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Abstract

We introduce a calculus for tuplices, which are expressions that gen-

eralize matrices and vectors. Tuplices have an underlying data type for

quantities that are taken from a zero-totalized field. We start with the core

tuplix calculus CTC for entries and tests, which are combined using con-

junctive composition. We define a standard model and prove that CTC

is relatively complete with respect to it. The core calculus is extended

with operators for choice, information hiding, scalar multiplication, clear-

ing and encapsulation. We provide two examples of applications; one

on incremental financial budgeting, and one on modular financial budget

design.

1 Introduction

In this paper we propose tuplix calculus : a calculus for so-called tuplices, which
are expressions that generalize matrices and vectors. Tuplices have an underly-
ing data type called quantities. We shall require that this data type is modeled
by a zero-totalized field, in the terminology of [8, 3], as will be explained in
Section 2. A typical example of a tuplix is a budget, a compound of various
attributes, each of which possesses a certain value (a quantity) and may refer to
certain conditions and/or interdependencies. Another example of a tuplix is the
modeling of let-expressions in functional programming. We provide a standard
model for tuplix calculus and discuss some examples of its use.

A tuplix generalizes a vector or a matrix in that it collects a number of
quantities from the same data type under a number of names (dimensions of
the vector, matrix entries). What differs in the design of tuplix calculus from
matrix or vector calculus is that other methods of compositional construction
are envisaged. Conjunctive composition extends both vector (matrix) addition
and set union into a novel compositional mechanism. In addition, ‘information

∗Thanks are due to Sanne Nolst Trenité (UvA, Faculty of Science) for many discussions
and for helping to clarify the usefulness and necessity of formalization in budget calculations.
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hiding’ is provided which supports the use of auxiliary values whose name is
made externally invisible. In order to provide a simple semantic model of this
form of information hiding, alternative composition of tuplices is included as
well. Alternative composition, written x + y denotes a tuplix which is either x
or y. Information hiding is modeled using generalized alternative composition.
A further key feature of tuplix calculus is the inclusion of conditions as atomic
tuplices; this is done via a zero-test operator. Finally an encapsulation mech-
anism is proposed. Encapsulation removes an entry and enforces that it will
contain quantity zero only. Encapsulation and alternative composition work
together exactly as in the process algebra ACP [4] from which the typescript
has been borrowed (see [1] and [10] for more recent expositions of ACP-style
process algebra).

Tuplices constitute a calculus rather than an algebra because information
hiding introduces bound variables. The motivation for designing tuplix calcu-
lus came from a number of attempts to design financial budgets in a modular
fashion. One might call a tuplix a budget but we prefer not to introduce that
financial connotation by using a mathematically neutral term which can be
viewed as describing a purely structural notion without any preferred applica-
tion or even application area. We call tuplix calculus an abstract data type
calculus. It is based on an algebraic abstract data type but this is augmented
with operators involving bound variables, notably the generalized alternative
composition operator.

The design of tuplix calculus is based on zero-totalized fields because this
drastically simplifies type checking in general and equational logic in particular
for fields. That zero-totalized fields are meadows, which in general may feature
proper zero-divisors as a natural generalization, is of less importance to the
design of tuplix calculus.

The paper is structured as follows. Section 2 discusses zero-totalized fields.
Section 3 introduces the axiom system CTC (Core Tuplix Calculus). We de-
fine a standard model for the interpretation of tuplices and prove the relative
completeness of CTC (relative: valid data identities are assumed in the proof
theory) with respect to this standard model (Section 5). In the next sections,
CTC is extended with several operators, starting with alternative composition
in Section 6, leading to Basic Tuplix Calculus (BTC). Section 7 is an inter-
mezzo containing some observations on the use of zero tests (zero-test logic).
Section 8 introduces information hiding to BTC through the binding of data
variables. Section 9 defines three auxiliary operations including encapsulation.
Sections 10 and 11 present example applications. We end with some concluding
remarks (Section 12).

2 Cancellation Meadows

Quantities will be taken from a non-trivial cancellation meadow, or, equivalently,
from a zero-totalized field, in the terminology of [8, 3]. A zero-totalized field is
the well-known algebraic structure ‘field’ with a total operator for division so
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that the result of division by zero is zero (and, for example, in a 47-totalized
field one has chosen 47 to represent the result of all divisions by zero).

A meadow is a commutative ring with unit equipped with a total unary
operation ( )−1 named inverse that satisfies the axioms

(u−1)−1 = u and u · (u · u−1) = u,

and in which 0−1 = 0. For quantities (and tuplix calculus) we also require the
cancellation axiom

u 6= 0 & u · v = u · w ⇒ v = w

to hold, thus obtaining cancellation meadows, which we take as the mathemat-
ical structure for quantities, requiring further that 0 6= 1 to exclude (trivial)
one-point models. These axioms for cancellation meadows characterize exactly
the equational theory of zero-totalized fields [3]. The property of cancellation
meadows that is exploited in the tuplix calculus is that division by zero yields
zero, while u · u−1 = 1 for u 6= 0.

For the tuplix calculus, we define a data type (signature and axioms) for
quantities which comprises the constants 0, 1, the binary operators + and ·,
and the unary operators − and ( )−1. We often write u− v instead of u+(−v),
u/v instead of u · v−1, and uv instead of u · v, and we shall omit brackets if
no confusion can arise following the usual binding conventions. Finally, we use
numerals in the common way (2 abbreviates 1 + 1, etc.). The axiomatization
consists of the cancellation axiom

u 6= 0 & u · v = u · w ⇒ v = w,

the separation axiom
0 6= 1,

and the following 10 axioms for meadows (see [3]):

(u + v) + w = u + (v + w),

u + v = v + u.

u + 0 = u,

u + (−u) = 0,

(u · v) · w = u · (v · w),

u · v = v · u,

1 · u = u,

u · (v + w) = u · v + u · w,

(u−1)−1 = u,

u · (u · u−1) = u.
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The following identities are derivable from the axioms for meadows.

(0)−1 = 0

(−u)−1 = −(u−1)

(u · v)−1 = u−1 · v−1

0 · u = 0

u · −v = −(u · v)

−(−u) = u

Furthermore, the cancellation axiom and axiom u · (u · u−1) = u imply the
general inverse law

u 6= 0 ⇒ u · u−1 = 1

of zero-totalized fields.

3 Core Tuplix Calculus

Tuplix calculus builds on the data type defined in Section 2 which specifies non-
trivial cancellation meadows. We use the letters u, v and w as data variables,
and the letters p and q to range over (open) data terms.

We start with a core calculus which can be extended with several operators
(as is done in later sections). The theory is parametrized with a nonempty set
A of attributes, ranged over by a and b. We further assume given a countably-
enumerable set of tuplix variables, ranged over by x, y and z. We introduce
the signature for tuplices. We have constants ε (the empty tuplix) and δ (the
null tuplix); the variables are tuplix terms; and there are two further kinds of
atomic tuplices: entries (attribute-value pairs) of the form

a(p)

with a ∈ A, and p a data term, and, for any data term p, the zero test

γ(p)

(γ 6∈ A). Finally, the core theory has one binary infix operator: the conjunctive
composition operator �. This operator is commutative and associative.

Axioms:

x � y = y � x (T1)

(x � y) � z = x � (y � z) (T2)

x � ε = x (T3)

x � δ = δ (T4)

a(u) � a(v) = a(u + v) (T5)
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γ(u) = γ(u/u) (T6)

γ(0) = ε (T7)

γ(1) = δ (T8)

In this core calculus, a tuplix is a conjunctive composition of tests and
entries, with ε representing an empty tuplix, and δ representing an erroneous
situation which nullifies the entire composition. Entries with the same attribute
can be combined to a single entry containing the sum of the quantities involved
(axiom T5).

A zero test γ(p) acts as a conditional: if the argument p equals zero, then
the test is void and disappears from conjunctive compositions. If the argument
is not equal to zero, the test nullifies any conjunctive composition containing it.
Observe how we exploit the property of zero-totalized fields that p/p is always
defined, and that the division p/p yields zero if p equals zero, and 1 otherwise.
Further observe that an equality test p = q can be expressed as γ(p − q).

A tuplix term is closed if it is does not contain tuplix variables and also
does not contain data variables. A tuplix term is tuplix-closed if it does not
contain tuplix variables (but it may contain data variables). For reasoning
about tuplices with open data terms, we add the following two axioms:

γ(u) � γ(v) = γ(u/u + v/v) (T9)

γ(u − v) � a(u) = γ(u − v) � a(v) (T10)

The tuplix calculus is two-sorted. On the tuplix side we have the axioms
T1–T10 and we use the proof rules of equational logic. On the data side, we
refrain from giving a precise proof theory. We adopt the following rule to lift
the valid data identities to the tuplix calculus: for all (open) data terms p and
q,

D |= p = q implies γ(p) = γ(q), (De)

where D (a non-trivial cancellation meadow) is our model of the data type. This
axiom system with axioms T1–T10 plus proof rule De is denoted by CTC (Core
Tuplix Calculus).

4 Canonical Terms and Derived Proof Rules

A CTC canonical term is a term of the form

γ(p0) � a1(p1) � · · · � ak(pk) � x1 � · · · � xl,

for some k, l ≥ 0, and with distinct attributes ai for i = 1, . . . , k.

Lemma 1. Every CTC term is derivably equal to a CTC canonical term.

Proof. Easy: If it contains the constant δ, the term equals the canonical term
γ(1) (using axioms T4 and T8); conjunctive composition is commutative and
associative; the ε constant disappears (axiom T3); entries with same attribute
are combined using axiom T5; tests are combined using axiom T9 (and if there
are no tests, we add a void γ(0) test using axiom T7).
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The axiom system CTC is powerful enough for our purposes, as is witnessed
by the completeness result in Section 5. Still, more general proof rules for
the derivation of identities involving data equalities and substitution of data
terms can be convenient. For example, we find that CTC derives the “obvious”
identity

a(u + v) = a(v + u)

rather indirectly: because (u + v)− (v + u) = 0 will be valid in our data model,
we have

γ((u + v) − (v + u)) = γ(0)

by De. Then we derive

a(u + v) = a(u + v) � γ((u + v) − (v + u)) = a(v + u)

using axioms T3, T7, and T10.
The following proof rule generalizes De:

D |= p = q implies t[p/u] = t[q/u], (De
+)

for tuplix terms t and with substitution t[p/u] defined as usual for two-sorted
equational logic (replacement of all data variables u in t by p). The following
axiom scheme generalizes axiom T10:

t � γ(u− p) = t[p/u] � γ(u− p), (T10+)

where t ranges over tuplix terms.
These two rules follow from CTC as we shall now prove. We start with two

lemmas.

Lemma 2. For all data terms p and q,

D |= (1 − p/p) · q = 0 implies CTC ` γ(p) = γ(p) � γ(q).

Proof. Assume that D |= (1 − p/p) · q = 0. Observe that it follows that

p/p = (p/p + q/q)/(p/p + q/q)

is a valid identity (check: distinguish cases p = 0 and p 6= 0). From this, derive

γ(p) = γ(p/p)

= γ((p/p + q/q)/(p/p + q/q))

= γ(p) � γ(q)

using De and axioms T6 and T9.

Note that a test γ((1−p/p) ·q) may be read as the logical implication ‘p = 0
implies q = 0’, see also Section 7.
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Lemma 3. The following identity is derivable in CTC.

γ(u) � γ(u − v) = γ(v) � γ(u − v)

Proof. Observe that
(

1 −
u/u + (u − v)/(u − v)

u/u + (u − v)/(u − v)

)
· v = 0

(‘if u = 0 and u = v, then v = 0’) is valid in any cancellation meadow. Derive

γ(u) � γ(u − v) = γ(u/u + (u − v)/(u − v))

= γ(u/u + (u − v)/(u − v)) � γ(v)

= γ(u) � γ(u − v) � γ(v)

using Lemma 2 and axiom T9. The remaining part of the derivation is symmet-
rical.

We are now ready to derive the two rules.

• Case De
+. Assume that D |= p = q, and let t be a canonical term

γ(p0) � a1(p1) � · · · � ak(pk) � x1 � · · · � xl,

for some k, l ≥ 0. First observe that it follows from D |= p = q that

D |= pi[p/u] = pi[q/u] and D |= pi[p/u]− pi[q/u] = 0

for i = 0, . . . , k. From this and De we derive that

γ(p0[p/u]) = γ(p0[q/u])

and

ai(pi[p/u]) = ai(pi[p/u]) � γ(0)

= ai(pi)[p/u] � γ(pi[p/u]− pi[q/u]),

so we can apply the required substitutions in the entries using axiom T10.

• Case T10+. Let t be a canonical term

γ(p0) � a1(p1) � · · · � ak(pk) � x1 � · · · � xl,

for some k, l ≥ 0. Observe that for i = 0, . . . , k,

D |= (1 − (u − p)/(u − p)) · (pi − pi[p/u]).

Therefore we have by Lemma 2 that

γ(u − p) = γ(u− p) � γ(pi − pi[p/u])

so that we can perform the substitutions in the entries using axiom T10,
and in the test γ(p0) using Lemma 3.
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5 Standard Model and Relative Completeness

We interpret tuplix terms in the standard model M(D,A), where D is the model
of the data type for quantities, and A is the set of attributes that are used. The
data model D is required to be a non-trivial cancellation meadow. We write D
for the domain of D, and 0 for the element of D that is the interpretation of the
data term 0.

The standard model is based on the set

F = A
p
→ D

of partial functions from A to D which are used to model the entries (the
attribute-value pairs). The domain for the standard model is the power set

2F

of the set of partial functions. An element of this power set stands for a number
of alternatives : for CTC, the interpretation of tuplix terms yields either the
empty set (the interpretation of δ; absence of alternatives) or a singleton set.
When we add choice to the theory (see Section 6), the interpretation may yield
sets with more than one element.

Some preliminaries:

1. For a ∈ A, d ∈ D, let fa,d be the partial function with fa,d(a) = d, and
fa,d(b) undefined for b 6= a.

2. We denote by fε the function in F with fε(a) undefined for all attributes
a ∈ A; this function will be used in the interpretation of the term ε.

3. Define conjunctive composition � on elements of F as follows: for a ∈ A,
if both f and g are undefined for a, then (f � g) is undefined for a; if f(a)
is defined and g is not defined for a, then (f � g)(a) = (g � f)(a) = f(a);
and if both f and g are defined for a, then (f � g)(a) = f(a) + g(a).

The closed terms of CTC are interpreted in the standard model as follows.

JδK
def

= ∅

JεK
def

= {fε}

Ja(p)K
def

= {fa,JpK}

Jγ(p)K
def

=

{
JεK if JpK = 0

JδK otherwise

Js � tK
def

= {f � g | f ∈ JsK, g ∈ JtK}

We say that closed terms s and t are equivalent with respect to the standard
model if JsK = JtK. Two open terms are equivalent, notation s ∼ t, if all their
closed instantiations are pair-wise equivalent. The axiom system CTC is sound
with respect to the standard model, i.e., for all (open) tuplix terms s and t,
CTC ` s = t implies s ∼ t.
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Theorem 1. The axiom system CTC is complete with respect to the standard
model, i.e., for all (open) terms s and t, s ∼ t implies CTC ` s = t.

This completeness is relative in the sense that our proof theory assumes, by
adoption of rule De, all valid data identities.

Proof. Suppose s ∼ t. Using Lemma 1 we know that s and t are derivably equal
to canonical terms

s′ = γ(p0) � a1(p1) � · · · � ak(pk) � x1 � · · · � xl

and
t′ = γ(q0) � a1(q1) � · · · � ak(qk) � x1 � · · · � xl

with k, l ≥ 0. Observe that it follows from s ∼ t that we can find canonical
terms having the same tuplix variables xi and (mutually distinct) attributes aj .

It also follows from s ∼ t, that whenever the test γ(p0) succeeds, also the
test γ(q0) succeeds, and vice versa. Therefore, the cancellation meadow identity
p0/p0 = q0/q0 must be valid. It follows that

γ(p0) = γ(q0)

is derivable using axiom T6 and De.
It further follows from s ∼ t, that whenever the test γ(p0), and hence also

γ(q0), succeeds, then it must be that pi = qi for i = 1, . . . , k. A consequence is
that the cancellation meadow identity

(1 − p0/p0)(pi − qi) = 0

is valid (check: straightforward case distinction on p0). Using Lemma 2 we find
that

γ(p0) = γ(p0) � γ(pi − qi).

Because we also have γ(p0) = γ(q0) it is easy to see that s′ = t′ is derivable
using axiom T10.

6 Basic Tuplix Calculus

The axiom system CTC is extended to Basic Tuplix Calculus (BTC), by ad-
dition of the binary operator + called alternative composition or choice to the
signature, and by adoption of the following axioms.

x + y = y + x (C1)

(x + y) + z = x + (y + z) (C2)

x + x = x (C3)

x + δ = x (C4)

x � (y + z) = (x � y) + (x � z) (C5)

γ(u) + γ(v) = γ(uv) (C6)
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Because choice is an associative operator, we shall often omit brackets in re-
peated applications.

The standard model M(D,A) for CTC is extended to BTC by the following
interpretation of alternative composition:

Js + tK
def

= JsK ∪ JtK.

So, the interpretation of a closed term yields a set of alternatives. Note that
δ is a zero element for alternative composition: it stands for the absence of
alternatives (recall that JδK = ∅). The axioms C1–C6 are sound with respect to
the standard model.

As for CTC, completeness results are relative because, by adoption of proof
rule De, valid data identities may be used in derivations. The axiom system
BTC is complete for closed (no data variables, no tuplix variables) terms. In
the proof we use canonical terms: a BTC canonical term is an alternative com-
position

t1 + · · · + tk

of CTC canonical terms for some k ≥ 0 (in case k = 0, this term is defined as
δ). Clearly, we can derive such a canonical term for every BTC term by pushing
+ outward using axiom C5.

Theorem 2. For closed terms, BTC is complete with respect to the standard
model, i.e., for closed terms s and t, s ∼ t implies BTC ` s = t.

Proof. Take closed terms s and t with s ∼ t. We may assume for s and t that
there are respective canonical terms

s1 + · · · + sk and t1 + · · · + tl

such that JsiK and JtjK are singleton sets for i = 1, . . . , k and j = 1, . . . , l. Since
JsK = JtK, it is clear that for every si there is a tj such that si ∼ tj , and vice
versa. By completeness of CTC these are derivably equal. Then, s = t can be
derived using axioms C1–C4.

Completeness for open terms (which we did prove for CTC) appears to be
more involved. We leave this open for future work.

7 Zero-Test Logic

We have seen how the zero-test operator γ(p) tests the equality p = 0. Using
axioms T6 and De, it is easy to derive the following identities, which we shall
often use implicitly in derivations:

γ(u) = γ(−u),

γ(u) = γ(u/n),

γ(u) = γ(n · u),
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where n ranges over all non-zero numerals.
We present some observations on the use of the zero-test operator which lead

to a simple logic.
First, the empty tuplix ε with ε = γ(0) by axiom T7 may be read as ‘true’,

and the null tuplix δ with δ = γ(1) by axiom T8 may be read as ‘false’.
Negation. Define the test ‘not p = 0’ by

γ̃(p)
def

= γ(1− p/p).

Conjunctive composition of tests may be read as logical conjunction:

γ(p) � γ(q)
(T9)
= γ(p/p + q/q)

tests ‘p = 0 and q = 0’.
Alternative composition of tests may be read as logical disjunction:

γ(p) + γ(q)
(C6)
= γ(pq)

tests ‘p = 0 or q = 0’.
A formula would then be a tuplix-closed (no tuplix variables) BTC term

without entries. Any formula can be expressed as a single test γ(p) using axioms
T7–T9 and C6, and the definition of negation. Let ϕ range over formulas, and
write ϕ̃ for the negation of ϕ.

We find that this logic has all the usual properties. Clearly, conjunction
and disjunction are commutative, associative, and idempotent, and it is not
difficult to derive distributivity, absorption, and double negation elimination.
The following identities are easily derived as well:

ϕ + ϕ̃ = ε, (1)

ϕ � ϕ̃ = δ, (2)

ϕ + ε = ε, (3)

ϕ � δ = δ. (4)

As usual, implication can be defined in terms of negation and disjunction:

γ̃(p) + γ(q) = γ((1 − p/p) · q)

tests ‘p = 0 implies q = 0’.

Note. If the absolute operator | | (with |p| = p if p ≥ 0, and |p| = −p otherwise)
is added to the signature of the data type, we can also express inequalities:

γ(|q − p| = q − p)

expresses the test p ≤ q.
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8 Generalized Alternative Composition

The generalized alternative composition ( or: summation) operator
∑

u is a
unary operator that binds data variable u and can be seen as a data-parametric
generalization of the alternative composition operator +. We add this binder to
the signature of BTC and write FV (t) for the set of free data variables occur-
ring in tuplix term t. We write Var(p) for the set of data variables occurring
in data term p (there is no variable binding within data terms). Define sub-
stitution t[p/u] as: replace every free occurrence of data variable u in tuplix
term t by the data term p, such that no variables of p become bound in these
replacements. E.g., recall the proof rule T10+:

t � γ(u− p) = t[p/u] � γ(u− p).

This rule remains sound in the setting with summation, but application of the
rule may require the renaming of bound variables in t using axiom S2, see below,
so that the substitution can be performed. When considering substitutions we
shall implicitly assume that bound variables are renamed properly.

The axiom schemes for
∑

u are as follows, where s and t range over tuplix
terms and p ranges over data terms.

∑
ut = t if u 6∈ FV (t) (S1)

∑
ut =

∑
vt[v/u] if v 6∈ FV (t) (S2)

∑
u(s � t) = s �

∑
ut if u 6∈ FV (s) (S3)

∑
u(s + t) =

∑
us +

∑
ut (S4)

∑
uγ(u − p) = ε if u 6∈ Var(p) (S5)

∑
uγ̃(u − p) = ε if u 6∈ Var(p) (S6)

(Recall from Section 7 that γ̃(p) is defined as γ(1 − p/p).)
The standard model for BTC is extended with the following interpretation

of summation:

J
∑

utK
def

= {Jt[p/u]K | p a closed data term}.

The axiom schemes S1–S6 are sound with respect to this model.

Note. A similar summation operator (binding of data variables that generalizes
alternative composition) is part of the specification language µCRL [12], which
combines the process algebra ACP [4] with equationally specified abstract data
types. A detailed exposition of a semantics and proof theory for this ‘choice
quantification’ in the setting of process algebra can be found in the work of
Luttik [13]. A corresponding treatment is possible in our case.

Lemma 4. The following identities are derivable for all data terms p with
u 6∈ Var(p).

∑
u(t � γ(u − p)) = t[p/u] (5)

∑
ut = t[p/u] +

∑
ut (6)

∑
ut = t[p/u] +

∑
u(t � γ̃(u − p)) (7)
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Proof. Derivation of (5):

∑
u(t � γ(u − p)) =

∑
u(t[p/u] � γ(u − p))

= t[p/u] �
∑

uγ(u − p)

= t[p/u]

using T10+, S3 and S5. Derivation of (6):

∑
ut =

∑
u(t � γ(u − p)) +

∑
u(t � γ̃(u − p))

= t[p/u] +
∑

ut.

using T3, (1), S4, C3, and (5). Derivation of (7): similar.

Example. We derive

∑
u(a(u) � γ(u2 − 1)) = a(−1) + a(1).

Proof: from

γ(u2 − 1) = γ((u + 1)(u − 1)) = γ(u + 1) + γ(u − 1)

it follows that

∑
u(a(u) � γ(u2 − 1)) =

∑
u(a(u) � γ(u + 1)) +

∑
u(a(u) � γ(u − 1))

= a(−1) + a(1)

using (5).

Example. Let-expressions or let-bindings allow value declarations or partial
bindings in expressions. The term

∑
u(t � γ(u − p))

characterizes
let u = p in t.

Of course, p may contain variables, as for instance ‘let u = 7v + 1 in t’ can
simply be expressed as ∑

u(t � γ(u − 7v − 1)).

9 Auxiliary Operators

For BTC with summation, we define three auxiliary operators: scalar multi-
plication, clearing, and encapsulation. In each case the axioms for choice and
summation (numbered 6 and 7) can be omitted, for inclusion in axiom system
CTC or BTC.
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9.1 Scalar Multiplication

Scalar multiplication p · t multiplies the quantities contained in entries in tuplix
term t by p. It is specified by means of the following axioms.

u · ε = ε (Sc1)

u · δ = δ (Sc2)

u · γ(v) = γ(v) (Sc3)

u · a(v) = a(u · v) (Sc4)

u · (x � y) = u · x � u · y (Sc5)

u · (x + y) = u · x + u · y (Sc6)

p ·
∑

vt =
∑

v(p · t) if v 6∈ Var(p) (Sc7)

Axiom Sc7 is an axiom scheme with p ranging over data terms and t ranging
over tuplix terms. An example with scalar multiplication is given in Section 10.

Standard Model. Take the standard model M(D,A) as before (see Sec-
tion 5). For partial function f ∈ F and value d ∈ D, define the scalar multipli-
cation d · f as expected: (d · f)(a) = d · (f(a)) if f(a) is defined, and undefined
otherwise. The interpretation of scalar multiplication is defined by

Jp · tK
def

= {JpK · f | f ∈ JtK}.

9.2 Clearing

For set of attributes I ⊆ A, the operator

εI(x)

renames all entries of x with attribute in I to ε. It “clears” the attributes
contained in I . Axioms:

εI(ε) = ε (Cl1)

εI(δ) = δ (Cl2)

εI(γ(u)) = γ(u) (Cl3)

εI(a(u)) =

{
ε if a ∈ I

a(u) otherwise
(Cl4)

εI(x � y) = εI(x) � εI(y) (Cl5)

εI(x + y) = εI(x) + εI(y) (Cl6)

εI(
∑

ut) =
∑

u(εI(t)) (Cl7)

For a set of attributes B ⊆ A one can think of a function

SelectB(x)
def

= εA\B(x).

This function allows to focus on those entries with attribute contained in B.
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Standard Model. Take the standard model M(D,A) as before (see Sec-
tion 5). Define the function εI on elements of F as follows. For partial function
f ∈ F and attribute a ∈ A, if f(a) is undefined or a ∈ I , then εI(f)(a) is
undefined, else εI(f)(a) = f(a). The interpretation of clearing:

JεI(t)K
def

= {εI(f) | f ∈ JtK}.

9.3 Encapsulation

Encapsulation can be seen as ‘conditional clearing’. For set of attributes H ⊆ A,
the operator ∂H(x) encapsulates all entries in x with attribute a ∈ H . That is,
for a ∈ H , if the accumulation of quantities in entries with attribute a equals
zero, the encapsulation on a is considered successful and the a-entries are cleared
(become ε); if the accumulation is not equal to zero, they become null (δ).
This accumulation of quantities is computed per alternative: the encapsulation
operator distributes over alternative composition. Axioms:

∂H(ε) = ε (E1)

∂H(δ) = δ (E2)

∂H(γ(u)) = γ(u) (E3)

∂H(a(u)) =

{
γ(u) if a ∈ H

a(u) if a 6∈ H
(E4)

∂H(x � ∂H (y)) = ∂H(x) � ∂H(y) (E5)

∂H(x + y) = ∂H(x) + ∂H(y) (E6)

∂H(
∑

ut) =
∑

u(∂H(t)) (E7)

We further define
∂H∪H′ (x)

def

= ∂H ◦ ∂H′ (x).

Standard Model. Take the standard model M(D,A) as before. We say that
a partial function f in F is neutral on attribute a, if either f(a) is undefined or
f(a) = 0. We interpret encapsulation as follows.

J∂H (t)K
def

= {εH(f) | f ∈ JtK, f neutral on all a ∈ H},

where εH is as defined in Section 9.2.

9.4 On the Derivation of Encapsulations

By the derivation of an encapsulation we mean the elimination of the encap-
sulation operator by application of its defining axioms from left to right. Of
course, this elimination is in general only possible for tuplix-closed terms. We
present some helpful identities and example derivations.

We start with a lemma.
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Lemma 5. For all tuplix-closed terms t, if no element of set of attributes H
occurs in t, then

∂H(t) = t

and, for any term s,
∂H(s � t) = ∂H(s) � t

are derivable.

Proof. The first identity is easy, using structural induction on term t. Then,
the second one follows using axiom E5:

∂H(s � t) = ∂H(s � ∂H(t)) = ∂H(s) � ∂H(t) = ∂H(s) � t.

When deriving an encapsulation, we generally split the encapsulation up:
for a ∈ H , we have by definition that

∂H(t) = ∂H\{a} ◦ ∂{a}(t),

and we start with ∂{a}(t). Observe that encapsulation distributes over (gen-
eralized) alternative composition, so we can push it inward until we reach an
conjunctive composition in which we assume that the a-entries have been accu-
mulated into a single entry using axiom T5. So this yields an application of the
form

∂{a}(a(p) � t′)

where a does not occur in t′, so using Lemma 5, this is equal to

γ(p) � t′.

Example:

∂{b}(a(−3) � b(1) � b(2) � b(−3) � c(3)) = ∂{b}(b(0) � a(−3) � c(3))

= ∂{b}(b(0)) � a(−3) � c(3)

= γ(0) � a(−3) � c(3)

= a(−3) � c(3).

Another example:

∂{a,b}(a(0) � b(0)) = ∂{a} ◦ ∂{b}(a(0) � b(0)) = ∂{a}(a(0)) = ε.

In applications that use information hiding (summation), we typically en-
counter encapsulations like this one:

∂{a}(a(2) �
∑

u(a(−u) � b(u/2) � c(u/2))) = b(1) � c(1),

where instantiation of the hidden variable u is enforced by the encapsulation.
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Let’s see how to derive such encapsulations. First, we have, for data term p
with u 6∈ Var(p), and tuplix-closed term t that does not contain a,

a(p) �
∑

u(a(q) � t) =
∑

u(a(p + q) � t).

Then we easily find that

∂{a}(a(p) �
∑

u(a(q) � t)) =
∑

u(γ(p + q) � t)

using Lemma 5. In the particular case that q = −u we find

∂{a}(a(p) �
∑

u(a(−u) � t)) = t[p/u]

using (5). Another example:

∂{a}(a(−6) �
∑

u(a(2u) � t)) =
∑

u(γ(2u − 6) � t)

=
∑

u(γ(u − 3) � t)

= t[3/u].

In the next example, the instantiation is determined within the summation:

∂{a}(
∑

u(a(u + 1) � b(−u/2))) =
∑

u(γ(u + 1) � b(−u/2))

= b(1/2).

In a similar way, one can reduce

∂{a}(
∑

u(a(−u) � b(u/2) � c(−u/2) � a(200) � b(−50) � c(−150)))

to
b(50) � c(−250).

10 Example: Incremental Budgeting

A financial budget is modeled as a tuplix. We let an entry a(p) represent a
payment: the attribute a is used in the communication between payer and
payee, and describes or identifies a transaction; we also refer to the attribute
as the channel of the transaction, and say that the payment occurs along the
channel. The term p represents the amount of money involved. An entry a(p)
with p > 0 stands for an obligation to pay amount p along channel a. If p < 0,
the entry stands for the expected receipt of amount p along a.

In the following example we consider some annual budgets. In order to
simplify descriptions it is assumed that various payments are due twice per year
only, during periods A and B. Attributes of the form aA and aB are used in
the specification of payments during these respective periods. Examples with
monthly, weekly or daily payments can be given in a similar fashion.

Consider a budget B2006 containing the financial results of some entity in
year 2006. E.g., take

B2006 = aA(30) � aB(30) � bA(20) � bB(25) � cA(−107).
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On the basis of this realized budget, an allocated budget for 2007 covering
corresponding entries could be specified as, e.g.,

B2007 = aA(32) � aB(32) � bA(21) � bB(28) � cA(−116).

Assuming that a 2008 budget is to be determined without having 2007 real-
ization figures available, several ways to adapt the 2007 budget to a 2008 budget
can be imagined. The widespread (and well-documented, see, e.g., [14]) strategy
of incremental budgeting implies that the 2007 budget is taken as the point of
departure for designing a 2008 budget. For 2008 one may consider two possible
budgets: an ad hoc increase of each entry, leading to something like

B2008 = aA(33) � aB(33) � bA(22) � bB(30) � cA(−123),

or, alternatively,
B′

2008 = (1 + (i/100)) · B2007

which adjusts each 2007 entry with the same inflation percentage i.
Yet another option for a 2008 budget is to adjust the 2006 realization B2006

with inflation twice. This yields

B′′
2008 = (1 + (i/100))2 · B2006.

Still another option for the definition of a 2008 budget is the average

B′′′
2008 = (1/2) · (B′

2008 � B′′
2008)

of the latter two budgets.

11 Example: Modular Budget Design

Modular financial budget design is a necessity in large organizations, assuming
that budgets are at all used, i.e., that ‘beyond budgeting’ [2] is not (yet) the
dominant strategy for financial planning. Financial budgets are probably the
most complex budgets around which calls for modularity. Surprisingly, however,
we have not been able to find any literature about the subject of formalized
modular budget design. In the example of this section we will outline how
tuplix calculus can support modular budget descriptions in a meaningful way.
The example is presented in abstract terms but its origin is practical.

We consider an organization that consists of the following constituents:1

• Part S is a financial source which correlates with production figures.

• Part C is a control group that dispatches the incoming financial stream to
the production units and the service center SC.

1In the practical case behind the example, S is a university division, C represents a graduate
school, the PUs represent different master programs, SC provides various forms of support
ranging from student counseling to timetabling, and CAP represents a department from which
educational staff will be used.
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• Parts PU1 and PU2 are production units. These units produce the same
two types of products (type 1 and type 2).

• Part SC is a shared service center providing services needed by the pro-
duction units.

• Part CAP is a capacity group from which both production units draw
manpower.

Streams of money between these parts run as depicted in this figure:

PU1 js
1
,ss1

**TTTTTTT

S
a1,a2

// C

c

��

b1
55jjjjjjj

b2
))TTTTTTT CAP

PU2
js

2
,ss2

44jjjjjjj

SC

The labels (a1, a2, etc.) on the arrows in this picture are attribute names that
will be used in the specification of payments.

The financial source rewards the production by the production units: for
each product that is produced, a constant reward (depending on the type of the
product) is allocated to the control group C. The control group will dispatch
the rewards for both product types to the production units and to the service
center. The production units receive money from C, and pay money to the
capacity group in return of junior staff capacity as well as senior staff capacity.

We specify budgets for the parts S, C, PU1 and PU2, and we will examine
how to compose one joint budget B from these. All budgets involved specify the
same period of time (e.g., the calendar year 2008). We take a stepwise approach
and specify the budgets in two phases taking increasingly more aspects into
account. In the first stage, both production units obtain an equal reward,
independent of their contribution to the total production. The budgets are
defined as follows.

• The financial source S rewards production: for each product of type i
that is produced (i = 1, 2), a constant reward reward i is allocated to the
control unit C. For production unit PUi and product type j, the data
variable

nij

stands for the number of products of type j produced by PUi during the
period that is covered.

The budget:

BS
def

= a1(reward 1 · (n11 + n21)) � a2(reward 2 · (n12 + n22))

• The control unit C receives the rewards from the financial source. The
amount paid to the service center SC is a fraction k (a value between 0
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and 1) of the incoming stream, independently of the use that is made of
it. It further pays each production unit half of the reward total. (Observe
that, unless k = 0, this budget is not balanced : the expenses are higher
than the income.)

BC
def

=
∑

u

∑
v(

a1(−u) � a2(−v) �

c(k · (u + v)) �

b1((u + v)/2) � b2((u + v)/2))

• Budgets for the production units:

BPU1

def

=
∑

u(b1(−u) � js1(u/2) � ss1(u/2))

BPU2

def

=
∑

u(b2(−u) � js2(u/2) � ss2(u/2))

In this first version the production units obtain an equal amount of fund-
ing, which is spent in equal parts on senior staff (via ss1 and ss2) and on
junior staff (via js1 and js2).

The combined budget:

B
def

= ∂{a1,a2,b1,b2}(BS � BC � BPU1
� BPU2

).

We find

B =
∑

u(

γ(u− reward1 · (n11 + n21) − reward2 · (n12 + n22)) �

c(k · u) � js1(u/4) � ss1(u/4) � js2(u/4) � ss2(u/4)).

A straightforward derivation of this identity leads to a closed term without
summation; in the expression above we have introduced a ‘let-binding’ (see the
example in Section 8) with variable u to improve the readability.

In the second stage of the budget, we take into account that the production
units need funding proportional to their production volume, and may spend
their resources on senior staff capacity and junior staff capacity in different
proportions. Moreover, the control unit also charges the production units for
the costs of the services provided by SC. This leads to the following refinement
of the budgets:

BC
def

=
∑

u

∑
v(

a1(−u) � a2(−v) �

k · c(u + v) �

(1 − k) · (b1((n11/(n11 + n21))u + (n12/(n12 + n22))v) �

b2((n21/(n11 + n21))u + (n22/(n12 + n22))v)))

BPU1

def

=
∑

u(b1(−u) � js1((1/4)u) � ss1((3/4)u))
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BPU2

def

=
∑

u(b2(−u) � js2((1/3)u) � ss2((2/3)u))

Additional phases that take more aspects into account can be easily imag-
ined. For instance both production units may be given a fixed amount of funding
independent of production volume and the remaining funding spread in propor-
tion with production volume. That distribution strategy for C allows one unit
to proceed when its production is low thus awaiting a next phase with better
circumstances.

12 Conclusion

We have introduced a calculus for tuplices. It has an underlying data type called
quantities which is required to be modeled by a zero-totalized field. We started
with the core tuplix calculus CTC for entries and tests, which are combined using
conjunctive composition. We defined a standard model and proved that CTC is
relatively complete with respect to it. We further defined operators for choice,
information hiding, scalar multiplication, clearing and encapsulation. We ended
with two examples of applications; one on incremental financial budgeting, and
one on modular financial budget design.

We refer to [6] for a discussion on the formalization of financial budgets. It
also contains a more elaborate application of the tuplix calculus in the style of
the example in Section 11.

Further related work seems to be scarce. We mention here the work of Elsas
et al. [9, 11] on audit theory, and the work of Bergstra and Middelburg [5]
on computational capital. Both are theoretical approaches that apply process
theory in the analysis of organizations dealing with money streams: the former
uses Petri nets, the latter process algebra. In this, they focus more on behavioral
aspects than we do.

An immediate issue for future work is the completeness of BTC for open
terms, and consequently the completeness of BTC with summation. We would
further like to connect this theory to the formalization of interface groups and
financial transfer architectures studied in [7].
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