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Abstract. We study sequential programs that are instruction sequences
with dynamically instantiated instructions. We define the meaning of
such programs in two different ways. In either case, we give a transla-
tion by which each program with dynamically instantiated instructions is
turned into a program without them that exhibits on execution the same
behaviour by interaction with some service. The complexity of the trans-
lations differ considerably, whereas the services concerned are equally
simple. However, the service concerned in the case of the simpler trans-
lation is far more powerful than the service concerned in the other case.
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1 Introduction

In this paper, we study sequential programs that are instruction sequences with
dynamically instantiated instructions. With that we carry on the line of research
with which a start was made in [3]. The object pursued with this line of research
is the development of a theoretical understanding of possible forms of sequential
programs, starting from the simplest form. The view is taken that sequential
programs in the simplest form are sequences of instructions. Program algebra,
an algebra of programs in which programs are looked upon as sequences of
instructions, is taken for the basis of the development aimed at.
The approach to define the meaning of programs followed in this line of re-

search is called projection semantics. It explains the meaning of programs in
terms of known programs instead of more or less sophisticated mathematical
objects that represent behaviours of programs under execution. The main ad-
vantage of projection semantics is that it does not require a lot of mathematical

? This research was partly carried out in the framework of the Jacquard-project Sym-
biosis, which is funded by the Netherlands Organisation for Scientific Research
(NWO).



background. Over and above that, the view is taken that the behaviours of se-
quential programs under execution are threads as considered in basic thread
algebra [3].3 Therefore, the meaning of the programs considered in program al-
gebra is explained in terms of threads. The experience gained so far leads us
to believe that sequential programs are nothing but linear representations of
threads.
Sequential programs in the form of assembly programs up to and includ-

ing sequential programs in the form of structured programs are covered in [3].
However, although they are found in existing assembly programming practice,
indirect jump instructions are not considered. In [5], several kinds of indirect
jump instructions are considered, including a kind by which recursive method
calls can easily be explained.
Dynamic instruction instantiation is a programming feature that is not sug-

gested by existing programming practice. However, from the viewpoint that se-
quential programs are nothing but linear representations of threads, it is a gen-
uine programming feature. It is a useful programming feature as well, as will be
illustrated by means of an example in the paper. Therefore, we consider a the-
oretical understanding of instruction sequences with dynamically instantiated
instructions relevant to programming.
We believe that interaction with services provided by an execution environ-

ment is inherent in the behaviour of programs under execution. Intuitively, some
service provides for dynamic instruction instantiation. In this paper, we define
the meaning of programs with dynamically instantiated instructions in two dif-
ferent ways. In either case, we give a translation by which each program with
dynamically instantiated instructions is turned into a program without them
that exhibits on execution the same behaviour by interaction with some service.
In one case, the service concerned provides in effect for the dynamic instruc-
tion instantiation and, in the other case, it is largely achieved by the translated
programs. We also describe the services concerned.
A thread proceeds by doing steps in a sequential fashion. A thread may do

certain steps only for the sake of having itself affected by some service. The
interaction between behaviours of programs under execution and some service
referred to above is an interaction with that purpose. In [6], the use mechanism is
introduced to allow for such a kind of interaction between threads and services.
In this paper, we will use a generalization of the use mechanism, called action
transforming thread-service composition, to have behaviours of programs under
execution affected by services. This generalization is reminiscent of the state
operator introduced in [1].
A hierarchy of program notations rooted in program algebra is introduced

in [3]. In this paper, we embroider on one program notation that belongs to
this hierarchy. The program notation in question, called PGLD, is a very simple
program notation which is close to existing assembly languages. The hierarchy

3 In [3], basic thread algebra is introduced under the name basic polarized process
algebra. Prompted by the development of thread algebra [6], which is a design on
top of it, basic polarized process algebra has been renamed to basic thread algebra.
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also includes a program notation, called PGLS, that supports structured pro-
gramming by offering conditional and loop constructs instead of (unstructured)
jump instructions. Each PGLS program can be translated into a semantically
equivalent PGLD program by means of the projection semantics of PGLS and
some intermediate program notations.
This paper is organized as follows. First, we review basic thread algebra,

program algebra, and the program notation PGLD (Sections 2, 3, and 4). Next,
we extend basic thread algebra with action transforming thread-service com-
position and introduce a state-based approach to describe services (Sections 5
and 6). Following this, we give a state-based description of a service that can
provide for dynamic instruction instantiation and use that service to define the
meaning of the programs from a variant of the program notation PGLD with
dynamically instantiated instructions (Sections 7 and 8). Then, we give a state-
based description of a register service and use that service to define the meaning
of the programs from the variant of the program notation PGLD with dynami-
cally instantiated instructions in another way (Sections 9 and 10). After that, we
discuss the semantic approaches followed in the preceding sections and introduce
a concrete notation for basic instructions that covers dynamically instantiated
instructions (Sections 11 and 12). Finally, we make some concluding remarks
(Section 13).

2 Basic Thread Algebra

In this section, we review BTA (Basic Thread Algebra), a form of process algebra
which is tailored to the description of the behaviour of sequential programs under
execution. The behaviours concerned are called threads.
In BTA, it is assumed that there is a fixed but arbitrary finite set of basic

actions A with tau 6∈ A. We write Atau for A∪ {tau}. The members of Atau are
referred to as actions.
The intuition is that each basic action performed by a thread is taken as a

command to be processed by a service provided by the execution environment of
the thread. The processing of a command may involve a change of state of the
service concerned. At completion of the processing of the command, the service
produces a reply value. This reply is either T or F and is returned to the thread
concerned.
Although BTA is one-sorted, we make this sort explicit. The reason for this

is that we will extend BTA with an additional sort in Section 5.
The algebraic theory BTA has one sort: the sort T of threads. To build terms

of sort T, BTA has the following constants and operators:

– the deadlock constant D :T;
– the termination constant S :T;
– for each a ∈ Atau, the binary postconditional composition operator E aD :

T×T→ T.
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Table 1. Axiom of BTA

x E tau D y = x E tau D x T1

Terms of sort T are built as usual (see e.g. [13, 14]). Throughout the paper, we
assume that there are infinitely many variables of sort T, including x, y, z.
We use infix notation for postconditional composition. We introduce action

prefixing as an abbreviation: a ◦ p, where p is a term of sort T, abbreviates
pE aD p.
Let p and q be closed terms of sort T and a ∈ Atau. Then p E aD q will

perform action a, and after that proceed as p if the processing of a leads to the
reply T (called a positive reply), and proceed as q if the processing of a leads
to the reply F (called a negative reply). The action tau plays a special role. It
is a concrete internal action: performing tau will never lead to a state change
and always lead to a positive reply, but notwithstanding all that its presence
matters.
BTA has only one axiom. This axiom is given in Table 1. Using the abbrevia-

tion introduced above, axiom T1 can be written as follows: xE tau Dy = tau◦x.
Each closed BTA term of sort T denotes a finite thread, i.e. a thread of which

the length of the sequences of actions that it can perform is bounded. Guarded
recursive specifications give rise to infinite threads.
A recursive specification over BTA is a set of recursion equations {X = tX |

X ∈ V } where V is a set of variables of sort T and each tX is a BTA term of sort
T that contains only variables from V . Let E be a recursive specification over
BTA. Then we write V(E) for the set of all variables that occur on the left-hand
side of an equation in E. A solution of a recursive specification E is a set of
threads (in some model of BTA) {TX | X ∈ V(E)} such that the equations of
E hold if, for all X ∈ V(E), X stands for TX .
Let t be a BTA term of sort T containing a variable X of sort T. Then

an occurrence of X in t is guarded if t has a subterm of the form t′ E aD t′′

containing this occurrence of X. Let E be a recursive specification over BTA.
Then E is a guarded recursive specification if, in each equation X = tX ∈ E, all
occurrences of variables in tX are guarded or tX can be rewritten to such a term
using the equations in E from left to right. We are only interested in models of
BTA in which guarded recursive specifications have unique solutions, such as the
projective limit model of BTA presented in [2]. A thread that is the solution of
a finite guarded recursive specification over BTA is called a finite-state thread.
We extend BTA with guarded recursion by adding constants for solutions

of guarded recursive specifications and axioms concerning these additional con-
stants. For each guarded recursive specification E and each X ∈ V(E), we add a
constant of sort T standing for the unique solution of E for X to the constants
of BTA. The constant standing for the unique solution of E for X is denoted by
〈X|E〉. Moreover, we add the axioms for guarded recursion given in Table 2 to
BTA, where we write 〈tX |E〉 for tX with, for all Y ∈ V(E), all occurrences of
Y in tX replaced by 〈Y |E〉. In this table, X, tX and E stand for an arbitrary
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Table 2. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X= tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

variable of sort T, an arbitrary BTA term of sort T and an arbitrary guarded re-
cursive specification over BTA, respectively. Side conditions are added to restrict
the variables, terms and guarded recursive specifications for which X, tX and E
stand. The equations 〈X|E〉 = 〈tX |E〉 for a fixed E express that the constants
〈X|E〉 make up a solution of E. The conditional equations E ⇒ X = 〈X|E〉
express that this solution is the only one.
We will use the following abbreviation: aω, where a ∈ Atau, abbreviates

〈X|{X = a ◦X}〉.
We will write BTA+REC for BTA extended with the constants for solutions

of guarded recursive specifications and axioms RDP and RSP.
In [4], we show that the threads considered in BTA+REC can be viewed as

processes that are definable over ACP [9].

3 Program Algebra

In this section, we review PGA (ProGram Algebra), an algebra of sequential
programs based on the idea that sequential programs are in essence sequences
of instructions. PGA provides a program notation for finite-state threads.
In PGA, it is assumed that there is a fixed but arbitrary finite set A of basic

instructions. PGA has the following primitive instructions:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a forward jump instruction #l;
– a termination instruction !.

We write I for the set of all primitive instructions.
The intuition is that the execution of a basic instruction a may modify a

state and produces T or F at its completion. In the case of a positive test in-
struction +a, basic instruction a is executed and execution proceeds with the
next primitive instruction if T is produced and otherwise the next primitive
instruction is skipped and execution proceeds with the primitive instruction fol-
lowing the skipped one. In the case where T is produced and there is not at least
one subsequent primitive instruction and in the case where F is produced and
there are not at least two subsequent primitive instructions, deadlock occurs.
In the case of a negative test instruction −a, the role of the value produced is
reversed. In the case of a plain basic instruction a, the value produced is disre-
garded: execution always proceeds as if T is produced. The effect of a forward
jump instruction #l is that execution proceeds with the l-th next instruction of
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Table 3. Axioms of PGA

(x ; y) ; z = x ; (y ; z) PGA1

(xn)ω = xω PGA2

xω ; y = xω PGA3

(x ; y)ω = x ; (y ; x)ω PGA4

the program concerned. If l equals 0 or the l-th next instruction does not exist,
then #l results in deadlock. The effect of the termination instruction ! is that
execution terminates.
PGA has the following constants and operators:

– for each u ∈ I, an instruction constant u ;
– the binary concatenation operator ; ;
– the unary repetition operator ω .

Terms are built as usual. Throughout the paper, we assume that there are in-
finitely many variables, including x, y, z.
We use infix notation for concatenation and postfix notation for repetition.
Closed PGA terms are considered to denote programs. The intuition is that

a program is in essence a non-empty, finite or infinite sequence of primitive in-
structions. These sequences are called single pass instruction sequences because
PGA has been designed to enable single pass execution of instruction sequences:
each instruction can be dropped after it has been executed. Programs are consid-
ered to be equal if they represent the same single pass instruction sequence. The
axioms for instruction sequence equivalence are given in Table 3. In this table,
n stands for an arbitrary natural number greater than 0. For each n > 0, the
term xn is defined by induction on n as follows: x1 = x and xn+1 = x ; xn. The
unfolding equation xω = x ; xω is derivable. Each closed PGA term is derivably
equal to a term in canonical form, i.e. a term of the form P or P ;Qω, where P
and Q are closed PGA terms that do not contain the repetition operator.
Each closed PGA term is considered to denote a program of which the be-

haviour is a finite-state thread, taking the set A of basic instructions for the set A
of actions. The thread extraction operator | | assigns a thread to each program.
The thread extraction operator is defined by the equations given in Table 4 (for
a ∈ A, l ∈ N and u ∈ I) and the rule given in Table 5. This rule is expressed
in terms of the structural congruence predicate ∼= , which is defined by the
formulas given in Table 6 (for n,m, l ∈ N and u1, . . . , un, v1, . . . , vm+1 ∈ I).
The equations given in Table 4 do not cover the case where there is a cyclic

chain of forward jumps. Programs are structural congruent if they are the same
after removing all chains of forward jumps in favour of single jumps. Because
a cyclic chain of forward jumps corresponds to #0, the rule from Table 5 can
be read as follows: if x starts with a cyclic chain of forward jumps, then |x|
equals D. It is easy to see that the thread extraction operator assigns the same
thread to structurally congruent programs. Therefore, the rule from Table 5 can
be replaced by the following generalization: x ∼= y ⇒ |x| = |y|.
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Table 4. Defining equations for thread extraction operator

|a| = a ◦ D

|a ; x| = a ◦ |x|

|+a| = a ◦ D

|+a ; x| = |x|E aD |#2 ; x|

|−a| = a ◦ D

|−a ; x| = |#2 ; x|E aD |x|

|#l| = D

|#0 ; x| = D

|#1 ; x| = |x|

|#l + 2 ; u| = D

|#l + 2 ; u ; x| = |#l + 1 ; x|

|!| = S

|! ; x| = S

Table 5. Rule for cyclic jump chains

x ∼= #0 ; y ⇒ |x| = D

Table 6. Defining formulas for structural congruence predicate

#n+ 1 ; u1 ; . . . ; un ; #0 ∼= #0 ; u1 ; . . . ; un ; #0

#n+ 1 ; u1 ; . . . ; un ; #m ∼= #m+ n+ 1 ; u1 ; . . . ; un ; #m

(#n+ l + 1 ; u1 ; . . . ; un)
ω ∼= (#l ; u1 ; . . . ; un)

ω

#m+ n+ l + 2 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)
ω ∼=

#n+ l + 1 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)
ω

x ∼= x

x1
∼= y1 ∧ x2

∼= y2 ⇒ x1 ; x2
∼= y1 ; y2 ∧ x1

ω ∼= y1
ω

Let E be a finite guarded recursive specification over BTA, and let PX be a
closed PGA term for each X ∈ V(E). Let E ′ be the set of equations that results
from replacing in E all occurrences of X by |PX | for each X ∈ V(E). If E′ can
be obtained by applications of axioms PGA1–PGA4, the defining equations for
the thread extraction operator and the rule for cyclic jump chains, then |PX | is
the solution of E for X. Such a finite guarded recursive specification can always
be found. Thus, the behaviour of each closed PGA term, is a thread that is
definable by a finite guarded recursive specification over BTA. Moreover, each
finite guarded recursive specification over BTA can be translated to a closed
PGA term of which the behaviour is the solution of the finite guarded recursive
specification concerned (see Proposition 2 of [12]).
Closed PGA terms are loosely called PGA programs. PGA programs in which

the repetition operator do not occur are called finite PGA programs.

4 The Program Notation PGLD

In this section, we review a program notation which is rooted in PGA. This
program notation, called PGLD, belongs to a hierarchy of program notations
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introduced in [3]. PGLD is close to existing assembly languages. It has absolute
jump instructions and no explicit termination instruction.
In PGLD, like in PGA, it is assumed that there is a fixed but arbitrary set

of basic instructions A. Again, the intuition is that the execution of a basic
instruction a may modify a state and produces T or F at its completion.
PGLD has the following primitive instructions:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a direct absolute jump instruction ##l.

PGLD programs have the form u1; . . . ;uk, where u1, . . . , uk are primitive in-
structions of PGLD. We write PPGLD for the set of all PGLD programs.
The plain basic instructions, the positive test instructions, and the negative

test instructions are as in PGA. The effect of a direct absolute jump instruction
##l is that execution proceeds with the l-th instruction of the program con-
cerned. If ##l is itself the l-th instruction, then deadlock occurs. If l equals 0
or l is greater than the length of the program, then termination occurs.
We define the meaning of PGLD programs by means of a function pgld2pga

from the set of all PGLD programs to the set of all PGA programs. This function
is defined by

pgld2pga(u1 ; . . . ; uk) = (φ1(u1) ; . . . ; φk(uk) ; ! ; !)
ω ,

where the auxiliary functions φj from the set of all primitive instructions of
PGLD to the set of all primitive instructions of PGA are defined as follows
(1 ≤ j ≤ k):

φj(##l) = #l − j if j ≤ l ≤ k ,

φj(##l) = #k + 2− (j − l) if 0 < l < j ,

φj(##l) = ! if l = 0 ∨ l > k ,

φj(u) = u if u is not a jump instruction .

Let P be a PGLD program. Then pgld2pga(P ) represents the meaning of
P as a PGA program. The intended behaviour of P under execution is the
behaviour of pgld2pga(P ) under execution. That is, the behaviour of P under
execution, written |P |PGLD, is |pgld2pga(P )|.
We use the phrase projection semantics to refer to the approach to semantics

followed in this section. The meaning function pgld2pga is called a projection.
In the hierarchy of program notations introduced in [3], program nota-

tions PGLA, PGLB and PGLC appear between PGA and PGLD. In [3],
PGLD programs are translated into PGLC programs by means of a projec-
tion pgld2pglc, etc. Above, pgld2pga is defined such that pgld2pga(P ) =
pgld2pglc(pglc2pglb(pglb2pgla(pgla2pga(P )))) for all PGLD program P .
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5 Action Transforming Thread-Service Composition

A thread may perform certain basic actions only for the sake of having itself
affected by a service. When processing a basic action performed by a thread,
a service affect that thread in one of the following ways: (i) by returning a
reply value to the thread at completion of the processing of the basic action
performed by the thread; (ii) by turning the processed basic action into another
basic action. In this section, we introduce action transforming thread-service
composition, which allows for such interaction between threads and services. We
will only use action transforming thread-service composition to have program
behaviours affected by a service. Action transforming thread-service composition
is a generalization of the use mechanism introduced in [6].4

It is assumed that there is a fixed but arbitrary finite set of foci F and a fixed
but arbitrary finite set of methods M. Each focus plays the role of a name of a
service provided by the execution environment that can be requested to process
a command. Each method plays the role of a command proper. For the set A of
basic actions, we take the set {f.m | f ∈ F ,m ∈M}. Performing a basic action
f.m is taken as making a request to the service named f to process command
m.
We introduce yet another sort: the sort S of services. However, we will not

introduce constants and operators to build terms of this sort. S is considered to
stand for the set of all services. We identify services with pairs (H1, H2), where
H1 :M

+ → {T,F,M,B} and H2 :M
+ → Atau, satisfying the following conditions:

∀m ∈M •

(∃α ∈M∗
•H1(α y 〈m〉) = M ⇒ ∀α′ ∈M∗

•H1(α
′ y 〈m〉) 6∈ {T,F}) ,

∀α ∈M+,m ∈M • (H1(α) = B ⇒ H1(α y 〈m〉) = B) ,

∀α ∈M+
• (H1(α) 6= M ⇔ H2(α) = tau) .

Let H be a service, and let H1 and H2 be the unique functions such that H =
(H1, H2). Then we write rf (H) and af (H) for H1 and H2, respectively. Given a
service H and a method m ∈ M, the derived service of H after processing m,
written ∂

∂m
H, is defined by rf ( ∂

∂m
H)(α) = rf (H)(〈m〉yα) and af ( ∂

∂m
H)(α) =

af (H)(〈m〉y α).
A service H can be understood as follows:

– if rf (H)(〈m〉) = T, then the request to process m is accepted by the service,
a positive reply is produced, m is turned into tau, and the service proceeds
as ∂

∂m
H;

– if rf (H)(〈m〉) = F, then the request to process m is accepted by the service,
a negative reply is produced, m is turned into tau, and the service proceeds
as ∂

∂m
H;

4 In later papers, this use mechanism is called thread-service composition.
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Table 7. Axioms for action transforming thread-service composition

S /f H = S ATTSC1

D /f H = D ATTSC2

tau ◦ x /f H = tau ◦ (x /f H) ATTSC3

(x E g.mD y) /f H = (x /f H) E g.mD (y /f H) if f 6= g ATTSC4

(x E f.mD y) /f H = tau ◦ (x /f
∂

∂m
H) if rf (H)(〈m〉) = T ATTSC5

(x E f.mD y) /f H = tau ◦ (y /f
∂

∂m
H) if rf (H)(〈m〉) = F ATTSC6

(x E f.mD y) /f H =

(x /f
∂

∂m
H) E af (H)(〈m〉)D (y /f

∂
∂m

H) if rf (H)(〈m〉) = M ATTSC7

(x E f.mD y) /f H = D if rf (H)(〈m〉) = B ATTSC8

– if rf (H)(〈m〉) = M, then the request to process m is accepted by the service,
no reply is produced, m is turned into af (H)(〈m〉), and the service proceeds
as ∂

∂m
H;

– if rf (H)(〈m〉) = B, then the request to process m is rejected by the service.

The three conditions imposed on services can be paraphrased as follows:

– if it is possible that no reply is produced at completion of the processing of a
command, then it is impossible that a positive or negative reply is produced
at completion of the processing of that command;

– after a request to process a command has been rejected, any request to
process a command will be rejected;

– a reply is produced at completion of the processing of a command if and
only if the command is turned into tau.

For each f ∈ F , we introduce the binary action transforming thread-service

composition operator /f : T × S → T. Intuitively, p /f H is the thread that
results from processing all basic actions performed by thread p that are of the
form f.m by the service H. When a basic action of the form f.m performed
by thread p is processed by the service H, it is turned into another action and,
if this action is tau, postconditional composition is removed in favour of action
prefixing on the basis of the reply value produced.
The axioms for the action transforming thread-service composition operator

are given in Table 7. In this table, f and g stand for an arbitrary foci from F
and m stands for an arbitrary method fromM. Axioms ATTSC3 and ATTSC4
express that the action tau and basic actions of the form g.m, where f 6= g, are
not processed. Axioms ATTSC5–ATTSC7 express that a thread is affected by
a service as described above when a basic action of the form f.m performed by
the thread is processed by the service. Axiom ATTSC7 expresses that deadlock
takes place when a basic action to be processed is not accepted.
Let T stand for either BTA or BTA+REC. Then we will write T+ATTSC

for T , taking the set {f.m | f ∈ F ,m ∈ M} for A, extended with the action
transforming thread-service composition operators and the axioms from Table 7.

10



Table 8. Axioms for abstraction

τtau(S) = S TT1

τtau(D) = D TT2

τtau(x E tau D y) = τtau(x) TT3

τtau(x E aD y) = τtau(x) E aD τtau(y) TT4

τtau(tau
ω) = D TT5

The use mechanism introduced in [6] deals in essence with services H where
af (H)(α) = tau for all α ∈M+. For these services, action transforming thread-
service composition coincides with the use mechanism.
The action tau is an internal action whose presence matters. To conceal its

presence in the case where it does not matter after all, we also introduce the
unary abstraction operator τtau :T→ T.
The axioms for the abstraction operator are given in Table 8. In this table,

a stands for an arbitrary basic action from A.
Abstraction is for instance presumably appropriate in the case where tau

arises only from turning basic actions of an auxiliary nature into tau on action
transforming thread-service composition. Examples of this case will occur later
on. Unlike the use mechanism introduced in [6], the use mechanism introduced
in [8] incorporates abstraction.
Let T stand for either BTA+REC or BTA+REC+ATTSC. Then we will

write T+ABSTR for T extended with the abstraction operator and the axioms
from Table 8.

6 State-Based Description of Services

In this section, we introduce the state-based approach to describe families of
services that will be used later on. This approach is similar to the approach to
describe state machines introduced in [8].
In this approach, a family of services is described by

– a set of states S;
– an effect function eff :M× S → S;
– a yield function yld :M× S → {T,F,M,B};
– an action function act :M × S → Atau;

satisfying the following conditions:

∀m ∈M • (∃s ∈ S • yld(m, s) = M ⇒ ∀s′ ∈ S • yld(m, s′) 6∈ {T,F}) ,

∃s ∈ S • ∀m ∈M •

(yld(m, s) = B ∧ ∀s′ ∈ S • (yld(m, s′) = B ⇒ eff (m, s′) = s)) ,

∀m ∈M, s ∈ S • (yld(m, s) 6= M ⇔ act(m, s) = tau) .
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The set S contains the states in which the services may be, and the functions
eff , yld and act give, for each method m and state s, the state, reply and action,
respectively, that result from processing m in state s.
We define, for each s ∈ S, a cumulative effect function ceff s :M

∗ → S in
terms of s and eff as follows:

ceff s(〈 〉) = s ,

ceff s(α y 〈m〉) = eff (m, ceff s(α)) .

We define, for each s ∈ S, a service Hs in terms of ceff s, yld and act as follows:

rf (Hs)(α y 〈m〉) = yld(m, ceff s(α)) ,

af (Hs)(α y 〈m〉) = act(m, ceff s(α)) .

Hs is called the service with initial state s described by S, eff , yld and act . We
say that {Hs | s ∈ S} is the family of services described by S, eff , yld and act .
The conditions that are imposed on S, eff , yld and act imply that, for each

s ∈ S, Hs is a service indeed. It is worth mentioning that
∂

∂m
Hs = Heff (m,s),

rf (Hs)(〈m〉) = yld(m, s), and af (Hs)(〈m〉) = act(m, s).

7 Method to Action Translator Services

In this section, we give a state-based description of the very simple family of ser-
vices that constitute a register-dependent method to action translator of which
the register can contain natural numbers up to some bound. This method to
action translator will be used in Section 8 to describe the behaviour of programs
in a variant of PGLD with dynamically instantiated instructions.
It is assumed that a fixed but arbitrary number N ∈ N, a fixed but arbitrary

set Aproto ⊆ M, and a fixed but arbitrary function θ :Aproto × [0, N ] → A have
been given. N is considered the greatest natural number that can be contained
in the register involved, Aproto is considered the set of methods that are trans-
formable to basic actions, and θ is regarded to give, for each method m in Aproto

and natural number n in [0, N ], the basic action into which m is turned in the
case where the content of the register is n. The methods that belong to Aproto

are called proto-actions because they are the methods that are turned into basic
actions by the register-dependent method to action translator.
The register-dependent method to action translator services accept the fol-

lowing methods:

– for each n ∈ [0, N ], a register set method set:n;
– each m ∈ Aproto.

We writeMset for the set {set:n | n ∈ [0, N ]}. It is assumed thatMset ⊆M.
The methods accepted by the method to action translator services can be

explained as follows:

– set:n : the content of the register becomes n, the reply is T, and set:n is
turned into tau;

12



– m, where m ∈ Aproto: the content of the register does not change, there is no
reply, and m is turned into θ(m,n) where n is the content of the register.

Let s ∈ [0, N ]. Then we write RDT s for the service with initial state s described
by S = [−1, N ] and the functions eff , yld and act defined as follows (n, k ∈
[0, N ]):

eff (set:n, k) = n ,

eff (m, k) = k if m ∈ Aproto ,

eff (m, k) = −1 if m 6∈ Mset ∪ Aproto ,

eff (m,−1) = −1 ,

yld(set:n, k) = T ,

yld(m, k) = M if m ∈ Aproto ,

yld(m, k) = B if m 6∈ Mset ∪ Aproto ,

yld(m,−1) = B ,

act(m, k) = θ(m, k) if m ∈ Aproto ,

act(m, k) = tau if m 6∈ Aproto ,

act(m,−1) = tau .

We write RDT init for RDT 0.
The following proposition states rigorously that the methods that belong to

Aproto are exactly the methods that are turned into basic actions.

Proposition 1. For all s ∈ [0, N ]:

Aproto = {m ∈M | ∃α ∈M∗
• af (RDT s)(α y 〈m〉) ∈ A} .

Proof. This follows immediately from the definition of the register-dependent
method to action translator services. ut

8 PGLD with Dynamically Instantiated Instructions

In this section, we introduce a variant of PGLD with dynamically instantiated
instructions. This variant is called PGLDdii. In Section 12, the usefulness of
dynamic instruction instantiation will be illustrated by means of an example.
In PGLDdii, it is assumed that there is a fixed but arbitrary finite set of foci

F with rdt ∈ F and a fixed but arbitrary finite set of methods M. Moreover, we
adopt the assumptions made about register-dependent method to action trans-
lator services in Section 7. The set {f.m | f ∈ F ,m ∈ M \ Aproto} is taken
as the set A of basic instructions. In the setting of PGLDdii, we use the term
proto-instruction instead of proto-action and write Aproto instead of Aproto. A
proto-instruction is what becomes a basic instruction by dynamic instantiation.
PGLDdii has the following primitive instructions:

13



– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each e ∈ Aproto, a plain basic proto-instruction e;
– for each e ∈ Aproto, a positive test proto-instruction +e;
– for each e ∈ Aproto, a negative test proto-instruction −e;
– for each l ∈ N, a direct absolute jump instruction ##l.

PGLDdii programs have the form u1 ; . . . ; uk, where u1, . . . , uk are primitive
instructions of PGLDdii.
The plain basic instructions, the positive test instructions, the negative test

instructions, and the direct absolute jump instructions are as in PGLD. The
effect of a plain basic proto-instruction e is the same as the effect of the plain
basic instruction θ(e, n), where n is the content of the register involved in the
instantiation of proto-instructions. The effect of a positive or negative test proto-
instruction is similar.
Recall that the content of the register can be set to n by means of the basic

instruction rdt.set:n. Initially, its content is 0.
We define the meaning of PGLDdii programs by means of a function

pglddii2pgld from the set of all PGLDdii programs to the set of all PGLD
programs. This function is defined by

pglddii2pgld(u1 ; . . . ; uk) = ψ(u1) ; . . . ; ψ(uk) ,

where the auxiliary function ψ from the set of all primitive instructions of
PGLDdii to the set of all primitive instructions of PGLD is defined as follows:

ψ(e) = rdt.e if e ∈ Aproto ,

ψ(+e) = +rdt.e if e ∈ Aproto ,

ψ(−e) = −rdt.e if e ∈ Aproto ,

ψ(u) = u if u is not a proto-instruction .

The idea is that each proto-instruction can be replaced by an instruction in
which the proto-instruction is taken for the method.
Let P be a PGLDdii program. Then pglddii2pgld(P ) represents the

meaning of P as a PGLD program. The intended behaviour of P under ex-
ecution is the behaviour of pglddii2pgld(P ) under execution on interac-
tion with a register-dependent method to action translator when abstracted
from tau. That is, the behaviour of P under execution, written |P |PGLDdii

, is
τtau(|pglddii2pgld(P )|PGLD /rdt RDT init).

9 Register Services

In this section, we give a state-based description of the very simple family of
services that constitute a register that can contain natural numbers up to some
bound. This register will be used in Section 10 to describe the behaviour of
programs in PGLDdii.
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It is assumed that a fixed but arbitrary number N has been given, which is
considered the greatest natural number that can be contained in a register.
The register services accept the following methods:

– for each n ∈ [0, N ], a register set method set:n;
– for each n ∈ [0, N ], a register test method eq:n.

We writeMreg for the set {set:n, eq:n | n ∈ [0, N ]}. It is assumed that Mreg ⊆
M.
The methods accepted by register services can be explained as follows:

– set:n : the content of the register becomes n, the reply is T, and set:n is
turned into tau;

– eq:n : the content of the register does not change, the reply is T if the content
of the register equals n and F otherwise, and eq:n is turned into tau.

Let s ∈ [0, N ]. Then we write Regs for the service with initial state s described
by S = [−1, N ] and the functions eff , yld and act defined as follows (n, k ∈
[0, N ]):

eff (set:n, k) = n ,

eff (eq:n, k) = k ,

eff (m, k) = −1 if m 6∈ Mreg ,

eff (m,−1) = −1 ,

yld(set:n, k) = T ,

yld(eq:n, k) = T if k = n ,

yld(eq:n, k) = F if k 6= n ,

yld(m, k) = B if m 6∈ Mreg ,

yld(m,−1) = B ,

act(m, k) = tau ,

act(m,−1) = tau .

We write Reg init for Reg0.

10 An Alternative Semantics for PGLDdii

In this section, we give an alternative semantics for PGLDdii.
We define an alternative meaning of PGLDdii programs by means of a func-

tion pglddii2pgld′ from the set of all PGLDdii programs to the set of all PGLD
programs. This function is defined by

pglddii2pgld′(u1 ; . . . ; uk) = ψ′
1(u1) ; . . . ; ψ

′

k(uk) ,
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where the auxiliary functions ψ′
j from the set of all primitive instructions of

PGLDdii to the set of all primitive instructions of PGLD are defined as follows
(1 ≤ j ≤ k):

ψ′
j(e) = −reg.eq:0 ; ##l′′j,0 ; θ(e, 0) ; ##l

′
j+1 ; ##l

′
j+2;

...

−reg.eq:N ; ##l′′j,N ; θ(e,N) ; ##l
′
j+1 ; ##l

′
j+2 ,

ψ′
j(+e) = −reg.eq:0 ; ##l′′j,0 ; +θ(e, 0) ; ##l

′
j+1 ; ##l

′
j+2;

...

−reg.eq:N ; ##l′′j,N ; +θ(e,N) ; ##l
′
j+1 ; ##l

′
j+2 ,

ψ′
j(−e) = −reg.eq:0 ; ##l′′j,0 ;−θ(e, 0) ; ##l

′
j+1 ; ##l

′
j+2;

...

−reg.eq:N ; ##l′′j,N ;−θ(e,N) ; ##l
′
j+1 ; ##l

′
j+2 ,

ψ′
j(##l) = ##l

′

l ,

ψ′
j(u) = u if u is not a proto-instruction or jump instruction ,

and for each j ∈ [1, k] and h ∈ [0, N ]:

l′j = nj + 1 + 5 · (N + 1) · (j − 1 + nj) ,

l′′j,h = l′j + 5 · (h+ 1) ,

and nj is the number of jump instructions preceding position j.
The idea is that each proto-instruction can be replaced by an instruction

sequence of which the execution leads to the execution of the intended instruction
after the content of the register has been found by a linear search. Because
the length of the replacing instruction sequence is greater than 1, the direct
absolute jump instructions are adjusted so as to compensate for the introduction
of additional instructions. Obviously, the linear search for the content of the
register can be replaced by a binary search.
Let P be a PGLDdii program. Then pglddii2pgld′(P ) represents an alter-

native meaning of P as a PGLD program. The alternative behaviour of P under
execution is the behaviour of pglddii2pgld′(P ) under execution on interaction
with a register when abstracted from tau. That is, the alternative behaviour of P
under execution, written |P |′

PGLDdii
, is τtau(|pglddii2pgld

′(P )|PGLD /reg Reg init).
The following theorem states rigorously that the behaviour and alternative

behaviour of any PGLDdii program under execution coincide.

Theorem 1. For all PGLDdii programs P , |P |PGLDdii
= |P |′

PGLDdii
.

Proof. Strictly speaking, we prove this theorem in the algebraic theory obtained
by: (i) combining PGA with BTA+REC+ATTSC+ABSTR, resulting in a theory
with three sorts: a sort P of programs, a sort T of threads, and a sort S of
services; (ii) extending the result by taking | | for an additional operator from
sort P to sort T and taking the semantic equations and rule defining thread
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extraction for additional axioms. We write P for the set of all closed terms of
sort P from the language of the resulting theory and T for the set of all closed
terms of sort T from the language of the resulting theory.
In the proof, we make use of an auxiliary function | , | : N × PPGLD → T

which gives, for each natural number i and PGLD program u1 ; . . . ; uk, a closed
term of sort T that denotes the behaviour of u1 ; . . . ; uk when executed from
position i if 1 ≤ i ≤ k and S otherwise. This function is defined as follows:

|i, u1 ; . . . ; uk| = |φi(ui) ; . . . ; φk(uk) ; ! ; ! ; (φ1(u1) ; . . . ; φk(uk) ; ! ; !)
ω|

if 1 ≤ i ≤ k ,

|i, u1 ; . . . ; uk| = S if ¬ 1 ≤ i ≤ k

(where φj is as in the definition of pgld2pga). It follows easily from the definition
of | , | and the axioms of PGA that if 1 ≤ i ≤ k:

|i, u1 ; . . . ; uk| = a ◦ |i+ 1, u1 ; . . . ; uk| if ui = a ,

|i, u1 ; . . . ; uk| = |i+ 1, u1 ; . . . ; uk|E aD |i+ 2, u1 ; . . . ; uk| if ui = +a ,

|i, u1 ; . . . ; uk| = |i+ 2, u1 ; . . . ; uk|E aD |i+ 1, u1 ; . . . ; uk| if ui = −a ,

|i, u1 ; . . . ; uk| = |l, u1 ; . . . ; uk| if ui = ##l .

Let v1, . . . , vk be primitive instructions of PGLDdii, let

T = {τtau(|i, ψ(v1) ; . . . ; ψ(vk)| /rdt RDT s) | i ∈ N ∧ s ∈ [0, N ]} ,

T ′ = {τtau(|l
′
i, ψ

′
1(v1) ; . . . ; ψ

′

k(vk)| /reg Regs) | i ∈ N ∧ s ∈ [0, N ]}

(where ψ, ψ′
j , l

′
i are as in the definitions of pglddii2pgld and pglddii2pgld′),

and let β : T → T ′ be the bijection defined by

β(τtau(|i, ψ(v1) ; . . . ; ψ(vk)| /rdt RDT s))

= τtau(|l
′
i, ψ

′
1(v1) ; . . . ; ψ

′

k(vk)| /reg Regs) .

For each p′ ∈ T , write β∗(p′) for p′ with, for all p ∈ T , all occurrences of p in
p′ replaced by β(p). Then, using the equations concerning the auxiliary function
| , | given above, it is straightforward to prove that there exists a function
γ : T → T such that, for all p ∈ T :

– p = γ(p) and β(p) = β∗(γ(p)) are derivable;
– there exists an n ∈ N such that γn(p) 6∈ T .5

Because |ψ(v1) ; . . . ; ψ(vk)| = |1, ψ(v1) ; . . . ; ψ(vk)| and |ψ
′
1(v1) ; . . . ; ψ

′

k(vk)| =
|l′1, ψ

′
1(v1) ; . . . ;ψ

′

k(vk)|, this means that |v1 ; . . . ; vk|PGLDdii
and |v1 ; . . . ; vk|

′
PGLDdii

are solutions of the same guarded recursive specification. Because guarded
recursive specifications have unique solutions, it follows immediately that
|v1 ; . . . ; vk|PGLDdii

= |v1 ; . . . ; vk|
′
PGLDdii

. ut

5 The function γn : T → T is defined by induction on n as usual: γ0(p) = p and
γn+1(p) = γ(γn(p)).
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11 Discussion of Semantic Approaches

In Section 8 and Section 10, the meaning of PGLDdii programs is explained
by means of different translations into PGLD programs. In both sections, the
intended behaviour of a PGLDdii program under execution is described as the
behaviour of the translated program under execution on interaction with some
service. The translation given in Section 8 is extremely simple, but the transla-
tion given in Section 10 is fairly complicated. The service used in Section 8 to
describe the behaviour of a PGLDdii program and the one used in Section 10
are equally simple. However, the former service is far more powerful: it turns
a processed method into a basic action if the method corresponds to a basic
proto-instruction. By its power, the translation can be kept simple if that ser-
vice is used. Because of the simpler translation of PGLDdii programs into PGLD
programs and the equally simple service used, the approach to semantics from
Section 8 is preferable in the case of PGLDdii.
For simplicity, we have considered the case where the content of one register is

involved in the instantiation of proto-instructions. In the case where the contents
of a number of registers is involved in the instantiation of proto-instructions, the
approach to semantics from Section 8 is even more strongly preferable. In this
case, the translation of PGLDdii programs into PGLD programs remains the
same if the approach from Section 8 is followed, whereas the translation becomes
far more complicated if the approach from Section 10 is followed.
If a new programming feature is added to a known program notation such

as PGLD and the starting-point of the approach to define the meaning of the
programs from the extended program notation is translation of those programs
into programs from the known program notation, then we can conceive of several
approaches:

– give a translation by which each program from the extended program no-
tation is translated into a program from the known program notation that
exhibits on execution the same behaviour;

– give a translation by which each program from the extended program no-
tation is translated into a program from the known program notation that
exhibits on execution the same behaviour by interaction with a given service
that does not turn any processed method into a basic action;

– give a translation by which each program from the extended program no-
tation is translated into a program from the known program notation that
exhibits on execution the same behaviour by interaction with a given service
that turns certain processed methods into basic actions.

We consider an approach earlier in this list preferable provided that the trans-
lation concerned does not become too complicated. In the case where the trans-
lation becomes too complicated with all three approaches, it is desirable to look
for another starting-point. This may end up in direct thread extraction.
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12 Concrete Proto-Instructions

At a fairly concrete level, basic instructions and proto-instructions are strings
of characters. In [3], a concrete notation for basic instructions is introduced for
the case where each basic instruction consists of a focus and a method. Here, we
extend that concrete notation to cover proto-instructions.
First of all, we distinguish neutral strings and active strings. A neutral string

is an empty string or a string of one or more characters of which the first character
is a letter or a colon and each of the remaining characters is a letter, a digit or
a colon. An active string is a string of two or more characters of which the first
character is an asterisk and each of the remaining characters is a digit.
A concrete proto-instruction is a string of the form f ′.m′, where f ′ and m′

are non-empty strings of characters in which neutral strings and active strings
alternate starting with a neutral string of which the first character is a letter, in
which at least one active string occurs.
A concrete focus is a neutral string of which the first character is a letter. A

concrete method is either a neutral string of which the first character is a letter
or a proto-instruction. A concrete instruction is a string of the form f.m, where
f is a concrete focus and m is a concrete method.
The intention is that instantiation of a concrete proto-instruction amounts

to simultaneously replacing all active strings occurring in it by neutral strings
according to some assignment of neutral strings to active strings. In this way,
instantiation turns concrete proto-instructions into concrete instructions.
The concrete notation for basic instructions introduced above covers the case

where a number of registers is involved in the instantiation of proto-instructions.
It is sufficiently expressive for all applications that we have in mind.

Example 1. Consider a program that on execution at a certain stage receives
digit by digit the binary representation of a password and then performs an
action to have the password checked by some service. The binary representation
of a password is a character sequence of a fixed length, say n, of which all
characters are among the digits 0 and 1. Suppose that the service used for
checking passwords only accepts methods of the form chk:pw , where pw is the
binary representation of a password.
In the case where no proto-instructions are available, the program has to

distinguish between 2n cases. In the case where proto-instructions are available,
the program has to distinguish between 2 ·n cases only. In the latter case, using
the concrete notation introduced above, the proto-instruction concerned will look
like passw.chk:∗1 . . . ∗n, where 1, . . . , n stand for the decimal representations of
the numbers 1, . . . , n, respectively.
Take n = 6 and suppose that the contents of the registers numbered 1, 2,

3, 4, 5 and 6 are 0, 1, 0, 1, 1 and 0, respectively. Then the proto-instruction
passw.chk:∗1 . . . ∗6 will be turned into the instruction passw.chk:010110.
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13 Conclusions

We have studied sequential programs that are instruction sequences with dynam-
ically instantiated instructions. We have defined the meaning of the programs
concerned in two different ways which both involve a translation into programs
that are instruction sequences without dynamically instantiated instructions. In
one of the two ways, the translation is very simple and does not lead to increase
in the length of a program or the number of steps needed by a program. That
way is considered the preferred one. The preferred way made it necessary for the
use mechanism that was introduced in [6] to be generalized. In ongoing work,
we find that the generalization is not only useful in the area of semantics.
In [7], we have modelled and analysed micro-architectures with pipelined in-

struction processing in the setting of program algebra, basic thread algebra, and
Maurer computers [10, 11]. In that work, which we consider a preparatory step
in the development of a formal approach to design new micro-architectures, dy-
namically instantiated instructions were not taken into account. Another option
for future work is to look at the effect of dynamically instantiated instructions
on pipelined instruction processing.
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