ¬ valid(α, i, σ) ,

gen(α, i, σ) = ! if i = 0 ∨ i > len(α) ,

the function translate from the set of all PGLDp programs to the set of all PGLD
programs is defined as follows:

translate(u1 ; . . . ; uk) = ψ1(u1) ; . . . ; ψ1(uk) ,

where the functions ψj from the set of all primitive instructions of PGLDp

to the set of all primitive instructions of PGLD are defined as follows
(1 ≤ j ≤ k):

ψj(###i) = ##li if 1 ≤ i ≤ len(α) ,

ψj(###i) = ! if i = 0 ∨ i > len(α) ,

ψj($put:i:u) = irf.put:i:u ,

ψj($get:i) = ##j ,

ψj(u) = u if u is not a supplementary basic instruction ,

where for each i ∈ [1, len(α)]:

li = len(pga2pglc(x))

+
∑

h∈[1,len(α)],h′∈rng(θ)

len(pga2pglc(prj pgn(α,h)(pg(α, h))[θ
−1(h′)]))

+ 2 ·max(rng(θ)) · (i− 1) ,

and for each i ∈ [1, len(α)] and j ∈ rng(θ):

li,j = len(pga2pglc(x))

+
∑

h∈[1,i−1],h′∈rng(θ)

len(pga2pglc(prj pgn(α,h)(pg(α, h))[θ
−1(h′)]))

+
∑

h′∈[1,j−1]

len(pga2pglc(prj pgn(α,i)(pg(α, i))[θ
−1(h′)])) .

19

The following theorem states rigorously that, for any PGAp program P and
polyadic instruction sequence vector α, for all relevant instruction register file
states σ, |pgld2pga(pgap2pgld(P)(α))| /irf IRFσ coincides with |P |σ(α) after
the presence of the internal actions tau and gl has been concealed.

Theorem 1. Let P be a PGAp program and α be a polyadic instruction sequence

vector, and let n be the highest number occurring in instructions of the form

$put:i:u or $get:i in P or α. Take the interval [1, n] for I and the set of all core

primitive instructions occurring in instructions of the form $put:i:u in P or α
for U , and let σ ∈ IRFS. Then τtau(|pgld2pga(pgap2pgld(P)(α))| /irf IRFσ) =
τtau(τgl(|P |σ(α))).

Proof. The proof of Theorem 1 follows the same line as the proof of Theorem 1
from [6] given in that paper. Here, we give only a brief outline of the proof of
the current theorem.

The proof of this theorem proceeds as follows: (i) we give a set T of closed
terms of sort T with τtau(τgl(|P |σ(α))) ∈ T , a set T

′ of closed terms of sort T with
τtau(|pgld2pga(pgap2pgld(P)(α))| /irf IRFσ) ∈ T

′, and a bijection β : T → T ′;
(ii) we show that there exists a set E consisting of one derivable equation p = p′

for each p ∈ T such that, for all equations p = p′ in E:

– β(p) = p′′ is a derivable equation if p′′ is p′ with, for all q ∈ T , all occurrences
of q in p′ replaced by β(q);

– p′ ∈ T only if p′ can be rewritten to a q′ 6∈ T using the equations in E from
left to right.

This means that τtau(τgl(|P |σ(α))) and τtau(|pgld2pga(pgap2pgld(P)(α))| /irf
IRFσ) denote solutions of the same guarded recursive specification. Because
guarded recursive specifications have unique solutions, it follows immediately
that τtau(|pgld2pga(pgap2pgld(P)(α))| /irf IRFσ) = τtau(τgl(|P |σ(α))). ut

In the proof outlined above, an apposite indexing of the closed terms in the
sets T and T ′ facilitates the definition of the bijection β. Yet, this definition is
much more complicated than the definition of the bijection needed in the proof
from [6] referred to.

11 Conclusions

We have given a formalization of instruction sequences that have been split
into fragments. Thread extraction provides the possible joint behaviours of a
collection of fragments. We have shown that, for each possible joint behaviour
of a collection of fragments, a sequential program can be synthesized from the
collection of fragments that exhibits on execution essentially the behaviour in
question by interaction with a service. This program synthesis is reminiscent
of the service-based variant of projection semantics for program notations used
in [7]. However, we consider the program synthesis too complicated to serve a
semantical purpose.

20

In this paper, a fragment in a collection of fragments has two attributes:
an ordinal index (position) and a program notation index. We have also men-
tioned that a nominal index (label) could be an optional attribute. Many other
attributes that are relevant in practice can be imagined, e.g. modification date,
author, tester, owner, user, and security level. In this paper, we have restricted
ourselves to attributes that are indispensable for a theoretical understanding of
instruction sequence fragmentation.

The question arises whether the aspects of instruction sequence fragmenta-
tion covered in this paper that can be dealt with at the level of threads. An
option for future work is to investigate this issue.

References

1. J. A. Bergstra and I. Bethke. Polarized process algebra and program equivalence.
In J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Pro-
ceedings 30th ICALP, volume 2719 of Lecture Notes in Computer Science, pages
1–21. Springer-Verlag, 2003.

2. J. A. Bergstra and I. Bethke. Predictable and reliable program code: Virtual
machine based projection semantics. In J. A. Bergstra and M. Burgess, editors,
Handbook of Network and Systems Administration. Elsevier, Amsterdam, 2007.

3. J. A. Bergstra and M. E. Loots. Program algebra for sequential code. Journal of
Logic and Algebraic Programming, 51(2):125–156, 2002.

4. J. A. Bergstra and C. A. Middelburg. Splitting bisimulations and retrospective
conditions. Information and Computation, 204(7):1083–1138, 2006.

5. J. A. Bergstra and C. A. Middelburg. Thread algebra with multi-level strategies.
Fundamenta Informaticae, 71(2/3):153–182, 2006.

6. J. A. Bergstra and C. A. Middelburg. Instruction sequences with dynamically
instantiated instructions. Electronic Report PRG0710, Programming Research
Group, University of Amsterdam, November 2007.

7. J. A. Bergstra and C. A. Middelburg. Instruction sequences with indirect jumps.
Electronic Report PRG0709, Programming Research Group, University of Ams-
terdam, November 2007.

8. J. A. Bergstra and C. A. Middelburg. Thread algebra for strategic interleaving.
Formal Aspects of Computing, 19(4):445–474, 2007.

9. J. A. Bergstra and A. Ponse. Combining programs and state machines. Journal

of Logic and Algebraic Programming, 51(2):175–192, 2002.
10. W. J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer

Science, An EATCS Series. Springer-Verlag, Berlin, 2000.
11. D. Sannella and A. Tarlecki. Algebraic preliminaries. In E. Astesiano, H.-J. Kre-

owski, and B. Krieg-Brückner, editors, Algebraic Foundations of Systems Specifi-

cation, pages 13–30. Springer-Verlag, Berlin, 1999.
12. M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of The-

oretical Computer Science, volume B, pages 675–788. Elsevier, Amsterdam, 1990.

21

Electronic Reports Series of the Programming Research Group

Within this series the following reports appeared.

[PRG0802] A. Barros and T. Hou, A Constructive Version of AIP Revisited, Programming Research Group -
University of Amsterdam, 2008.

[PRG0801] J.A. Bergstra and C.A. Middelburg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - University of Amsterdam, 2008.

[PRG0713] J.A. Bergstra, A. Ponse, and M.B. van der Zwaag, Tuplix Calculus, Programming Research Group -
University of Amsterdam, 2007.

[PRG0712] J.A. Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, Towards a Formalization of Budgets,
Programming Research Group - University of Amsterdam, 2007.

[PRG0711] J.A. Bergstra and C.A. Middelburg, Program Algebra with a Jump-Shift Instruction, Programming
Research Group - University of Amsterdam, 2007.

[PRG0710] J.A. Bergstra and C.A. Middelburg, Instruction Sequences with Dynamically Instantiated Instructions,
Programming Research Group - University of Amsterdam, 2007.

[PRG0709] J.A. Bergstra and C.A. Middelburg, Instruction Sequences with Indirect Jumps, Programming
Research Group - University of Amsterdam, 2007.

[PRG0708] B. Diertens, Software (Re-)Engineering with PSF III: an IDE for PSF, Programming Research Group
- University of Amsterdam, 2007.

[PRG0707] J.A. Bergstra and C.A. Middelburg, An Interface Group for Process Components, Programming
Research Group - University of Amsterdam, 2007.

[PRG0706] J.A. Bergstra, Y. Hirschfeld, and J.V. Tucker, Skew Meadows, Programming Research Group -
University of Amsterdam, 2007.

[PRG0705] J.A. Bergstra, Y. Hirschfeld, and J.V. Tucker, Meadows, Programming Research Group - University of
Amsterdam, 2007.

[PRG0704] J.A. Bergstra and C.A. Middelburg, Machine Structure Oriented Control Code Logic (Extended
Version), Programming Research Group - University of Amsterdam, 2007.

[PRG0703] J.A. Bergstra and C.A. Middelburg, On the Operating Unit Size of Load/Store Arc hitectures,
Programming Research Group - University of Amsterdam, 2007.

[PRG0702] J.A. Bergstra and A. Ponse, Interface Groups and Financial Transfer Architectures, Programming
Research Group - University of Amsterdam, 2007.

[PRG0701] J.A. Bergstra, I. Bethke, and M. Burgess, A Process Algebra Based Framework for Promise Theory,
Programming Research Group - University of Amsterdam, 2007.

[PRG0610] J.A. Bergstra and C.A. Middelburg, Parallel Processes with Implicit Computational Capital,
Programming Research Group - University of Amsterdam, 2006.

[PRG0609] B. Diertens, Software (Re-)Engineering with PSF II: from architecture to implementation,
Programming Research Group - University of Amsterdam, 2006.

[PRG0608] A. Ponse and M.B. van der Zwaag, Risk Assessment for One-Counter Threads, Programming
Research Group - University of Amsterdam, 2006.

[PRG0607] J.A. Bergstra and C.A. Middelburg, Synchronous Cooperation for Explicit Multi-Threading,
Programming Research Group - University of Amsterdam, 2006.

[PRG0606] J.A. Bergstra and M. Burgess, Local and Global Trust Based on the Concept of Promises,
Programming Research Group - University of Amsterdam, 2006.

[PRG0605] J.A. Bergstra and J.V. Tucker, Division Safe Calculation in Totalised Fields, Programming Research
Group - University of Amsterdam, 2006.

[PRG0604] J.A. Bergstra and A. Ponse, Projection Semantics for Rigid Loops, Programming Research Group -
University of Amsterdam, 2006.

[PRG0603] J.A. Bergstra and I. Bethke, Predictable and Reliable Program Code: Virtual Machine-based
Projection Semantics (submitted for inclusion in the Handbook of Network and Systems
Administration), Programming Research Group - University of Amsterdam, 2006.

[PRG0602] J.A. Bergstra and A. Ponse, Program Algebra with Repeat Instruction, Programming Research Group
- University of Amsterdam, 2006.

[PRG0601] J.A. Bergstra and A. Ponse, Interface Groups for Analytic Execution Architectures, Programming
Research Group - University of Amsterdam, 2006.

[PRG0505] B. Diertens, Software (Re-)Engineering with PSF, Programming Research Group - University of
Amsterdam, 2005.

[PRG0504] P.H. Rodenburg, Piecewise Initial Algebra Semantics, Programming Research Group - University of
Amsterdam, 2005.

[PRG0503] T.D. Vu, Metric Denotational Semantics for BPPA, Programming Research Group - University of
Amsterdam, 2005.

[PRG0502] J.A. Bergstra, I. Bethke, and A. Ponse, Decision Problems for Pushdown Threads, Programming
Research Group - University of Amsterdam, 2005.

[PRG0501] J.A. Bergstra and A. Ponse, A Bypass of Cohen’s Impossibility Result, Programming Research Group -
University of Amsterdam, 2005.

[PRG0405] J.A. Bergstra and I. Bethke, An Upper Bound for the Equational Specification of Finite State Services,
Programming Research Group - University of Amsterdam, 2004.

[PRG0404] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Strategic Interleaving, Programming
Research Group - University of Amsterdam, 2004.

[PRG0403] B. Diertens, A Compiler-projection from PGLEc.MSPio to Parrot, Programming Research Group -
University of Amsterdam, 2004.

[PRG0402] J.A. Bergstra and I. Bethke, Linear Projective Program Syntax, Programming Research Group -
University of Amsterdam, 2004.

[PRG0401] B. Diertens, Molecular Scripting Primitives, Programming Research Group - University of
Amsterdam, 2004.

[PRG0302] B. Diertens, A Toolset for PGA, Programming Research Group - University of Amsterdam, 2003.

[PRG0301] J.A. Bergstra and P. Walters, Projection Semantics for Multi-File Programs, Programming Research
Group - University of Amsterdam, 2003.

[PRG0201] I. Bethke and P. Walters, Molecule-oriented Java Programs for Cyclic Sequences, Programming
Research Group - University of Amsterdam, 2002.

The above reports and more are available through the website: www.science.uva.nl/research/prog/

Electronic Report Series

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

