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Abstract. We study sequential programs that are instruction sequences
with jump-shift instructions in the setting of PGA (ProGram Algebra).
Jump-shift instructions preceding a jump instruction increase the posi-
tion to jump to. The jump-shift instruction is not found in programming
practice. Its merit is that the expressive power of PGA extended with the
jump-shift instruction, is not reduced if the reach of jump instructions is
bounded. This is used to show that there exists a finite-state execution
mechanism that by making use of a counter can produce each finite-state
thread from some program that is a finite or periodic infinite sequence
of instructions from a finite set.
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1 Introduction

In this paper, we study sequential programs that are instruction sequences with
jump-shift instructions. With that we carry on the line of research with which a
start was made in [2]. The object pursued with this line of research is the devel-
opment of a theoretical understanding of possible forms of sequential programs,
starting from the simplest form. The view is taken that sequential programs in
the simplest form are sequences of instructions. PGA, an algebra of programs
in which programs are looked upon as sequences of instructions, is taken for the
basis of the development aimed at. The work presented in this paper is part of an
investigation of the consequences of small differences in the choice of primitives
in the algebra of programs.
In the line of research carried on in this paper, the view is taken that the

behaviours of sequential programs under execution are threads as considered in
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basic thread algebra [2].3 The experience gained so far leads us to believe that
sequential programs are nothing but linear representations of threads.
If n jump-shift instructions precede a jump instruction, they increase the

position to jump to by n. This feature of the jump-shift instruction is called
jump shifting. It is a programming feature that is not suggested by existing
programming practice. Its merit is that the expressive power of PGA extended
with the jump-shift instruction, unlike the expressive power of PGA, is not
reduced if the reach of jump instructions is bounded. Therefore, we consider a
study of programs that are instruction sequences with jump-shift instructions
relevant to programming.
We believe that interaction with services provided by an execution environ-

ment is inherent in the behaviour of programs under execution. Intuitively, a
counter service provides for jump shifting. In this paper, we define the meaning
of programs with jump-shift instructions in two different ways. One way covers
all programs with jump-shift instructions. The other way covers all programs
with jump-shift instructions that contain no other jump instruction than the
one whose effect in the absence of preceding jump-shift instructions is a jump to
the position of the instruction itself. The latter way corresponds to a finite-state
execution mechanism that by making use of a counter produces the behaviour
of a program from that program.
A thread proceeds by doing steps in a sequential fashion. A thread may do

certain steps only for the sake of getting reply values returned by some service
and that way having itself affected by that service. The interaction between
behaviours of programs under execution and a counter service referred to above is
an interaction with that purpose. In [6], the use mechanism is introduced to allow
for such a kind of interaction between threads and services. In this paper, we will
use the use mechanism, which has been renamed to thread-service composition,
to have behaviours of programs under execution affected by services.
A hierarchy of program notations rooted in PGA is introduced in [2]. In-

cluded in this hierarchy are very simple program notations which are close to
existing assembly languages up to and including simple program notations that
support structured programming by offering a rendering of conditional and loop
constructs. However, although they are found in existing assembly programming
practice, indirect jump instructions are not considered. In [5], several kinds of
indirect jump instructions are considered, including a kind by which recursive
method calls can easily be explained. Moreover, dynamic instruction instantia-
tion, a useful programming feature that is not suggested by existing program-
ming practice, is considered in [4].
This paper is organized as follows. First, we review basic thread algebra

(Section 2). Next, we review PGA and extend it with the jump-shift instruc-
tion (Section 3). After that, we extend basic thread algebra with thread-service
composition, introduce a state-based approach to describe services, and give a

3 In [2], basic thread algebra is introduced under the name basic polarized process
algebra. Prompted by the development of thread algebra [6], which is a design on
top of it, basic polarized process algebra has been renamed to basic thread algebra.
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state-based description of counter services (Section 4). Following this, we re-
visit the meaning of programs with jump-shift instructions and show that there
exists a finite-state execution mechanism that by making use of a counter can
produce each finite-state thread from a program that is a finite or periodic infi-
nite sequence of instructions from a finite set (Section 5). Finally, we make some
concluding remarks (Section 6).

2 Basic Thread Algebra

In this section, we review BTA (Basic Thread Algebra), a form of process algebra
which is tailored to the description of the behaviour of deterministic sequential
programs under execution. The behaviours concerned are called threads.
In BTA, it is assumed that there is a fixed but arbitrary finite set A of basic

actions with tau 6∈ A. We write Atau for A ∪ {tau}. The members of Atau are
referred to as actions.
The intuition is that each basic action performed by a thread is taken as a

command to be processed by a service provided by the execution environment of
the thread. The processing of a command may involve a change of state of the
service concerned. At completion of the processing of the command, the service
produces a reply value. This reply is either T or F and is returned to the thread
concerned.
Although BTA is one-sorted, we make this sort explicit. The reason for this

is that we will extend BTA with an additional sort in Section 4.
The algebraic theory BTA has one sort: the sort T of threads. To build terms

of sort T, BTA has the following constants and operators:

– the deadlock constant D :T;
– the termination constant S :T;
– for each a ∈ Atau, the binary postconditional composition operator E aD :

T×T→ T.

Terms of sort T are built as usual (see e.g. [11, 12]). Throughout the paper, we
assume that there are infinitely many variables of sort T, including x, y, z.
We use infix notation for postconditional composition. We introduce action

prefixing as an abbreviation: a ◦ p, where p is a term of sort T, abbreviates
p E aD p.
Let p and q be closed terms of sort T and a ∈ Atau. Then p E aD q will

perform action a, and after that proceed as p if the processing of a leads to the
reply T (called a positive reply), and proceed as q if the processing of a leads
to the reply F (called a negative reply). The action tau plays a special role. It
is a concrete internal action: performing tau will never lead to a state change
and always lead to a positive reply, but notwithstanding all that its presence
matters.
BTA has only one axiom. This axiom is given in Table 1. Using the abbrevia-

tion introduced above, axiom T1 can be written as follows: xE tau Dy = tau◦x.
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Table 1. Axiom of BTA

x E tau D y = x E tau D x T1

Table 2. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X= tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

Each closed BTA term of sort T denotes a finite thread, i.e. a thread of which
the length of the sequences of actions that it can perform is bounded. Guarded
recursive specifications give rise to infinite threads.
A recursive specification over BTA is a set of recursion equations {X = tX |

X ∈ V } where V is a set of variables of sort T and each tX is a BTA term of sort
T that contains only variables from V . Let E be a recursive specification over
BTA. Then we write V(E) for the set of all variables that occur on the left-hand
side of an equation in E. A solution of a recursive specification E is a set of
threads (in some model of BTA) {TX | X ∈ V(E)} such that the equations of
E hold if, for all X ∈ V(E), X stands for TX .
Let t be a BTA term of sort T containing a variable X of sort T. Then

an occurrence of X in t is guarded if t has a subterm of the form t′ E aD t′′

containing this occurrence of X. Let E be a recursive specification over BTA.
Then E is a guarded recursive specification if, in each equation X = tX ∈ E, all
occurrences of variables in tX are guarded or tX can be rewritten to such a term
using the equations in E from left to right. We are only interested in models of
BTA in which guarded recursive specifications have unique solutions, such as the
projective limit model of BTA presented in [1]. A thread that is the solution of
a finite guarded recursive specification over BTA is called a finite-state thread.
We extend BTA with guarded recursion by adding constants for solutions

of guarded recursive specifications and axioms concerning these additional con-
stants. For each guarded recursive specification E and each X ∈ V(E), we add a
constant of sort T standing for the unique solution of E for X to the constants
of BTA. The constant standing for the unique solution of E for X is denoted by
〈X|E〉. Moreover, we add the axioms for guarded recursion given in Table 2 to
BTA. In this table, we write 〈tX |E〉 for tX with, for all Y ∈ V(E), all occurrences
of Y in tX replaced by 〈Y |E〉. X, tX and E stand for an arbitrary variable of
sort T, an arbitrary BTA term of sort T and an arbitrary guarded recursive
specification over BTA, respectively. Side conditions are added to restrict the
variables, terms and guarded recursive specifications for which X, tX and E
stand. The equations 〈X|E〉 = 〈tX |E〉 for a fixed E express that the constants
〈X|E〉 make up a solution of E. The conditional equations E ⇒ X = 〈X|E〉
express that this solution is the only one.
We will write BTA+REC for BTA extended with the constants for solutions

of guarded recursive specifications and axioms RDP and RSP. We will often write
X for 〈X|E〉 if E is clear from the context. It should be borne in mind that, in
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Table 3. Approximation induction principle

∧

n≥0 πn(x) = πn(y) ⇒ x = y AIP

Table 4. Axioms for projection operators

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(x E aD y) = πn(x) E aD πn(y) P3

such cases, we use X as a constant. We will also use the following abbreviation:
aω, where a ∈ Atau, abbreviates 〈X|{X = a ◦X}〉.
In [3], we show that the threads considered in BTA+REC can be viewed as

processes that are definable over ACP [9].
Closed terms of sort T from the language of BTA+REC that denote the

same infinite thread cannot always be proved equal by means of the axioms
of BTA+REC. We introduce the approximation induction principle to remedy
this. The approximation induction principle, AIP in short, is based on the view
that two threads are identical if their approximations up to any finite depth are
identical. The approximation up to depth n of a thread is obtained by cutting
it off after performing a sequence of actions of length n.
AIP is the infinitary conditional equation given in Table 3. Here, following [2],

approximation of depth n is phrased in terms of a unary projection operator
πn : T → T. The axioms for the projection operators are given in Table 4. In
this table, a stands for an arbitrary member of Atau.
We will write BTA+REC+AIP for BTA+REC extended with the projection

operators and the axioms from Tables 3 and 4.
A linear recursive specification over BTA is a guarded recursive specification

E = {X = tX | X ∈ V }, where each tX is a term of the form D, S or Y E aD Z
with Y,Z ∈ V . For each closed term p of sort T from the language of BTA+REC,
there exist a linear recursive specification E and a variable X ∈ V(E) such that
p = 〈X|E〉 is derivable from the axioms of BTA+REC.
Below, the interpretations of the constants and operators of BTA+REC in

models of BTA+REC are denoted by the constants and operators themselves.
Let A be some model of BTA+REC, and let p be an element from the domain of
A. Then the set of states or residual threads of p, written Res(p), is inductively
defined as follows:

– p ∈ Res(p);
– if q E aD r ∈ Res(p), then q ∈ Res(p) and r ∈ Res(p).

We are only interested in models of BTA+REC in which card(Res(〈X|E〉)) ≤
card(E) for all finite linear recursive specifications E, such as the projective limit
model of BTA presented in [1].
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3 Program Algebra and the Jump-Shift Instruction

In this section, we first review PGA (ProGram Algebra) and then extend it with
the jump-shift instruction, resulting in PGAjs. PGA is an algebra of sequential
programs based on the idea that sequential programs are in essence sequences
of instructions. PGA provides a program notation for finite-state threads. The
jump-shift instruction is not found in programming practice: if one or more
jump-shift instructions precede a jump instruction, then each of those jump-
shift instructions increases the position to jump to by one.

3.1 PGA

In PGA, it is assumed that there is a fixed but arbitrary finite set A of basic
instructions. PGA has the following primitive instructions:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a forward jump instruction #l;
– a termination instruction !.

We write Ijmp for the set of all forward jump instructions and IPGA for the set
of all primitive instructions of PGA.
The intuition is that the execution of a basic instruction a may modify a

state and produces T or F at its completion. In the case of a positive test in-
struction +a, basic instruction a is executed and execution proceeds with the
next primitive instruction if T is produced and otherwise the next primitive
instruction is skipped and execution proceeds with the primitive instruction fol-
lowing the skipped one. In the case where T is produced and there is not at least
one subsequent primitive instruction and in the case where F is produced and
there are not at least two subsequent primitive instructions, deadlock occurs.
In the case of a negative test instruction −a, the role of the value produced is
reversed. In the case of a plain basic instruction a, the value produced is disre-
garded: execution always proceeds as if T is produced. The effect of a forward
jump instruction #l is that execution proceeds with the l-th next instruction of
the program concerned. If l equals 0 or the l-th next instruction does not exist,
then #l results in deadlock. The effect of the termination instruction ! is that
execution terminates.
PGA has the following constants and operators:

– for each u ∈ IPGA, an instruction constant u ;
– the binary concatenation operator ; ;
– the unary repetition operator ω .

Terms are built as usual. Throughout the paper, we assume that there are in-
finitely many variables, including x, y, z.
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Table 5. Axioms of PGA

(x ; y) ; z = x ; (y ; z) PGA1

(xn)ω = xω PGA2

xω ; y = xω PGA3

(x ; y)ω = x ; (y ; x)ω PGA4

Table 6. Defining equations for thread extraction operation

|a| = a ◦ D

|a ; x| = a ◦ |x|

|+a| = a ◦ D

|+a ; x| = |x|E aD |#2 ; x|

|−a| = a ◦ D

|−a ; x| = |#2 ; x|E aD |x|

|#l| = D

|#0 ; x| = D

|#1 ; x| = |x|

|#l + 2 ; u| = D

|#l + 2 ; u ; x| = |#l + 1 ; x|

|!| = S

|! ; x| = S

Table 7. Rule for cyclic jump chains

x ∼= #0 ; y ⇒ |x| = D

We use infix notation for concatenation and postfix notation for repetition.
We also use the notation P n. For each PGA term P and n > 0, the term P n is
defined by induction on n as follows: P 1 = P and Pn+1 = P ; Pn.
Closed PGA terms are considered to denote programs. The intuition is that

a program is in essence a non-empty, finite or periodic infinite sequence of prim-
itive instructions.4 These sequences are called single pass instruction sequences

because PGA has been designed to enable single pass execution of instruction
sequences: each instruction can be dropped after it has been executed. Programs
are considered to be equal if they represent the same single pass instruction se-
quence. The axioms for instruction sequence equivalence are given in Table 5. In
this table, n stands for an arbitrary natural number greater than 0. The unfold-
ing equation xω = x ; xω is derivable. Each closed PGA term is derivably equal
to a term in canonical form, i.e. a term of the form P or P ;Qω, where P and Q
are closed PGA terms that do not contain the repetition operator.
Each closed PGA term is considered to denote a program of which the be-

haviour is a finite-state thread, taking the set A of basic instructions for the set A
of actions. The thread extraction operation | | assigns a thread to each program.
The thread extraction operation is defined by the equations given in Table 6 (for
a ∈ A, l ∈ N and u ∈ IPGA) and the rule given in Table 7. This rule is expressed

4 A periodic infinite sequence is an infinite sequence with only finitely many subse-
quences.
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Table 8. Defining formulas for structural congruence predicate

#n+ 1 ; u1 ; . . . ; un ; #0 ∼= #0 ; u1 ; . . . ; un ; #0

#n+ 1 ; u1 ; . . . ; un ; #m ∼= #m+ n+ 1 ; u1 ; . . . ; un ; #m

(#n+ l + 1 ; u1 ; . . . ; un)
ω ∼= (#l ; u1 ; . . . ; un)

ω

#m+ n+ l + 2 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)
ω ∼=

#n+ l + 1 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)
ω

x ∼= x

x1
∼= y1 ∧ x2

∼= y2 ⇒ x1 ; x2
∼= y1 ; y2 ∧ x1

ω ∼= y1
ω

in terms of the structural congruence predicate ∼= , which is defined by the
formulas given in Table 8 (for n,m, l ∈ N and u1, . . . , un, v1, . . . , vm+1 ∈ IPGA).
The equations given in Table 6 do not cover the case where there is a cyclic

chain of forward jumps. Programs are structural congruent if they are the same
after removing all chains of forward jumps in favour of single jumps. Because
a cyclic chain of forward jumps corresponds to #0, the rule from Table 7 can
be read as follows: if x starts with a cyclic chain of forward jumps, then |x|
equals D. It is easy to see that the thread extraction operation assigns the same
thread to structurally congruent programs. Therefore, the rule from Table 7 can
be replaced by the following generalization: x ∼= y ⇒ |x| = |y|.
Let E be a finite guarded recursive specification over BTA, and let PX be a

closed PGA term for each X ∈ V(E). Let E ′ be the set of equations that results
from replacing in E all occurrences of X by |PX | for each X ∈ V(E). If E′ can
be obtained by applications of axioms PGA1–PGA4, the defining equations for
the thread extraction operation and the rule for cyclic jump chains, then |PX | is
the solution of E for X. Such a finite guarded recursive specification can always
be found. Thus, the behaviour of each closed PGA term, is a thread that is
definable by a finite guarded recursive specification over BTA. Moreover, each
finite guarded recursive specification over BTA can be translated to a closed
PGA term of which the behaviour is the solution of the finite guarded recursive
specification concerned (cf. Section 4 of [10]).
Closed PGA terms are loosely called PGA programs. PGA programs in which

the repetition operator do not occur are called finite PGA programs.

3.2 The Jump-Shift Instruction

We extend PGA with the jump-shift instruction, resulting in PGAjs.
In PGAjs, like in PGA, it is assumed that there is a fixed but arbitrary finite

set A of basic instructions. PGAjs has the primitive instructions of PGA and in
addition:

– a jump-shift instruction #′.

We write IPGAjs
for the set of all primitive instructions of PGAjs.
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Table 9. Additional axioms for the jump-shift instruction

#′ ; #l = #l + 1 JSI1

#′ ; u = u JSI2

#′
ω
= #0ω JSI3

Table 10. Additional defining equation for thread extraction operation

|x| = |x ; #0|

If one or more jump-shift instructions precede a jump instruction, then each
of those jump-shift instructions increases the position to jump to by one. If one
or more jump-shift instructions precede an instruction different from a jump
instruction, then those jump-shift instructions have no effect.
PGAjs has the following constants and operators:

– for each u ∈ IPGAjs
, an instruction constant u ;

– the binary concatenation operator ; ;
– the unary repetition operator ω .

The axioms of PGAjs are the axioms of PGA (Table 5) and in addition the
axioms for the jump-shift instruction given in Table 9. In this table, u stands for
an arbitrary primitive instruction from IPGA \ Ijmp.
The thread extraction operation of PGAjs is defined by the same equations

and rule as the thread extraction operation of PGA (Tables 6 and 7), on the
understanding that u still stands for an arbitrary primitive instruction from
IPGA, and in addition the equation given in Table 10. The structural congruence
predicate of PGAjs is defined by the same formulas as the structural congruence
predicate of PGA (Table 8), on the understanding that u1, . . . , un, v1, . . . , vm+1

still stand for arbitrary primitive instructions from IPGA.
The additional defining equation |x| = |x ; #0| for the thread extraction

operation expresses that a missing termination instructions leads to deadlock.
For all PGA programs P , the equation |P | = |P ; #0| is derivable from the
axioms of PGA and the defining equations for the thread extraction operation
of PGA. For all PGAjs programs P , the equation |#l+ 2 ; #′ ; P | = |#l+ 2 ; P |
is derivable from the axioms of PGAjs and the defining equations of the thread
extraction operation of PGAjs.
Obviously, the set of all PGA programs is a proper subset of the set of

all PGAjs programs. Moreover, the thread extraction operation of PGA is the
restriction of the thread extraction operation of PGAjs to the set of all PGA
programs. Therefore, we do not distinguish the two thread extraction operations
syntactically.
Below, we consider PGAjs programs that contain no other jump instruction

than #0. We will refer to these programs as PGA0
js programs.

An interesting point of PGA0
js programs is that they make use of a finite

set of primitive instructions. It happens that, although PGA programs make
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use of an infinite set of primitive instructions, PGA programs do not offer more
expressive power than PGA0

js programs.

Theorem 1. Each PGA program P can be transformed to a PGA0
js program P ′

such that |P | = |P ′|.

Proof. Let P be a PGA program, and let P ′ be P with, for all l > 0, all oc-
currences of #l in P replaced by #′l ; #0. Clearly, P ′ is a PGA0

js program. It is

easily proved by induction on l that, for each l > 0, the equation #l = #′l ; #0
is derivable from the axioms of PGAjs. From this it follows immediately that
the equation P = P ′ is derivable from the axioms of PGAjs. Consequently,
|P | = |P ′|. ut

As a corollary of Theorem 1 and the expressiveness results for PGA in [10], we
have that | | can produce each finite-state thread from some PGA0

js program.

Corollary 1. For each finite-state thread p, there exists a PGA0
js program P

such that |P | = p.

This means that each finite-state thread can be produce from a program that is
a finite or periodic infinite sequence of instructions from a finite set.

3.3 On Single Pass Execution of Instruction Sequences

The primitive instructions of PGA have been designed to enable single pass
execution of instruction sequences. Thread extraction defined in accordance with
the idea of single pass execution of instruction sequences should ideally only
involve equations of the form |u ; x| = p where |x| is the only expression of
the form |P | that may occur in p. In this section, thread extraction has not
been defined in accordance with the idea of single pass execution of instruction
sequences. The equations |+a ;x| = |x|E aD |#2 ;x|, |−a ;x| = |#2 ;x|E aD |x|,
and |#l+2 ;u ;x| = |#l+1 ;x| are not of the right form. In Section 5, we define
an alternative thread extraction operation for PGA0

js programs, which is better
in accordance with the idea of single pass execution of instruction sequences.
By that thread extraction operation, each PGA0

js program is assigned a thread
that becomes the behaviour that it exhibits on execution by interaction with
a counter service. In Section 4, we introduce thread-service composition, which
allows for the intended interaction.

4 Services and Interaction of Threads with Services

In this section, we first extend BTA with thread-service composition, next in-
troduce a state-based approach to describe services, and then use this approach
to give a description of counter services. In the current paper, we will only use
thread-service composition to have program behaviours affected by some service.
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4.1 Thread-Service Composition

A thread may perform certain actions only for the sake of getting reply values
returned by services and that way having itself affected by services. We introduce
thread-service composition to allow for threads to be affected in this way. Thread-
service composition is introduced under the name use in [6].
It is assumed that there is a fixed but arbitrary finite set F of foci and a fixed

but arbitrary finite setM of methods. Each focus plays the role of a name of a
service provided by the execution environment that can be requested to process
a command. Each method plays the role of a command proper. For the set A
of actions, we take the set {f.m | f ∈ F ,m ∈ M}. Performing an action f.m is
taken as making a request to the service named f to process command m.
We introduce yet another sort: the sort S of services. However, we will not

introduce constants and operators to build terms of this sort. S is considered to
stand for the set of all services. We identify services with functions H :M+ →
{T,F,B} that satisfy the following condition:

∀α ∈M+,m ∈M • (H(α) = B ⇒ H(α y 〈m〉) = B) .

Given a service H and a method m ∈M, the derived service of H after process-
ing m, written ∂

∂m
H, is defined by ∂

∂m
H(α) = H(〈m〉y α).

A service H can be understood as follows:

– if H(〈m〉) = T, then the request to process m is accepted by the service, the
reply is positive, and the service proceeds as ∂

∂m
H;

– if H(〈m〉) = F, then the request to process m is accepted by the service, the
reply is negative, and the service proceeds as ∂

∂m
H;

– if H(〈m〉) = B, then the request to process m is rejected by the service.

For each f ∈ F , we introduce the binary thread-service composition operator
/f :T× S→ T. Intuitively, p /f H is the thread that results from processing
all actions performed by thread p that are of the form f.m by service H. When
an action of the form f.m performed by thread p is processed by service H, it is
turned into tau and postconditional composition is removed in favour of action
prefixing on the basis of the reply value produced.
The axioms for the thread-service composition operators are given in Ta-

ble 11. In this table, f and g stand for an arbitrary foci from F and m stands for
an arbitrary method fromM. Axioms TSC3 and TSC4 express that the action
tau and actions of the form g.m, where f 6= g, are not processed. Axioms TSC5
and TSC6 express that a thread is affected by a service as described above when
an action of the form f.m performed by the thread is processed by the service.
Axiom TSC7 expresses that deadlock takes place when an action to be processed
is not accepted.
Let T stand for either BTA, BTA+REC or BTA+REC+AIP. Then we will

write T+TSC for T , taking the set {f.m | f ∈ F ,m ∈M} for A, extended with
the thread-service composition operators and the axioms from Table 11.
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Table 11. Axioms for thread-service composition

S /f H = S TSC1

D /f H = D TSC2

tau ◦ x /f H = tau ◦ (x /f H) TSC3

(x E g.mD y) /f H = (x /f H) E g.mD (y /f H) if f 6= g TSC4

(x E f.mD y) /f H = tau ◦ (x /f
∂

∂m
H) if H(〈m〉) = T TSC5

(x E f.mD y) /f H = tau ◦ (y /f
∂

∂m
H) if H(〈m〉) = F TSC6

(x E f.mD y) /f H = D if H(〈m〉) = B TSC7

Table 12. Axioms for abstraction

τtau(S) = S TT1

τtau(D) = D TT2

τtau(tau ◦ x) = τtau(x) TT3

τtau(x E aD y) = τtau(x) E aD τtau(y) TT4

The action tau is an internal action whose presence matters. To conceal its
presence in the case where it does not matter after all, we also introduce the
unary abstraction operator τtau :T→ T.
The axioms for the abstraction operator are given in Table 12. In this table,

a stands for an arbitrary basic action from A.
Abstraction can for instance be appropriate in the case where tau arises from

turning actions of an auxiliary nature into tau on thread-service composition.
Examples of this case will occur in Section 5. Unlike the use mechanism intro-
duced in [6], the use mechanism introduced in [7] incorporates abstraction.
Let T stand for either BTA, BTA+REC, BTA+REC+AIP, BTA+TSC,

BTA+REC+TSC or BTA+REC+AIP+TSC. Then we will write T+ABSTR
for T extended with the abstraction operator and the axioms from Table 12.
The equation τtau(tau

ω) = D is derivable from the axioms of BTA+REC+
AIP+ABSTR.

4.2 State-Based Description of Services

We introduce a state-based approach to describe families of services which will
be used in Section 4.3. The approach is similar to the approach to describe state
machines introduced in [7].
In this approach, a family of services is described by

– a set of states S;
– an effect function eff :M× S → S;
– a yield function yld :M× S → {T,F,B};
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satisfying the following condition:

∃s ∈ S • ∀m ∈M •

(yld(m, s) = B ∧ ∀s′ ∈ S • (yld(m, s′) = B ⇒ eff (m, s′) = s)) .

The set S contains the states in which the services may be, and the functions eff
and yld give, for each method m and state s, the state and reply, respectively,
that result from processing m in state s.
We define, for each s ∈ S, a cumulative effect function ceff s :M

∗ → S in
terms of s and eff as follows:

ceff s(〈 〉) = s ,

ceff s(α y 〈m〉) = eff (m, ceff s(α)) .

We define, for each s ∈ S, a service Hs in terms of ceff s and yld as follows:

H(α y 〈m〉) = yld(m, ceff s(α)) .

Hs is called the service with initial state s described by S, eff and yld . We say
that {Hs | s ∈ S} is the family of services described by S, eff and yld .
The condition that is imposed on S, eff and yld imply that, for each s ∈

S, Hs is a service indeed. It is worth mentioning that
∂

∂m
Hs = Heff (m,s) and

H(〈m〉) = yld(m, s).

4.3 Counter Services

We give a state-based description of a very simple family of services that consti-
tute a counter. This counter will be used in Section 5 to describe the behaviour
of programs in PGAjs.
The counter services accept the following methods:

– a counter reset method reset;
– a counter increment method incr;
– a counter decrement method decr;
– a counter is-zero method iszero.

We writeMcnt for the set {reset, incr, decr, iszero}. It is assumed thatMcnt ⊆M.
The methods accepted by counter services can be explained as follows:

– reset : the content of the counter is set to zero and the reply is T;
– incr : the content of the counter is incremented by one and the reply is T;
– decr : if the content of the counter is greater than zero, then the content of
the counter is decremented by one and the reply is T; otherwise, nothing
changes and the reply is F;

– iszero : if the content of the counter equals zero, then nothing changes and
the reply is T; otherwise, nothing changes and the reply is F.
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Let s ∈ N. Then we write Cnts for the service with initial state s described
by S = N ∪ {↑}, where ↑ 6∈ N, and the functions eff and yld defined as follows
(k ∈ N):

eff (reset, k) = 0 ,

eff (incr, k) = k + 1 ,

eff (decr, 0) = 0 ,

eff (decr, k + 1) = k ,

eff (iszero, k) = k ,

eff (m, k) = ↑ if m 6∈ Mcnt ,

eff (m, ↑) = ↑ ,

yld(reset, k) = T ,

yld(incr, k) = T ,

yld(decr, 0) = F ,

yld(decr, k + 1) = T ,

yld(iszero, 0) = T ,

yld(iszero, k + 1) = F ,

yld(m, k) = B if m 6∈ Mcnt ,

yld(m, ↑) = B .

We write Cnt init for Cnt0.

5 PGA0
js

Programs Revisited

In this section, we define an alternative thread extraction operation for PGA0
js

programs, which is in accordance with the idea of single pass execution of in-
struction sequences. By that thread extraction operation, each PGA0

js program
is assigned a thread that becomes the behaviour that it exhibits on execution by
interaction with a counter service. We also introduce a notion of an execution
mechanism. The alternative thread extraction operation induces a finite-state
execution mechanism that by making use of a counter can produce each finite-
state thread from some PGA0

js program.

5.1 Alternative Semantics for PGA0
js Programs

When defining the alternative thread extraction operation for PGA0
js programs,

it is assumed that there is a fixed but arbitrary finite set F of foci with cnt ∈ F
and a fixed but arbitrary finite set M of methods. Besides, the set {f.m | f ∈
F \ {cnt},m ∈ M} is taken as the set A of basic instructions. Thereby no
real restriction is imposed on the set A: in the case where the cardinality of F
equals 2, all basic instructions have the same focus and the set M of methods
can be looked upon as the set A of basic instructions.
The alternative thread extraction operation | |′ for PGA0

js programs is defined
by the equations given in Table 13 (for a ∈ A, l ∈ N, u ∈ (IPGAjs

\Ijmp)∪{#0}).
The thread assigned to a program by this thread extraction operation is not the
behaviour that the program exhibits on execution. That behaviour arises from
interaction of this thread with a counter service.
The following theorem states rigorously that, for any PGA0

js program, the
behaviour under execution coincides with the alternative behaviour under exe-
cution on interaction with a counter when abstracted from tau.
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Table 13. Defining equations for thread extraction operation

|x|′ = |x ; #0|′

|a ; x|′ = cnt.reset ◦ (a ◦ |x|′)

|+a ; x|′ = cnt.reset ◦ (|x|′ E aD (cnt.incr ◦ |x|′jmp))

|−a ; x|′ = cnt.reset ◦ ((cnt.incr ◦ |x|′jmp) E aD |x|′)

|#′ ; x|′ = cnt.incr ◦ |x|′

|#0 ; x|′ = D E cnt.iszero D |x|′jmp

|! ; x|′ = S

|#′ ; x|′jmp = |x|′jmp

|u ; x|′jmp = cnt.decr ◦ (|u ; x|′ E cnt.iszero D |x|′jmp) if u 6= #′

Theorem 2. For all PGA0
js programs P , |P | = τtau(|P |

′ /cnt Cnt init).

Proof. Strictly speaking, we prove this theorem in the algebraic theory obtained
by: (i) combining PGAjs with BTA+REC+AIP+TSC+ABSTR, resulting in a
theory with three sorts: a sort P of programs, a sort T of threads, and a sort S

of services; (ii) extending the result by taking | | and | |′ for additional operators
from sort P to sort T and taking the semantic equations and rule defining thread
extraction and alternative thread extraction for additional axioms. We write P
for the set of all closed terms of sort P from the language of the resulting theory
and T for the set of all closed terms of sort T from the language of the resulting
theory. Moreover, we write P0 for the set of all closed terms from P that contain
no other jump instructions than #0.
Let

T = {|P |, |#′i+1
; P |, |#′i+1

; #0 ; P | | i ∈ N ∧ P ∈ P0} ,

T ′ = {τtau(|P |
′ /cnt Cnt i), τtau(|P |

′
jmp /cnt Cnt i+1) | i ∈ N ∧ P ∈ P0} ,

and let β : T → T ′ be the bijection defined by

β(|P |) = τtau(|P |
′ /cnt Cnt init) ,

β(|#′i+1
; P |) = τtau(|P |

′ /cnt Cnt i+1) ,

β(|#′i+1
; #0 ; P |) = τtau(|P |

′
jmp /cnt Cnt i+1) .

For each p′ ∈ T , write β∗(p′) for p′ with, for all p ∈ T , all occurrences of p in
p′ replaced by β(p). Then, it is straightforward to prove that there exists a set
E consisting of one derivable equation p = p′ for each p ∈ T such that, for all
equations p = p′ in E:

– the equation β(p) = β∗(p′) is also derivable;
– if p′ ∈ T , then p′ can always be rewritten to a p′′ 6∈ T using the equations in

E from left to right.

Because β(|P |) = τtau(|P |
′ /cnt Cnt init), this means that, for all P ∈ P

0, |P | and
τtau(|P |

′ /cnt Cnt init) are solutions of the same guarded recursive specification.
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Because guarded recursive specifications have unique solutions, it follows imme-
diately that, for all P ∈ P0, |P | = τtau(|P |

′ /cnt Cnt init). ut

As a corollary of Theorem 2 and Corollary 1, we have that | |′ by making use of
a counter can produce each finite-state thread from some PGA0

js program.

Corollary 2. For each finite-state thread p, there exists a PGA0
js program P

such that τtau(|P |
′ /cnt Cnt init) = p.

5.2 On Finite-State Execution Mechanisms

Below, we introduce a notion of an execution mechanism. The intuition is that,
for a function that assigns a finite-state behaviour to each member of some set
of instruction sequences, an execution mechanism is a deterministic behaviour
that can produce the behaviour assigned to each of these instruction sequences
from the instruction sequence concerned by going through the instructions in the
sequence one by one. We believe that there do not exist execution mechanisms
that can deal with sequences of instructions from an infinite set. Therefore, we
restrict ourselves to finite instruction sets.
Let I be a finite set, let P be a set of non-empty finite or periodic infinite

sequences over I, and let | | be a function that assigns a finite-state thread to
each member of P. Assume that pgs ∈ F , that hdeq:u ∈ M for all u ∈ I, that
drop ∈ M, and that basic actions of the form pgs.m do not occur in |P | for all
P ∈ P. Moreover, for each P ∈ P, let PGSP be the service with initial state P
described by S = P ∪ {ε} ∪ {↑}, where ↑ 6∈ P ∪ {ε},5 and the functions eff and
yld defined as follows (u, u′ ∈ I, P ∈ P, Q ∈ P ∪ {ε}):

eff (hdeq:u,Q) = Q ,

eff (drop, ε) = ε ,

eff (drop, u) = ε ,

eff (drop, u ; P ) = P ,

eff (m,Q) = ↑ if m 6∈ Mpgs ,

eff (m, ↑) = ↑ ,

yld(hdeq:u, ε) = F ,

yld(hdeq:u, u) = T ,

yld(hdeq:u, u ; P ) = T ,

yld(hdeq:u, u′) = F if u 6= u′ ,

yld(hdeq:u, u′ ; P ) = F if u 6= u′ ,

yld(drop, ε) = F ,

yld(drop, u) = T ,

yld(drop, u ; P ) = T ,

yld(m,Q) = B if m 6∈ Mpgs ,

yld(m, ↑) = B .

Then an execution mechanism for | | is a thread p such that τtau(p/pgsPGSP ) =
|P | for all P ∈ P. An execution mechanism is called a finite-state execution
mechanism if it is a finite-state thread.
In order to execute an instruction sequence P , an execution mechanism makes

use of the service PGSP to go through that the instructions in that sequence
one by one. The methods accepted by this service can be explained as follows:

5 We write ε for the empty sequence.
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– hdeq:u : if there is an instruction sequence left and its first instruction is u,
then nothing changes and the reply is T; otherwise, nothing changes and the
reply is F;

– drop : if there is an instruction sequence left, then its first instruction is
dropped and the reply is T; otherwise, nothing changes and the reply is F.

Notice that the service does not have to hold an infinite object: there exists
an adequate finite representation for each finite or periodic infinite sequence of
instructions.
It is easy to see that there exists a finite-state execution mechanism for the

thread extraction operation | |′ for PGA0
js programs. From this and Corollary 2,

it follows immediately that there exists a finite-state execution mechanism that
by making use of a counter can produce each finite-state thread from some
program that is a finite or periodic infinite sequence of instructions from a finite
set.
We also have that there does not exist a finite-state execution mechanism

that by itself can produce each finite-state thread from a program that is a finite
or periodic infinite sequence of instructions from a finite set.

Theorem 3. Let I be a finite set, let P be a set of non-empty finite or periodic

infinite sequences over I, and let | | be a function that assigns a finite-state thread
to each member of P. Assume that, for each finite-state thread p, there exists

a P ∈ P such that |P | = p. Then there does not exist a finite-state execution

mechanism for | |.

Proof. Suppose that there exists a finite-state execution mechanism, say pexec.
Let n be the number of states of pexec. Consider the thread T0 defined by the
guarded recursive specification consisting of the following equations:

Ti = Ti+1 E aD T ′
i+1,0 for i ∈ [0, n] ,

Tn+1 = S ,

T ′
i+1,i′ = b ◦ T ′

i+1,i′+1 for i ∈ [0, n], i′ ∈ [0, i] ,

T ′
i+1,i+1 = c ◦ T ′

i+1,0 .

Let P be a member of P from which pexec can produce T0. Notice that T0

performs a at least once and at most n+1 times after each other. Suppose that
T0 has performed a for the jth time when the reply F is returned, while at that
stage pexec has gone through the first kj instructions of P . Moreover, write Pj

for what is left of P after its first kj instructions have been dropped. Then pexec

still has to produce T ′
j,0 from Pj . For each j ∈ [1, n + 1], a kj as above can be

found. Let j0 be the unique j ∈ [1, n+1] such that kj′ ≤ kj for all j
′ ∈ [1, n+1].

Regardless the number of times T0 has performed a when the reply F is returned,
pexec must eventually have dropped the first kj0 instructions of P . For each of
the n+ 1 possible values of j, pexec must be in a different state when Pj0 is left,
because the thread that pexec still has to produce is different. However, this is
impossible with n states. ut

17



In the light of Theorem 3, Corollary 2 can be considered a positive result: a finite-
state execution mechanism that makes use of a counter is sufficient. However, this
result is reached at the expense of an extremely inefficient way of representing
jumps. We do not see how to improve on the linear representation of jumps.
With a logarithmic representation, for instance, we expect that a counter will
not do.
Theorem 3 is actually a generalization of Theorem 4 from [8] adapted to the

current setting.
The hierarchy of program notations rooted in program algebra introduced

in [2] includes a program notation, called PGLS, that supports structured pro-
gramming by offering a rendering of conditional and loop constructs instead of
(unstructured) jump instructions. Like PGA0

js, PGLS has a finite set of primi-
tive instructions. Like for PGA0

js programs, there exists a finite-state execution
mechanism that by making use of a counter can produce the behaviour of each
PGLS program. However, PGLS programs offer less expressive power than PGA
programs (see Section 9 of [2]). Therefore, PGLS is unsuited to show that there
exists a finite-state execution mechanism that by making use of a counter can
produce each finite-state thread from some program that is a finite or periodic
infinite sequence of instructions from a finite set.

6 Conclusions

We have studied sequential programs that are instruction sequences with jump-
shift instructions. We have defined the meaning of the programs concerned in two
different ways which both involve the extraction of threads. One way covers only
programs with jump-shift instructions that contain no other jump instruction
than the one whose effect in the absence of preceding jump-shift instructions is a
jump to the position of the instruction itself. We have among other things shown
that the extraction of threads involved in that way corresponds to a finite-state
execution mechanism that by making use of a counter can produce each finite-
state thread from some program that is a finite or periodic infinite sequence of
instructions from a finite set.
In the course of this work, we got convinced that a general format for the

defining equations of thread extraction operations can be devised that yields
thread extraction operations corresponding to execution mechanisms that can
produce each finite-state thread from some program. One of the options for
future work is to investigate this matter.
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