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Abstract

In this paper, we review a constructive version of the Approximation

Induction Principle. This version states that bisimilarity of regular pro-

cesses can be decided by observing only a part of their behaviour. We use

this constructive version to formulate a complete inference system for the

Algebra of Communicating Processes with linear recursive specifications.

1 Introduction

The Approximation Induction Principle (AIP) was introduced by Baeten, Bergstra
and Klop [2]. This proof rule states that if all finite projections of two processes
are equal, then the two processes are equal. The projection of a process at level
n can execute all transitions of this process up to the first n steps. At first
sight, AIP can be used to test the equality of processes. However, as there can
be infinitely many finite projections of a process, it is not possible to derive the
equality of processes by testing their projections one by one.

In 1987, Mauw reformulated AIP into a constructive version of this principle
(AIPc), proving its correctness for regular processes [7]. He pointed out that
not all projections need to be considered for deriving the equality of regular
processes, but only a certain projection at a large enough level is sufficient.
Although not well known, AIPc leads to a valuable result: it can be used to
formulate an effective inference system for regular processes and to consider
algorithms to decide upon equality.

In this paper, we review AIPc in the context of the Algebra of Communicat-
ing Processes. We give a more general view of this principle by considering the
deadlock constant δ, introduced by Bergstra and Klop [4]. Mauw’s work does
not consider this constant or the notions of parallelism and concurrency. We
also use the notation for a solution of a linear recursive specification introduced
by van Glabbeek [10] in our definition and proof of AIPc.

The paper is organized as follows. In Section 2, we describe some basic topics
in process algebra. Next, in Section 3, we discuss the revisited constructive
version of AIP and give the bound for the number of transition steps to be
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considered. In Section 4, we prove that, in order to derive the equality of
processes, it is not possible to reduce this bound. We present a complete proof
system for ACP (Algebra of Communicating Processes) [4] with linear recursive
specifications in Section 5. A comparison of Mauw’s approach and ours, and
some concluding remarks are described in Section 6.

2 Process Algebra

ACP is an axiom system. Models for ACP can be constructed using several
techniques, such as process graphs, the term model, and the projective limit
model. A description of those models can be found in the work of Baeten and
Weijland [3]. We consider processes as elements of a model for ACP.

BPA (Basic Process Algebra) is a widely known subsystem of ACP which
does not consider deadlock, encapsulation and the operators for concurrency.
We begin by describing an extension of BPA. Next, we present the ACP axiom
system.

2.1 Basic Process Algebra with deadlock

BPAδ extends BPA with the distinction between successful and unsuccessful
termination. Consider a process that has reached a state in which it has stopped
executing actions and cannot proceed. This state is referred to as deadlock.

Consider a non-empty set of actions A with δ /∈ A. We denote A ∪ {δ} by
Aδ. The signature of BPAδ consists of the following operators:

1. for every a ∈ A, an action constant a;

2. the deadlock constant δ;

3. variables x, y, z, . . . ;

4. the binary alternative composition operator +;

5. the binary sequential composition operator ·.

The axioms of BPAδ are listed in Table 1.

Table 1: Axioms of BPAδ

A1 x + y = y + x
A2 (x + y) + z = x + (y + z)
A3 x + x = x
A4 (x + y) · z = x · z + y · z
A5 (x · y) · z = x · (y · z)
A6 x + δ = x
A7 δ · x = δ
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As binding convention, the operator · binds stronger than the operator +.
We can omit the operator · from terms, i.e, instead of writing a ·b we can simply
write ab. Let s and t range over terms. The symbols in the signature can be
informally explained as follows:

1. a executes action a and then terminates successfully;

2. δ does not display any behaviour and terminates unsuccessfully.

3. s + t executes either s or t;

4. s · t first executes s, and upon successful termination of s executes t.

We formalize this intuition by applying structural operational semantics as
described in the work of Aceto, Fokkink and Verhoef [1]. This includes giving

a collection of transition rules which defines transitions t
a→ t′ to express that

term t can evolve into term t′ by the execution of action a, and predicates t
a→ √

to express that term t can terminate successfully by the execution of action a.
The transition rules for BPAδ are presented in Table 2. The variables x, x′, y,
and y′ range over closed terms and a ranges over actions in A. Since deadlock
does not display any behaviour, there is no transition rule for this constant.

Table 2: Transition rules for BPAδ (a ∈ A)

a
a→√

x
a→√

x+y
a→√ x

a→x′

x+y
a→x′

y
a→√

x+y
a→√ y

a→y′

x+y
a→y′

x
a→√

x·y
a→y

x
a→x′

x·y
a→x′·y

2.2 Algebra of Communicating Processes

The signature of ACP consists of the signature of BPAδ plus the following
operators:

1. the binary merge or parallel composition operator ‖;

2. the binary left merge operator !;

3. the binary communication merge operator |;

4. for each H ⊆ A, a unary encapsulation operator ∂H .
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The operators ‖, !, and | bind weaker than the · and stronger than the +.
The axioms of ACP consist of the axioms of BPAδ plus the axioms listed in

Table 3, where a, b ∈ Aδ and H ⊆ A. We consider a communication function γ,
which is a partial binary function on A that produces for certain pairs of actions
a and b their communication γ(a, b). The function γ satisfies the following
conditions:

1. for every a, b ∈ A, if γ(a, b) is defined, then γ(a, b) = γ(b, a), i.e., γ is
commutative;

2. for every a, b, c ∈ A, if γ(γ(a, b), c) is defined, then γ(γ(a, b), c) = γ(a, γ(b, c),
i.e., γ is associative.

Note that condition 2 implies that if for certain actions a, b, and c, γ(a, b) and
γ(γ(a, b), c) are both defined, then also γ(b, c) and γ(a, γ(b, c)) are defined.

Table 3: Axioms for merge with communication and encapsulation
CF1 a | b = γ(a, b), if γ(a, b) is defined;
CF2 a | b = δ otherwise.

CM1 x ‖ y = (x ! y + y ! x) + x | y
CM2 a ! x = a · x
CM3 a · x ! y = a · (x ‖ y)
CM4 (x + y) ! z = x ! z + y ! z
CM5 (a · x) | b = (a | b) · x
CM6 a | (b · x) = (a | b) · x
CM7 (a · x) | (b · y) = (a | b) · (x ‖ y)
CM8 (x + y) | z = x | z + y | z
CM9 x | (y + z) = x | z + y | z

D1 ∂H(a) = a, if a /∈ H
D2 ∂H(a) = δ, if a ∈ H
D3 ∂H(x + y) = ∂H(x) + ∂H(y)
D4 ∂H(x · y) = ∂H(x) · ∂H(y)

The symbols in the signature can be informally explained as follows:

1. s ‖ t executes both x and y in parallel;

2. s ! t executes an initial transition from s, and then executes the merge of
the remaining part of s and t;

3. s | t executes as initial transition a communication between initial transi-
tions of s and t, and then executes the merge of the remaining parts of s
and t.

4. ∂H renames all actions in H into δ.

The transition rules for the merge with communication and encapsulation
are presented in Table 4.
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Table 4: Transition rules for merge with communication and encapsulation,
where γ(a, b) is defined.

x
a→√

x‖y a→y

x
a→x′

x‖y a→x′‖y
y

a→√

x‖y a→x

y
a→y′

x‖y a→x‖y′

x
a→√

y
b→√

x‖yγ(a,b)→ √
x

a→√
y

b→y′

x‖yγ(a,b)→ y′

x
a→x′ y

b→√

x‖yγ(a,b)→ x′

x
a→x′ y

b→y′

x‖yγ(a,b)→ x′‖y′

x
a→√

x!y
a→y

x
a→x′

x!y
a→x′‖y

x
a→√

y
b→√

x|y
γ(a,b)→ √

x
a→√

y
b→y′

x|y
γ(a,b)→ y′

x
a→x′ y

b→√

x|y
γ(a,b)→ x′

x
a→x′ y

b→y′

x|y
γ(a,b)→ x′‖y′

x
a→√

∂H(x)
a→√ a /∈ H

x
a→x′

∂H(x)
a→∂H(x′)

a /∈ H

2.3 Linear Recursive Specifications

A (finite) recursive specification E is a set of recursive equations {Xi = ti( #X) |
Xi ∈ VE} where, for some n ≥ 1, VE = {X1, X2, . . . , Xn} is a set of re-

cursion variables, #X is a vector containing all recursion variables in VE , i.e,
#X = X1, . . . , Xn, and ti is a term over the signature of ACP which may contain
the variables in #X . Infinite processes can be defined using recursive equations,
for example, the equation X = a ·X + b defines the process that executes action
a an arbitrary number of times. Each time it has the choice of executing b, after
which it terminates.

A solution for a recursive equation is a process that solves the equation.
We use the constant 〈Xi|E〉 to denote, in the term model and in the transi-

tion rules, the solution for the recursive equation (Xi = ti( #X)) ∈ E. Once a
recursive specification E is declared, 〈Xi|E〉 can be abbreviated by 〈Xi〉. We
also talk about a solution for a recursive specification E. A solution for E,
with VE = {X1, . . . , Xn}, is a vector 〈X1|E〉, . . . , 〈Xn|E〉 such that substituting
each variable in VE by its respective solution turns all equations in E into true
statements.

Definition 1 (Linear Recursive Specification). A recursive specification E =

{Xi = ti( #X)|i = 1, . . . , n} is called linear if all its equations are linear, i.e., of

the form

Xi =

n∑

j=1

αi,jXj + βi,
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where αi,j and βi are finite sums of actions or δ.

In practice we often omit the δ-summands.
The signature of ACPlin, where lin stands for linear recursion, consists of the

signature of ACP plus for all linear recursive specifications E and for all Xi ∈ VE

a constant 〈Xi|E〉. The axioms of ACPlin consist of the axioms of ACP plus
the recursive definition principle (RDP), presented in Table 5, where the linear

recursive specification E is the set of equations {Xi = ti( $X) | i = 1, . . . , n}.
RDP states that 〈X1|E〉, . . . , 〈Xn|E〉 is a solution for E.

Table 5: Axiom for linear recursive specifications

RDP 〈Xi|E〉 = ti(〈X1|E〉, . . . , 〈Xn|E〉) (i ∈ {1, . . . , n})

The transition rules for ACPlin are obtained by extending the set of transi-
tion rules for ACP, given in Table 2 and Table 4, with the rules in Table 6.

Table 6: Transition rules for ACPlin

ti(〈X1|E〉,...,〈Xn|E〉) a→√

〈Xi|E〉 a→√ ti(〈X1|E〉,...,〈Xn|E〉) a→y

〈Xi|E〉 a→y

2.4 Projection

For each natural number n, the unary projection operator πn will block all
further actions after n actions have been executed. The signature of ACPlin +
PR, where PR stands for projection, consists of the signature of ACPlin plus for
each natural number n a unary function πn. Table 7 presents the axioms for
the projection operator, where a ∈ Aδ.

Table 7: Axioms for projection operators
PR1 πn+1(a) = a

PR2 π0(x) = δ

PR3 πn+1(a · x) = a · πn(x)
PR4 πn(x + y) = πn(x) + πn(y)

The transition rules for ACPlin + PR is obtained by extending the set of
transition rules of ACPlin, Table 2, Table 4 and Table 6, with the rules in
Table 8.

The Approximation Induction Principle (AIP) states that if every finite pro-
jection of two processes is equal, then the two processes are equal:

(AIP) If πn(x) = πn(y) for all n ∈ N, then x = y.
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Table 8: Transition rules for ACPlin + PR

x
a→√

πn+1(x)
a→√ x

a→x′

πn+1(x)
a→πn(x′)

At first sight, this principle could be used to derive the equality of processes.
However, as processes have infinitely many projections, it is not possible to
derive their equality by testing the projections one by one.

A corollary to AIP is that t ‖ s = s ‖ t, i.e., the merge is commutative for
recursive terms.

3 A Constructive Version of AIP

A constructive version of AIP (AIPc) can be derived for the class of regular
processes. AIPc states that only a finite number of transition steps need to be
considered in order to derive the equality of two regular processes.

Note that the solution for a linear equation in a linear recursive specification
is a regular process. Consider a single linear recursive specification and two
regular processes, each a solution for a linear equation. This way, the number
of transition steps to be considered is equal to the number of linear equations
in the linear recursive specification minus one.

Theorem 1 (AIPc). Let E be a linear recursive specification with n variables

and let Xp and Xq be two recursion variables in VE, then:

πn−1(〈Xp〉) = πn−1(〈Xq〉) ⇒ 〈Xp〉 = 〈Xq〉

Proof. Consider the relation ∼=k on 〈VE〉 = {〈X〉|X ∈ VE} for k ≥ 0 defined by:

〈Xp〉 ∼=k 〈Xq〉 ⇔ πk(〈Xp〉) = πk(〈Xq〉).

Because

πk+1(〈Xp〉) = πk+1(〈Xq〉) ⇒ πk(〈Xp〉) = πk(〈Xq〉),

we can define the non-increasing sequence of relations:

∼=0 ⊇ ∼=1 ⊇ ∼=2 . . .

The relation ∼=0 has only one equivalence class which is 〈VE〉 itself. This is easily
seen considering axiom PR2.

From now on, we need to prove two claims: (1) once this sequence becomes
constant it remains constant; (2) the sequence is constant from ∼=n−1 at most.

Claim 1. (∼=k = ∼=k+1) ⇒ (∼=k+1 = ∼=k+2).
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Proof. Since ∼=k+1 ⊇ ∼=k+2 by the relation’s definition, we only need to
prove that ∼=k+1 ⊆ ∼=k+2 . If we assume ∼=k+1 ! ∼=k+2 , there are
Xp and Xq in VE such that:

πk+1(〈Xp〉) = πk+1(〈Xq〉) and πk+2(〈Xp〉) &= πk+2(〈Xq〉).

Now let Xp and Xq be defined by the linear equations

Xp =
n∑

i=1

αiXi + β

Xq =

n∑

j=1

γjXj + θ,

where all Xi and Xj are elements of VE . Then the projections at level k +2 are

πk+2(〈Xp〉) =

n∑

i=1

αi · πk+1(〈Xi〉) + β

πk+2(〈Xq〉) =
n∑

j=1

γj · πk+1(〈Xj〉) + θ.

Because β is equal to θ, it must be the case that:

∃i∀j (αi &= γj ∨ πk+1(〈Xi〉) &= πk+1(〈Xj〉)) ∨

∃j∀i (αi &= γj ∨ πk+1(〈Xi〉) &= πk+1(〈Xj〉)).

Applying ∼=k = ∼=k+1 on the above expression:

∃i∀j (αi &= γj ∨ πk(〈Xi〉) &= πk(〈Xj〉)) ∨

∃j∀i (αi &= γj ∨ πk(〈Xi〉) &= πk(〈Xj〉)).

So this expression must be true in order for πk+2(〈Xp〉) &= πk+2(〈Xq〉) to
hold. From this we find:

πk+1(〈Xp〉) =

n∑

i=1

αi · πk(〈Xi〉) + β &=

n∑

j=1

γj · πk(〈Xj〉) + θ = πk+1(〈Xq〉).

This is in contradiction with the assumptions.
Hence,

(∼=k = ∼=k+1) ⇒ (∼=k+1 = ∼=k+2).

Claim 2. ∼=n−1 = ∼=n
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Proof. Note that for two equivalence relations R and R′, if R ⊂ R′, the number
of equivalence classes generated by R is strictly greater than the number of
equivalence classes generated by R′. Now, since the sequence of relations defined
by ∼=k is initially strictly decreasing, and the maximum number of equivalence
classes of VE is n (one class for each term), we can conclude that at most the first
n relations in the sequence can be unequal, i.e., from ∼=0 to ∼=n−1. Therefore,

∼=n−1 = ∼=n .

Now we can use the two claims to infer from

πn−1(〈Xp〉) = πn−1(〈Xq〉)
the equality of all projections:

∀k ≥ 0 πk(〈Xp〉) = πk(〈Xq〉).
By AIP we can conclude that 〈Xp〉 = 〈Xq〉.

4 Tightness

In this section, we show that the bound n−1 used in AIPc for a linear recursive
specification E is tight, i.e., it is in general not possible to choose a lower value.

Theorem 2. For any value n ≥ 2, there is finite linear recursive specification

E with n equations, and with Xp, Xq ∈ VE , such that

πn−2(〈Xp〉) = πn−2(〈Xq〉) and 〈Xp〉 )= 〈Xq〉.
Proof. Take any n ≥ 2. Construct the linear recursive specification E, with
VE = {Z1, . . . , Zn}, as follows:

Zk =

{

aZk+1 if k < n,
aZ1 + a if k = n.

The transition system associated to E, provided by the transition rules of
ACPlin, is:

〈Z1〉 a
!! 〈Z2〉 a

!! · · ·
a

!! 〈Zn〉 a
!!

a

""

√

Now observe that

πn−2(〈Z1〉) = πn−2(〈Z2〉) = an−2
δ.

Although 〈Z1〉 and 〈Z2〉 are equal up to n − 2 steps, 〈Z1〉 )= 〈Z2〉 because

πn−1(〈Z1〉) = an−1
δ while πn−1(〈Z2〉) = an−2(aδ + a).

So, on the basis of AIPc we cannot conclude that 〈Z1〉 = 〈Z2〉.
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As an example, consider n = 4. In this case, the linear recursive specification
E consists of the following equations:

Z1 = aZ2

Z2 = aZ3

Z3 = aZ4

Z4 = aZ1 + a

The projections of 〈Z1〉 and 〈Z2〉 at level 2 are equal, while the projections
at level 3, described next, are not:

π3(〈Z1〉) = a3
δ

π3(〈Z2〉) = a2(aδ + a)

5 A Complete Proof System

Before giving the completeness of the axiom system ACPlin + PR + AIPc, we
first describe bisimulation equivalence [8, 5, 9].

Definition 2 (Bisimulation). A bisimulation relation B is a binary relation on

processes such that:

1. if pBq and p
a→ p′, then q

a→ q′ with p′
Bq′;

2. if pBq and q
a→ q′, then p

a→ p′ with p′
Bq′;

3. if pBq and p
a→ √

, then q
a→ √

;

4. if pBq and q
a→ √

, then p
a→ √

.

Two processes p and q are bisimilar, denoted by p ! q, if there is a bisimulation

relation B such that pBq.

It is a standard result that ! is an equivalence relation and also a congruence

with respect to the operators of ACP. Congruence is an essential property for
bisimulation equivalence to enable giving an axiomatisation that is sound and
complete modulo bisimulation equivalence.

From now on, we show the completeness of the axiom system ACPlin +PR+
AIPc. First, consider the following lemma.

Lemma 1. For each process term t in ACPlin + PR + AIPc, there is a linear

recursive specification E such that t = 〈X1|E〉 and X1 ∈ VE.

Proof. We apply structural induction on term t. Let t, t1 and t2 be processes
in ACPlin + PR + AIPc.

1. If t ∈ Aδ, we take E = {X1 = t}. So, by RDP, t is derivably equal to
〈X1|E〉.
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2. If t is of the form ∂H(t1), by induction, there is a linear recursive specifica-
tion F defined by the following recursive equations, where t1 is derivably
equal to 〈Y1|F 〉:

Yi =
n∑

j=1

αijYj + βi.

Then we define E by the following recursive equations:

Yi =

n∑

j=1

γijYj + θi,

where VE = VF and γij and θi are derived from αij and βi by replacing
every action that belongs to H by δ.

3. If t is of the form t1!t2, with ! ∈ {+, ·, ‖, !, |}, by induction, there are

linear recursive specifications F = {Yi = ti('Y )|i = 1, . . . , n} and G =

{Zj = uj('Z)|j = 1, . . . , m}, such that t1 and t2 are derivably equal to
〈Y1|F 〉 and 〈Z1|G〉, respectively. Without loss of generality, we assume
that VF ∩ VG = ∅.

First, consider the operator +. In this case, we take E = {X1 = t1('Y ) +

u1('Z)} ∪ F ∪ G, where VE = {X1} ∪ VF ∪ VG and X1 is not in VF ∩ VG.
So, by RDP, t is derivably equal to 〈X1|E〉 .

For the operator ·, we take E = {YiZ1 = ti('Y )Z1|i = 1, . . . , n}∪G, where
VE = VG ∪ {YkZ1|k = {1, . . . , n}}. So, by RDP, t is derivably equal to
〈X1|E〉 .

For the ‖, !, |, we need to use simultaneous induction and consider each op-
erator separately. First, assume that F and G are defined by the following
recursive equations:

Yi =

n∑

j=1

αijYj + βi

Zl =

m∑

k=1

γlkZk + θl.

We define for the merge operator, ‖, the linear recursive specification E
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by the following recursive equations:

Xpq =

n∑

j=1

αpjXjq + βpZq + (1)

m∑

k=1

γqkXpk + θqYp + (2)

n∑

j=1

m∑

k=1

(αpj | γqk)Xjk + (3)

n∑

j=1

(αpj | θq)Yj + (4)

m∑

k=1

(βp | γqk)Zk + (5)

(βp | θq), (6)

with VE = VF ∪ VG ∪ {Xpq | 1 ≤ p ≤ n and 1 ≤ q ≤ m}. We have that t

is derivably equal to 〈X11|E〉. In this specification, lines 1 and 2 refer to
the two left merge operators in axiom CM1 and lines 3 to 6 refer to the
communication merge, more specifically: line 3 considers the case when
a communication between a transition from α and a transition from γ is
done, line 4 when a communication between transitions from α and θ is
done, line 5 between β and γ, and line 6, between β and θ.

For the left merge t1 ! t2 we define a linear recursive specification D that
contains the equations in E plus:

W =

n∑

j=1

α1jXj1 + βZ1,

where VD = W ∪ VE . This way, t is derivably equal to 〈W |D〉. Note that

t2 ! t1 =
n∑

k=1

γ1k(t2 ‖ t1) + θ · t1.

However, by AIP, we may assume commutativity of ‖.

For the communication operator we define a linear recursive specification
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D that contains the equations in E plus:

W =

n∑

j=1

m∑

k=1

(α1j | γ1k)Xjk +

n∑

j=1

(α1j | θ1)Yj +

m∑

k=1

(β1 | γ1k)Zk +

(β1 | θ1),

where VD = W ∪ VE . This way, t is derivably equal to 〈W |D〉.

Theorem 3. The axiom system ACPlin + PR + AIPc is a sound and complete

axiomatisation for the set of closed terms in ACPlin +PR+AIPc modulo bisim-

ulation equivalence. That is, for closed terms s and t in ACPlin + PR + AIPc:

ACPlin + PR + AIPc $ s = t ⇔ s ! t.

Proof. ⇒(Soundness):
We need to verify the soundness of each separate axiom. As shown in the

work of Fokkink [6], soundness of A1 − 7, CF1 − 2, CM1 − 9, D1 − 4, RDP,
PR1 − 4 and AIP is easy to prove. Soundness of AIPc follows directly from
Theorem 1 and from the soundness of AIP .

⇐(Completeness):
Let s ! t. By Lemma 1, there is a recursive specification E′ with X1 ∈ VE′

and s = 〈X1|E′〉 and a recursive specification E′′ with Y1 ∈ VE′′ and t =
〈Y1|E′′〉. Without loss of generality, we assume that VE′ ∩VE′′ = ∅ and consider
a single recursive specification E such that VE = VE′ ∪ VE′′

Now we take n = |VE | − 1. By definition, πn(s) and πn(t) can be equated
to processes s′ and t′, respectively, in ACP. Since bisimulation equivalence is a
congruence with respect to the operators of ACP, s ! t implies πn(s) ! πn(t).
Soundness of the axioms yields s′

! πn(s) ! πn(t) ! t′. Then, by completeness
of the axiomatisation of ACP modulo bisimulation equivalence, s′ = t′. Hence,
πn(s) = s′ = t′ = πn(t), that is, πn(〈X1〉) = πn(〈Y1〉). By AIPc, we have that
〈X1〉 = 〈Y1〉, i.e., s = t.

6 Conclusion

We have reviewed AIPc in the presence of the deadlock constant and have
presented a soundness and completeness proof for the axiom system ACPlin +
PR + AIPc.

Our approach differs from Mauw’s work in some main points. In order to
derive the equality of two processes, Mauw states that the number of projections

13



to be considered is equal to the sum of the number of linear equations used to
define both processes. This way, the bound used for the number of projections
is n + m, where n and m are the number of equations in each linear recursive
specification. Our approach considers one linear recursive specification with n

equations. As a result of the deadlock constant and of the axiom PR2 (π0(x) =
δ), the bound was reduced to n− 1.

Another difference between Mauw’s work and ours is the model used. In
the proof for the complete inference system, Mauw uses the model of finite
graphs modulo bisimulation and proves the completeness of an axiom system
called BPAReg (BPA with regular processes). In our work, we use structural
operational semantics and bisimulation equivalence and prove the completeness
of the axiom system ACPlin + PR + AIPc.
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