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Abstract. We take a process component as a pair of an interface and a
behaviour. We study the composition of interacting process components
in the setting of process algebra. We formalize the interfaces of interact-
ing process components by means of an interface group. An interesting
feature of the interface group is that it allows for distinguishing between
expectations and promises in interfaces of process components. This dis-
tinction comes into play in case components with both client and server
behaviour are involved.
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1 Introduction

Component interfaces are a practical tool for the development of all but the most
elementary architectural designs. In [7], interface groups have been proposed as a
means to formalize the interfaces of the components of analytic execution archi-
tectures. The interface groups introduced in [7] concern component behaviours
of two special kinds, called threads and services. The restriction to threads and
services and the dichotomy between them are convenient in the case of analytic
execution architectures, but inconvenient in the case of many other architec-
tures. In this paper, we introduce an interface group which concerns behaviours
of just one kind, namely processes as considered in the process algebra known
as ACP [4, 9]. This gives rise to a more general setting because all threads and
services can be looked upon as such processes (see e.g. [6]).
An interface group is a commutative group intended for describing and

analysing interfaces. The interface group introduced in this paper concerns inter-
faces of process components that request other components to carry out methods
and grant requests of other components to carry out methods. The interfaces in
question represent the abilities to grant requests that are expected from other
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components and the abilities to make requests that are promised to other compo-
nents. The ability to make a certain request and the ability to grant that request
are considered to cancel out in interfaces. This allows among other things for
establishing whether a system composed of a collection of process components
is a closed system. Interfaces as modelled by the interface group introduced in
this paper have less structure than the signatures used as interfaces in module
algebra [3]. However, module algebra does not allow for distinguishing between
expectations and promises in interfaces of components. In point of fact, it has a
bias towards composing components whose interfaces concern promises only.
We also present a theory about process components of which the interface

group introduced forms part. Like any notion of component, the notion of process
component underlying this theory combines interface with content: a process
component is considered a pair of an interface and a behaviour. Processes as
considered in ACP are taken as the behaviours of process components. Therefore,
the theory concerned is a development on top of ACP. However, additional
assumptions are made about the actions of which the processes are made up.
Three kinds of actions are distinguished: the requests referred to above, the
grants referred to above, and the acts of carrying out a method which result
from making a request and granting that request at the same time. The use of
the presented theory about process components is illustrated by means of an
example. A model of the theory is constructed, using a notion of bisimilarity for
process components.
In the presented theory about process components, processes reside at places,

called loci, and requests and grants are addressed to the processes residing at
a certain locus. If the processes that are taken as the behaviours of process
components are looked at in isolation, it may be convenient to abstract from the
loci at which they reside. This abstraction gives rise to another kind of processes.
We treat this kind of processes, referred to as localized processes, as well.
The structure of this paper is as follows. First, we review ACP (Section 2),

review guarded recursion in the setting of ACP (Section 3), and present the ac-
tions that make up the processes being considered in later sections (Section 4).
Next, we introduce a theory about integers (Section 5) and a theory about in-
terfaces (Section 6). Then, we extend ACP, using the theories just introduced,
to a theory about process components (Section 7). Following this, we give an ex-
ample of the use of the presented theory about process components (Section 8).
After that, we introduce a notion of bisimilarity for process components (Sec-
tion 9) and construct a model of the presented theory about process components
using this notion of bisimilarity (Section 10). Thereupon, we extend the theory
about process components developed so far with localized processes (Section 11).
Finally, we make some concluding remarks (Section 12).

2 Algebra of Communicating Processes

In this section, we shortly review ACP (Algebra of Communicating Processes),
the algebraic theory about processes that was first presented in [4]. For a com-
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prehensive overview of ACP, the reader is referred to [9]. Although ACP is
one-sorted, we make this sort explicit. The reason for this is that we will extend
ACP to a theory with four sorts in Section 7.
In ACP, it is assumed that a fixed but arbitrary finite set of actions A,

with δ 6∈ A, has been given. We write Aδ for A ∪ {δ}. It is further assumed
that a fixed but arbitrary commutative and associative communication function
| : Aδ × Aδ → Aδ, with δ | a = δ for all a ∈ Aδ, has been given. The function
| is regarded to give the result of synchronously performing any two actions for
which this is possible, and to be δ otherwise.
ACP has one sort: the sort P of processes. To build terms of sort P, ACP

has the following constants and operators:

– the deadlock constant δ :P;
– for each a ∈ A, the action constant a :P;
– the binary alternative composition operator + :P×P→ P;
– the binary sequential composition operator · :P×P→ P;
– the binary parallel composition operator ‖ :P×P→ P;
– the binary left merge operator bb :P×P→ P;
– the binary communication merge operator | :P×P→ P;
– for each H ⊆ A, the unary encapsulation operator ∂H :P→ P.

Terms of sorts P are built as usual for a one-sorted signature (see e.g. [15, 14])
Throughout the paper, we assume that there are infinitely many variables of
sort P, including x, y, z, x′, y′ and z′.
We use infix notation for the binary operators. The following precedence

conventions are used to reduce the need for parentheses. The operator + binds
weaker than all other binary operators to build terms of sort P and the operator
· binds stronger than all other binary operators to build terms of sort P.
Let P and Q be closed terms of sort P, a ∈ A, and H ⊆ A. Intuitively, the

constants and operators to build terms of sort P can be explained as follows:

– δ can neither perform an action nor terminate successfully;
– a first performs action a and then terminates successfully;
– P +Q behaves either as P or as Q, but not both;
– P ·Q first behaves as P , but when P terminates successfully it continues by
behaving as Q;

– P ‖Q behaves as the process that proceeds with P and Q in parallel;
– P bbQ behaves the same as P ‖Q, except that it starts with performing an
action of P ;

– P | Q behaves the same as P ‖ Q, except that it starts with performing an
action of P and an action of Q synchronously;

– ∂H(P ) behaves the same as P , except that actions from H are blocked.

We write
∑

i∈I Pi, where I = {i1, . . . , in} and Pi1 , . . . , Pin are terms of sort
P, for Pi1 + . . .+ Pin . The convention is that

∑

i∈I Pi stands for δ if I = ∅.
The axioms of ACP are the axioms given in Table 1. CM2–CM3, CM5–CM7,

C1–C3 and D1–D4 are actually axiom schemas in which a, b and c stand for
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Table 1. Axioms of ACP

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

∂H(a) = a if a 6∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x+ y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

x ‖ y = x bb y + y bb x+ x | y CM1

a bb x = a · x CM2

a · x bb y = a · (x ‖ y) CM3

(x+ y) bb z = x bb z + y bb z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x+ y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

a | b = b | a C1

(a | b) | c = a | (b | c) C2

δ | a = δ C3

arbitrary constants of sort P (keep in mind that also the deadlock constant
belongs to the constants of sort P) and H stands for an arbitrary subset of A.
For the main models of ACP, the reader is referred to [2].

3 Guarded Recursion

In this section, we shortly review guarded recursion in the setting of ACP.
Not all processes in a model of ACP have to be the interpretation of some

closed term of sort P. Those processes may be definable over ACP.
A process in some model of ACP is definable over ACP if there exists a

guarded recursive specification over ACP of which that process is the unique
solution.
A recursive specification over ACP is a set of recursion equations {X = tX |

X ∈ V } where V is a set of variables of sort P and each tX is a term of sort
P from the language of ACP that only contains variables from V . Let E be a
recursive specification over ACP. Then we write V(E) for the set of all variables
that occur on the left-hand side of an equation in E. A solution of a recursive
specification E is a set of processes (in some model of ACP) {pX | X ∈ V(E)}
such that the equations of E hold if, for all X ∈ V(E), X stands for pX .
Let t be a term of sort P from the language of ACP containing a variable

X. Then an occurrence of X in t is guarded if t has a subterm of the form
a · t′ where a ∈ A and t′ is a term containing this occurrence of X. Let E be a
recursive specification over ACP. Then E is a guarded recursive specification if,
in each equation X = tX ∈ E, all occurrences of variables in tX are guarded or
tX can be rewritten to such a term using the axioms of ACP in either direction
and/or the equations in E except the equation X = tX from left to right. We
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Table 2. Axioms for recursion

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

are only interested in models of ACP in which guarded recursive specifications
have unique solutions.
For each guarded recursive specification E and each variable X ∈ V(E), we

introduce a constant of sort P standing for the unique solution of E for X. This
constant is denoted by 〈X|E〉.
The additional axioms for recursion are given in Table 2. In this table, we

write 〈tX |E〉 for tX with, for all Y ∈ V(E), all occurrences of Y in tX replaced
by 〈Y |E〉. Both RDP and RSP are axiom schemas. Side conditions are added to
restrict the variables, terms and guarded recursive specifications for which X,
tX and E stand. RDP and RSP were first formulated in [5].
We write ACP+REC for ACP extended with the constants standing for the

unique solutions of guarded recursive specifications and the axioms RDP and
RSP.

4 ACP for Cooperating Components

In this paper, we consider process components that cooperate by making and
granting requests to carry out methods. The processes that are taken as the
behaviours of these components are not made up of arbitrary actions. In this
section, we introduce the instance of ACP that is restricted to the intended
actions. This instance is called ACPCC (ACP for Cooperating Components).
Three kinds of actions are distinguished in ACPCC: active actions, passive

actions and neutral actions. The active actions may be viewed as requests to
carry out some method and the passive actions may be viewed as grants of
requests to carry out some method. Making a request to carry out some method
and granting that request at the same time results in carrying out the method
concerned. The initiative in carrying out the method is considered to be taken
by the process making the request. This explains why the request is called an
active action and its grant is called a passive action. The neutral actions may be
viewed as the results of making a request to carry out some method and granting
that request at the same time. A process that can perform active actions only
behaves as a client and a process that can perform passive actions only behaves
as a server.
In ACPCC, it is assumed that a fixed but arbitrary finite set L of loci and a

fixed but arbitrary finite setM of methods have been given. A locus is a place
at which processes reside. Intuitively, a process resides at a locus if it is capable
of performing actions in that locus. The same process may reside at different
loci at once. Moreover, different processes may reside at the same locus at once.
Therefore, we do not necessarily refer to a unique process if we refer to a process
residing at a given locus.
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In ACPCC, the set of actions A consists of:

– for each f, g ∈ L and m ∈M, the active action f.m@g;
– for each f, g ∈ L and m ∈M, the passive action ∼f.m@g;
– for each f, g ∈ L and m ∈M, the neutral action f.m@g.

Intuitively, these actions can be explained as follows:

– f.m@g is the action by which a process residing at locus g requests a process
residing at locus f to carry out method m;

– ∼g.m@f is the action by which a process residing at locus f grants a request
of a process residing at locus g to carry out method m;

– f.m@g is the result of performing f.m@g and ∼g.m@f at the same time.

In ACPCC, the communication function | :Aδ ×Aδ → Aδ is such that for all
f, g ∈ L and m ∈M:

– f.m@g | ∼g.m@f = f.m@g;
– f.m@g | a = δ for all a ∈ A \ {∼g.m@f};
– a | ∼g.m@f = δ for all a ∈ A \ {f.m@g};
– f.m@g | a = δ for all a ∈ A.

The receive actions and send actions commonly used for handshaking com-
munication of data, see e.g. [2], can be viewed as requests to carry out some
communication method and grants of such requests, respectively. However, the
current set-up requires that it is made explicit what are the loci at which the
sender and receiver involved reside.

5 Integers

In this section, we present an algebraic theory about integers which will be used
in later sections. The presented theory is called INT.
INT has one sort: the sort Z of integers. To build terms of sort Z, INT has

the following constants and operators:

– the constant 0 : Z;
– the constant 1 : Z;
– the binary addition operator + : Z× Z→ Z;
– the unary additive inverse operator − : Z→ Z;
– the unary signum operator sg : Z→ Z.

Terms of sort Z are built as usual for a one-sorted signature. Throughout the
paper, we assume that there are infinitely many variables of sort Z, including k,
l and n.
As usual, we use infix notation for the binary operator + and prefix notation

for the unary operator −. The following additional precedence convention is used
to reduce the need for parentheses. The operator + binds weaker than the
operator −.
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Table 3. Axioms of INT

0 + k = k INT1

−k + k = 0 INT2

(k + l) + n = k + (l + n) INT3

k + l = l + k INT4

sg(0) = 0 SG1

sg(1) = 1 SG2

sg(−1) = −1 SG3

sg(k + sg(k)) = sg(k) SG4

The constants and operators of INT are adopted from integer arithmetic
and need no further explanation. The operator sg is useful where a distinction
between positive integers, negative integers and zero must be made.
The axioms of INT are the axioms given in Table 3. Axioms INT1–INT4 are

the axioms of a commutative group. Axioms SG1–SG4 are the defining axioms
of sg.
The initial model of INT is considered the standard model of INT.

6 Interface Group for Cooperating Components

In this section, we present an algebraic theory about interfaces. The presented
theory is called called IFGCC. In Section 7, we will consider process components
which are taken as pairs of an interface and a process that is made up of active
action, passive actions, and neutral actions. Interfaces are built from two kinds
of interface elements.
The set of interface elements consists of:

– for each f, g ∈ L and m ∈M, the active interface element f.m@g;
– for each f, g ∈ L and m ∈M, the passive interface element ∼f.m@g.
We write IFE for the set of all interface elements.
Obviously, IFE is a proper subset of A. The interface elements are those

actions that are allowed to occur in interfaces. The interface part of a process
component consist of the active and passive actions that the process part of
that process component may be capable of performing. The interface elements
f.m@g and ∼g.m@f are considered each other inverses. That is, if both occur
in an interface, they cancel out.
Active interface elements are usually included in the interface of a process

component to couch that it expects from the environment in which it is put the
ability to grant certain requests. Passive interface elements are usually included
in the interface of a process component to couch that it promises the environment
in which it is put the ability to make certain requests. The environment in which
the process component is put may be composed of different process components.
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To couch that it expects from a number of process components an ability or
it promises a number of process components an ability, the relevant interface
element is included the number of times concerned in the interface of the process
component.
The distinction between active interface elements and passive interface el-

ements made here is a case of distinction between expectations and promises
because interface elements are actions that process components may be capable
of performing. If the interface elements would be actions that process compo-
nents must be capable of performing, it would be a case of distinction between
requirements and provisions.
Interfaces can be considered multisets over the set of all active interface ele-

ments in which multiplicities of elements may be negative too, since occurrences
of passive interface elements in an interface can be counted as negative occur-
rences of their inverses.
IFGCC has the sort Z from INT and in addition the sort I of interfaces. To

build terms of sort I, IFGCC has the following constants and operators:

– the empty interface constant 0 : I;
– for each e ∈ IFE , the interface element constant e : I;
– the binary interface combination operator + : I× I→ I;
– the unary interface inversion operator − : I→ I.

To build terms of sort Z, IFGCC has the constants and operators of INT and in
addition the following operator:

– for each f, g ∈ L and m ∈ M, the unary multiplicity operator #f.m@g :
I→ Z.

Terms of the sorts I and Z are built as usual for a many-sorted signature (see
e.g. [15, 14]). Throughout the paper, we assume that there are infinitely many
variables of sort I, including i, j and h.
We use infix notation for the binary operator + and prefix notation for the

unary operator −. The following precedence convention is used to reduce the
need for parentheses. The operator + binds weaker than the operator −.
Let I and J be closed terms of sort I, f, g ∈ L, and m ∈ M. Viewing

interfaces as multisets with multiplicities from Z, the constants and operators of
IFGCC to build terms of sort I can be explained as follows:

– 0 is the interface in which the multiplicity of each active interface element is
0;

– f.m@g is the interface in which the multiplicity of f.m@g is 1 and the
multiplicity of each other active interface element is 0;

– ∼f.m@g is the interface in which the multiplicity of g.m@f is −1 and the
multiplicity of each other active interface element is 0;

– I+J is the interface in which the multiplicity of each active interface element
is the addition of its multiplicities in I and J ;

– −I is the interface in which the multiplicity of each active interface element
is the additive inverse of its multiplicity in I.
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Table 4. Axioms of IFGCC

0 + i = i IFG1

−i+ i = 0 IFG2

(i+ j) + h = i+ (j + h) IFG3

i+ j = j + i IFG4

f.m@g + ∼g.m@f = 0 IFG5

#f.m@g(0) = 0 M1

#f.m@g(f
′.m′@g′) = 0 if f 6= f ′ ∨ m 6= m′ ∨ g 6= g′ M2

#f.m@g(f.m@g) = 1 M3

#f.m@g(−i) = −#f.m@g(i) M4

#f.m@g(i+ j) = #f.m@g(i) + #f.m@g(j) M5

The operators #f.m@g, one for each f, g ∈ L and m ∈ M, can simply be ex-
plained as follows:

– #f.m@g(I) is the multiplicity of f.m@g in I.

We write
∑

i∈I Ii, where I = {i1, . . . , in} and Ii1 , . . . , Iin are terms of sort I,
for Ii1 + . . .+ Iin . The convention is that

∑

i∈I Ii stands for 0 if I = ∅.
The axioms of IFGCC are the axioms of INT and the axioms given in Ta-

ble 4. IFG5 and M1–M5 are actually axiom schemas in which f and g stand for
arbitrary members of L and m stands for an arbitrary member of M. Axioms
IFG1–IFG4 are the axioms of a commutative group and axiom IFG5, called the
reflection law, states that ∼g.m@f is taken as the inverse of f.m@g. Axioms
M1–M5 are the defining axioms of #f.m@g.
The initial model of IFGCC is considered the standard model of IFGCC.

7 Algebra of Cooperating Components

In this section, we take up the extension of ACPCC to a theory about process
components. The result is called ACC (Algebra of Cooperating Components).
In the preceding sections, we have already been gone into some of the general

ideas that underlie the design of this extension. Those ideas, which concern the
interfaces and behaviours of process components, can be summarized as follows:

– behaviours of process components are processes made up of three kinds of
actions: active actions, passive actions and neutral actions;

– for each active action, there is a unique passive action with which it can be
performed synchronously, and vice versa;

– interfaces of process components consist of active and passive actions that
the process components may be capable of performing;

– looked upon as an interface element, each active action has the passive action
with which it can be performed synchronously as its inverse, and vice versa;
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– in interfaces of process components, there may be elements with multiple
occurrences.

The remaining general ideas concern the process components by themselves:

– if a process is turned into a process component by adding an interface to
it, the process is restricted by the interface with respect to the active and
passive actions that it can perform to force that the behaviour of the process
component complies with its interface;

– if two process components are composed, the interface of the composed pro-
cess component is the combination of the interfaces of the two process com-
ponents and the behaviour of the composed process component is the parallel
composition of the behaviours of the two process components restricted by
the combination of the interfaces of the two process components.

The point of view on the composition of process components implies that,
if all occurrences of an (active or passive) action in the interface of a process
component are cancelled out by composition with another process component,
this action is blocked in the behaviour of the composition of these process com-
ponents. The blocking of the action takes place even if its inverse is not included
in the actions that make up the behaviour of the other process component. It is
possible that the inverse is not included because the interfaces concern expecta-
tions and promises instead of requirements and provisions (see also Section 6).
The way in which is dealt with this possibility can be explained as follows: (i) if a
promised ability to make a request is not provided, making the request is blocked
and (ii) if an expected ability to grant a request is not required, granting the
request is blocked.
ACC has the sort P from ACPCC, the sorts I and Z from IFGCC, and in

addition the sort C of components. To build terms of sort C, ACC has the
following operators:

– the binary basic component operator c : I×P→ C;
– the binary component composition operator ‖ :C×C→ C.

To build terms of sort P, ACC has the constants and operators of ACPCC and
in addition the following operator:

– the binary interface compliant encapsulation operator ∂ : I×P→ P.

To build terms of sort I, ACC has the constants and operators of IFGCC to build
terms of sort I. To build terms of sort Z, ACC has the constants and operators
of IFGCC to build terms of sort Z.
Terms of the different sorts are built as usual for a many-sorted signature.

Throughout the paper, we assume that there are infinitely many variables of
sort C, including u, v, u′ and v′.
We use infix notation for the binary operator ‖. We write ∂I(P ), where I is

a term of sort I and P is a term of sort P, for ∂(I, P ).
Let C and D be closed terms of sort C, P be a closed term of sort P, and I be

a closed term of sort I. Viewing interfaces as multisets with multiplicities from
Z, the operators of ACC to build terms of sort C can be explained as follows:
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Table 5. Axioms of ACC

c(i, x) = c(i, ∂i(x)) CC1

c(i, x) ‖ c(j, y) = c(i+ j, ∂i(x) ‖ ∂j(y)) CC2

sg(#f.m@g(i)) = 1 ⇒ ∂i(f.m@g) = f.m@g E1

sg(#f.m@g(i)) = 0 ⇒ ∂i(f.m@g) = δ E2

sg(#f.m@g(i)) = −1 ⇒ ∂i(f.m@g) = δ E3

sg(#g.m@f (i)) = −1 ⇒ ∂i(∼f.m@g) = ∼f.m@g E4

sg(#g.m@f (i)) = 0 ⇒ ∂i(∼f.m@g) = δ E5

sg(#g.m@f (i)) = 1 ⇒ ∂i(∼f.m@g) = δ E6

∂i(f.m@g) = f.m@g E7

∂i(δ) = δ E8

∂i(x+ y) = ∂i(x) + ∂i(y) E9

∂i(x · y) = ∂i(x) · ∂i(y) E10

– c(I, P ) is the process component of which the interface is I and the behaviour
is P , except that active actions of which the multiplicity in I is not positive
and passive actions with an inverse of which the multiplicity in I is not
negative are blocked;

– C ‖D, is the process component of which the interface is the combination of
the interfaces of C andD and the behaviour is the parallel composition of the
behaviours of C and D, except that active actions of which the multiplicity
in the combination of the interfaces of C and D is not positive and passive
actions with an inverse of which the multiplicity in the combination of the
interfaces of C and D is not negative are blocked.

The operator ∂ can be explained as follows:

– ∂I(P ) behaves the same as P , except that active actions of which the mul-
tiplicity in I is not positive and passive actions with an inverse of which the
multiplicity in I is not negative are blocked.

The operator ∂ is an auxiliary operator used in the axioms concerning process
components.
The axioms of ACC are the axioms of ACP, the axioms of IFGCC, and the

axioms given in Table 5. E1–E7 are actually axiom schemas in which f and
g stand for arbitrary members of L and m stands for an arbitrary member
of M. Axioms CC1 and CC2 are axioms concerning process components and
axioms E1–E10 are the defining axioms of the auxiliary operator ∂ . Together
they formalize the intuition about process components given above in a direct
way. It is only because they are used in axioms E1–E6 that the multiplicity
operators #f.m@g are included in the theory IFGCC and the signum operator sg

is included in the theory INT.
Using the axioms of ACC, it can be proved that the actions that make up

the behaviour of a process component c(I, P ) include neither active actions nor
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passive actions if I = 0. This fact makes a justification for identifying closed
systems with process components that have an empty interface.
Guarded recursion can be added to ACC as it is added to ACP in Section 3.

We write ACC+REC for ACC extended with the constants standing for the
unique solutions of guarded recursive specifications and the axioms RDP and
RSP.
In Section 10, we will construct a model of ACC+REC using a notion of

bisimilarity for process components.

8 An Example

In this section, we illustrate the use of ACC by means of an example concerning
buffers with capacity one. We assume a finite set D of data with e ∈ D and,
for each d ∈ D, a method cd for communicating datum d. We take the element
e ∈ D for an improper datum.
We consider the three buffer processes Pf , Pg, and Ph that are defined by

the guarded recursion equations

Xf =
∑

d∈D\{e}

∼s.cd@f · (g.cd@f + g.ce@f) ·Xf ,

Xg =
∑

d∈D\{e}

∼f.cd@g · (h.cd@g + h.ce@g) ·Xg ,

Xh =
∑

d∈D\{e}

∼g.cd@h · (r.cd@h+ r.ce@h) ·Xh ,

respectively. The processes Pf , Pg and Ph always reside at the loci f , g and h,
respectively. Pf is able to pass data from processes residing at locus s to processes
residing at locus g, Pg is able to pass data from processes residing at locus f to
processes residing at locus h, and Ph is able to pass data from processes residing
at locus g to processes residing at locus r. Pf , Pg and Ph are faulty in the sense
that they may deliver an improper datum instead of the datum to be delivered.
We turn these three buffer processes into process components by adding

interfaces to them. To be exact, we turn the processes Pf , Pg, and Ph into the
process components c(If , Pf ), c(Ig, Pg), and c(Ih, Ph), where

If =
∑

d∈D\{e}

∼s.cd@f +
∑

d∈D

g.cd@f ,

Ig =
∑

d∈D\{e}

∼f.cd@g +
∑

d∈D

h.cd@g ,

Ih =
∑

d∈D\{e}

∼g.cd@h+
∑

d∈D

r.cd@h .

We have a look at the component composition c(If , Pf )‖c(Ig, Pg)‖c(Ih, Ph).
It follows from axiom CC2 that

c(If , Pf ) ‖ c(Ig, Pg) ‖ c(Ih, Ph)

= c
(

If + Ig + Ih, ∂If
(Pf ) ‖ ∂Ig

(Pg) ‖ ∂Ih
(Ph)

)

.
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Moreover, it follows from axioms IFG1–IFG5 that

If + Ig + Ih =
∑

d∈D\{e}

∼s.cd@f + g.ce@f + h.ce@g +
∑

d∈D

r.cd@h

and from axioms INT1–INT4, SG1–SG4, M1–M5, and E1–E10 that

∂If
(Pf ) ‖ ∂Ig

(Pg) ‖ ∂Ih
(Ph) = Pf ‖ Pg ‖ Ph .

Hence, we have that

c(If , Pf ) ‖ c(Ig, Pg) ‖ c(Ih, Ph)

= c

(

∑

d∈D\{e}

∼s.cd@f + g.ce@f + h.ce@g +
∑

d∈D

r.cd@h, Pf ‖ Pg ‖ Ph

)

.

It can further be shown by means of the axioms of ACP that Pf ‖Pg ‖Ph, i.e. the
behaviour of c(If , Pf ) ‖ c(Ig, Pg) ‖ c(Ih, Ph), is essentially a buffer with capacity
three. This buffer process, which resides alternately at the loci f , g and h, is
able to pass data from processes residing at locus s to processes residing at locus
r. It is faulty in the sense that it may deliver an improper datum instead of the
datum to be delivered. Moreover, the improper datum may be delivered at the
locus g or the locus h instead of the locus r.
A closed system is a process component that has an empty interface. Clearly,

c(If , Pf ) ‖ c(Ig, Pg) ‖ c(Ih, Ph) is not a closed system. It follows from axioms
IFG1–IFG5 that composing it with a process component whose interface is

∑

d∈D\{e}

f.cd@s+ ∼f.ce@g + ∼g.ce@h+
∑

d∈D

∼h.cd@r

would result in a closed system. This shows that a closed system requires com-
position with a process component that promises to handle the delivery of an
improper datum at the loci g, h and r.

9 Bisimilarity of Process Components

In this section, we give a structural operational semantics for ACC+REC and
define a notion of bisimilarity based on it. This notion of bisimilarity will be
used in Section 10 to construct a model of ACC+REC.
Henceforth, we will write TS , where S ∈ {P, I,C}, for the set of all closed

terms of sort S from the language of ACC+REC. Moreover, we will write T INT

Z

for the set of all closed terms of sort Z from the language of INT.
The following relations are the primary relations used in the structural op-

erational semantics of ACC+REC:

– a unary relation
a−→p

√ ⊆ TP, for each a ∈ A;
– a binary relation

a−→p ⊆ TP × TP, for each a ∈ A;
– a unary relation f.m@g@−N ⊆ TI, for each f, g ∈ L, m ∈M and N ∈ T INT

Z
;

13



– a binary relation hasIF ⊆ TC × TI;
– a unary relation

a−→c

√ ⊆ TC, for each a ∈ A;
– a binary relation

a−→c ⊆ TC × TC, for each a ∈ A.

We write P
a−→p

√
instead of P ∈ a−→p

√
, P

a−→p P ′ instead of (P, P ′) ∈ a−→p,
f.m@g @−N I instead of I ∈ f.m@g@−N , C hasIF I instead of (C, I) ∈ hasIF,

C
a−→c

√
instead of C ∈ a−→c

√
, and C

a−→c C
′ instead of (C,C ′) ∈ a−→c. The relations

can be explained as follows:

– P
a−→p

√
: process P is capable of first performing a and then terminating

successfully;
– P

a−→p P
′: process P is capable of first performing a and then proceeding as

process P ′;
– f.m@g @−N I: f.m@g occurs N times in interface I;
– C hasIF I: the interface of component C is I;
– C

a−→c

√
: component C is capable of first performing a and then terminating

successfully;
– C

a−→c C
′: component C is capable of first performing a and then proceeding

as component C ′.

The following relations are auxiliary relations used in the structural opera-
tional semantics of ACC+REC:

– a unary relation f.m@g@−+ ⊆ TI, for each f, g ∈ L and m ∈M;
– a unary relation f.m@g@−− ⊆ TI, for each f, g ∈ L and m ∈M;
– a unary relation f.m@g@−+ IF ⊆ TC, for each f, g ∈ L and m ∈M;
– a unary relation f.m@g@−− IF ⊆ TC, for each f, g ∈ L and m ∈M.

We write f.m@g @−+ I and f.m@g @−− I instead of I ∈ f.m@g@−+ and I ∈
f.m@g@−−, respectively. We write f.m@g @−+ IF(I) and f.m@g @−− IF(I) instead
of I ∈ f.m@g @−+ IF and I ∈ f.m@g @−− IF, respectively. The relations can be
explained as follows:

– f.m@g @−+ I: f.m@g occurs a positive number of times in interface I;
– f.m@g @−− I: f.m@g occurs a negative number of times in interface I;
– f.m@g @−+ IF(C): f.m@g occurs a positive number of times in the interface
of component C;

– f.m@g @−− IF(C): f.m@g occurs a negative number of times in the interface
of component C.

The auxiliary relations are for convenience only.
The structural operational semantics of ACC+REC is described by the rules

given in Tables 6 and 7.
The following uniqueness property of the relations f.m@g@−N will be used

in Section 10 to construct a model of ACC+REC.

Lemma 1. Let f, g ∈ L and m ∈ M. Then for all I ∈ TI, there exists an

N ∈ T INT

Z
such that for all N ′ ∈ T INT

Z
with f.m@g @−N ′

I we have that N = N ′

holds in the initial model of INT.
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Table 6. Rules for operational semantics of ACP+REC

a
a−→p

√

x
a−→p

√

x + y
a−→p

√
y

a−→p

√

x + y
a−→p

√
x

a−→p x′

x + y
a−→p x′

y
a−→p y′

x + y
a−→p y′

x
a−→p

√

x · y
a−→p y

x
a−→p x′

x · y
a−→p x′ · y

x
a−→p

√

x ‖ y
a−→p y

y
a−→p

√

x ‖ y
a−→p x

x
a−→p x′

x ‖ y
a−→p x′ ‖ y

y
a−→p y′

x ‖ y
a−→p x ‖ y′

x
a−→p

√
, y

b−→p

√

x ‖ y
c−→p

√ a | b = c
x

a−→p

√
, y

b−→p y′

x ‖ y
c−→p y′

a | b = c

x
a−→p x′, y

b−→p

√

x ‖ y
c−→p x′

a | b = c
x

a−→p x′, y
b−→p y′

x ‖ y
c−→p x′ ‖ y′

a | b = c

x
a−→p

√

x bb y
a−→p y

x
a−→p x′

x bb y
a−→p x′ ‖ y

x
a−→p

√
, y

b−→p

√

x | y
c−→p

√ a | b = c
x

a−→p

√
, y

b−→p y′

x | y
c−→p y′

a | b = c

x
a−→p x′, y

b−→p

√

x | y
c−→p x′

a | b = c
x

a−→p x′, y
b−→p y′

x | y
c−→p x′ ‖ y′

a | b = c

x
a−→p

√

∂H(x)
a−→p

√ a 6∈ H
x

a−→p x′

∂H(x)
a−→p ∂H(x′)

a 6∈ H

〈tX |E〉 a−→p

√

〈X|E〉 a−→p

√ X = tX ∈ E
〈tX |E〉 a−→p x′

〈X|E〉 a−→p x′
X = tX ∈ E

Proof. Straightforward, by induction on the structure of I. ut

A bisimulation B is a triple of symmetric binary relations BP ⊆ TP × TP,
BI ⊆ TI × TI, and BC ⊆ TC × TC such that:

– if BP(P1, P2) and P1
a−→p

√
, then P2

a−→p

√
;

– if BP(P1, P2) and P1
a−→p P

′
1, then there exists a P

′
2 ∈ TP such that P2

a−→p P
′
2

and BP(P
′
1, P

′
2);

– if BI(I1, I2) and f.m@g @−N1 I1, then there exists an N2 ∈ T INT

Z
such that

f.m@g @−N2 I2 and N1 = N2;
– if BC(C1, C2) and C1 hasIF I1, then there exists an I2 ∈ TI such that C2 hasIF

I2 and BI(I1, I2);

– if BC(C1, C2) and C1
a−→c

√
, then C2

a−→c

√
;

– if BC(C1, C2) and C1
a−→c C

′
1, then there exists a C

′
2 ∈ TC such that C2

a−→c C
′
2

and BC(C
′
1, C

′
2).

15



Table 7. Additional rules for operational semantics of ACC+REC

f.m@g @−1 f.m@g f.m@g @−0 f ′.m′@g′
f 6= f ′ ∨ m 6= m′ ∨ g 6= g′

f.m@g @−−1
∼g.m@f f.m@g @−0

∼g′.m′@f ′
f 6= f ′ ∨ m 6= m′ ∨ g 6= g′

f.m@g @−0 0

f.m@g @−k i

f.m@g @−−k −i

f.m@g @−k i, f.m@g @−l j

f.m@g @−k+l i + j

c(i, x) hasIF i

u hasIF i, v hasIF j

u ‖ v hasIF i + j

f.m@g @−k i, sg(k) = 1

f.m@g @−+ i

f.m@g @−k i, sg(k) = −1

f.m@g @−− i

u hasIF i, f.m@g @−+ i

f.m@g @−+ IF(u)

u hasIF i, f.m@g @−− i

f.m@g @−− IF(u)

x
f.m@g−−−−→p

√
, f.m@g @−+ i

c(i, x)
f.m@g−−−−→c

√
x
∼f.m@g−−−−−→p

√
, g.m@f @−− i

c(i, x)
∼f.m@g−−−−−→c

√
x

f.m@g−−−−→p

√

c(i, x)
f.m@g−−−−→c

√

x
f.m@g−−−−→p x′, f.m@g @−+ i

c(i, x)
f.m@g−−−−→c c(i, x′)

x
∼f.m@g−−−−−→p x′, g.m@f @−− i

c(i, x)
∼f.m@g−−−−−→c c(i, x′)

x
f.m@g−−−−→p x′

c(i, x)
f.m@g−−−−→c c(i, x′)

u
f.m@g−−−−→c

√
, f.m@g @−+ IF(u ‖ v)

u ‖ v
f.m@g−−−−→c v

u
∼f.m@g−−−−−→c

√
, g.m@f @−− IF(u ‖ v)

u ‖ v
∼f.m@g−−−−−→c v

u
f.m@g−−−−→c

√

u ‖ v
f.m@g−−−−→c v

v
f.m@g−−−−→c

√
, f.m@g @−+ IF(u ‖ v)

u ‖ v
f.m@g−−−−→c u

v
∼f.m@g−−−−−→c

√
, g.m@f @−− IF(u ‖ v)

u ‖ v
∼f.m@g−−−−−→c u

v
f.m@g−−−−→c

√

u ‖ v
f.m@g−−−−→c u

u
f.m@g−−−−→c u′, f.m@g @−+ IF(u ‖ v)

u ‖ v
f.m@g−−−−→c u′ ‖ v

u
∼f.m@g−−−−−→c u′, g.m@f @−− IF(u ‖ v)

u ‖ v
∼f.m@g−−−−−→c u′ ‖ v

u
f.m@g−−−−→c u′

u ‖ v
f.m@g−−−−→c u′ ‖ v

v
f.m@g−−−−→c v′, f.m@g @−+ IF(u ‖ v)

u ‖ v
f.m@g−−−−→c u ‖ v′

v
∼f.m@g−−−−−→c v′, g.m@f @−− IF(u ‖ v)

u ‖ v
∼f.m@g−−−−−→c u ‖ v′

v
f.m@g−−−−→c v′

u ‖ v
f.m@g−−−−→c u ‖ v′

u
a−→c

√
, v

b−→c

√

u ‖ v
c−→c

√ a | b = c
u

a−→c

√
, v

b−→c v′

u ‖ v
c−→c v′

a | b = c

u
a−→c u′, v

b−→c

√

u ‖ v
c−→c u′

a | b = c
u

a−→c u′, v
b−→c v′

u ‖ v
c−→c u′ ‖ v′

a | b = c

x
f.m@g−−−−→p

√
, f.m@g @−+ i

∂i(x)
f.m@g−−−−→p

√
x
∼f.m@g−−−−−→p

√
, g.m@f @−− i

∂i(x)
∼f.m@g−−−−−→p

√
x

f.m@g−−−−→p

√

∂i(x)
f.m@g−−−−→p

√

x
f.m@g−−−−→p x′, f.m@g @−+ i

∂i(x)
f.m@g−−−−→p ∂i(x

′)

x
∼f.m@g−−−−−→p x′, g.m@f @−− i

∂i(x)
∼f.m@g−−−−−→p ∂i(x

′)

x
f.m@g−−−−→p x′

∂i(x)
f.m@g−−−−→p ∂i(x

′)
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Let S ∈ {P, I,C}, and let t1, t2 ∈ TS . Then t1 and t2 are bisimilar, written
t1↔ t2, if there exists a bisimulation B such that BS(t1, t2).
The following congruence property of bisimilarity will be used in Section 10

to construct a model of ACC+REC.

Theorem 1 (Congruence). Bisimilarity is a congruence with respect to the

operators of ACC+REC to build terms of sort P, I or C.

Proof. In the terminology of [12], Z is a given sort and the relations f.m@g@−N ,
one for each N ∈ T INT

Z
, constitute a relation parametrized by closed terms of the

sort Z. Because Z is a given sort, we can safely identify closed terms of sort Z
that are semantically equivalent and replace the third property of bisimulations
given above to:

– if BI(I1, I2) and f.m@g @−N I1, then f.m@g @−N I2.

Because the relations f.m@g@−N constitute a relation parametrized by closed
terms of a given sort, we can safely replace the rules for the operational semantics
with the conclusions f.m@g @−+ i and f.m@g @−− i by the rules

f.m@g @−N i

f.m@g @−+ i
sg(N) = 1 and

f.m@g @−N i

f.m@g @−− i
sg(N) = −1 ,

where N stands for an arbitrary closed term from T INT

Z
. By these replacements,

bisimilarity becomes an instance of bisimilarity by the definition given in [12]
and the rules for the operational semantics of ACC+REC become a complete
transition system specification in panth format by the definitions given in [12].
Hence, it follows by Theorem 4 from [12] that bisimilarity is a congruence with
respect to all operators of ACC+REC to build terms of sort P, I or C. ut

10 A Bisimulation Model of ACC+REC

In this section, we construct a model of ACC+REC using the notion of bisimilar-
ity defined in Section 9. It is a model in which all processes are finitely branching,
i.e. they have at any stage only finitely many alternatives to proceed.
Henceforth, we will write IINT for the initial model of INT, and Z for the set

associated with the sort Z in IINT.
The bisimulation model BACC+REC is the expansion of IINT, the initial model

of INT, with

– for each sort S ∈ {P, I,C}, the set TS/↔;
– for each constant ♦0 : S of ACC+REC with S ∈ {P, I,C}, the element
♦

0
∈ TS/↔ defined by ♦

0
= [♦0]↔;

– for each operator ♦1 : S → S′ of ACC+REC with S, S′ ∈ {P, I,C}, the
operation ♦

1
: TS/↔→ TS′/↔ defined by ♦

1
([t]↔) = [♦1(t)]↔;

– for each operator ♦2 :S×S′ → S′′ of ACC+REC with S, S′, S′′ ∈ {P, I,C},
the operation ♦

2
: TS/↔× TS′/↔ → TS′′/↔ defined by ♦

2
([t1]↔, [t2]↔) =

[♦2(t1, t2)]↔;
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– for each operator #f.m@g : I → Z with f, g ∈ L and m ∈ M, the operation
#

f.m@g
: TI/↔→ Z defined by #

f.m@g
([I]↔) is the unique interpretation in

IINT of all N ∈ T INT

Z
for which f.m@g @−N I.

The well-definedness of the operations associated with the operators of ACC+
REC in BACC+REC follows immediately from Theorem 1, except for the opera-
tions associated with the operators #f.m@g. The well-definedness of the opera-
tions associated with the operators #f.m@g in BACC+REC follows immediately
from Lemma 1 and the definition of bisimilarity.
We have the following soundness result.

Theorem 2 (Soundness). Let S ∈ {Z,P, I,C} and let t, t′ ∈ TS. Then t = t′

is derivable from the axioms of ACC+REC only if t = t′ holds in BACC+REC.

Proof. It is sufficient to prove the soundness of each axiom separately. Because
BACC+REC is an expansion of IINT, it is not necessary to prove the soundness of
the axioms of INT. For each of the remaining axioms except M1–M5, soundness
is easily proved by constructing a witnessing bisimulation (for the witnessing
bisimulations for the axioms of ACP+REC, see e.g. [1]). What remains are the
proofs for axioms M1–M5. The soundness of these axioms follow immediately
from the definition of #

f.m@g
and the rules of the operational semantics. ut

11 Localized Processes

If processes are looked at in isolation, it is convenient to abstract from the loci
at which they reside. This brings us to consider processes made up of actions of
the forms f.m and ∼f.m. These processes are called localized processes. In this
section, we extend ACC with localized processes. The resulting theory is called
ACClp.
Henceforth, actions from A will also be called non-localized actions, and

processes made up of actions from A will also be called non-localized processes.
In ACClp, we have, in addition to the set A of non-localized actions, the set

LA of localized actions consisting of:

– for each f ∈ L and m ∈M, the active localized action f.m;
– for each f ∈ L and m ∈M, the passive localized action ∼f.m.

Intuitively, these localized actions can be explained as follows:

– f.m is the action by which a localized process requests a process residing at
locus f to carry out method m;

– ∼f.m is the action by which a localized process grants a request of a process
residing at locus f to carry out method m.

It is not possible to perform localized actions synchronously.
Different from ACC, ACClp has two sorts of processes. That is, ACClp has

the sorts C, P, I and Z from ACC, and in addition the sort LP of localized
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Table 8. Axioms for placement of localized processes

@f (δ) = δ P1

@f (g.m) = g.m@f P2

@f (∼g.m) = ∼g.m@f P3

@f (r + s) = @f (r) + @f (s) P4

@f (r · s) = @f (r) · @f (s) P5

processes. To build terms of sort C, ACClp has the constants and operators
of ACC to build terms of sort C. To build terms of sort P, ACClp has the
constants and operators of ACC to build terms of sort P and in addition the
following operators:

– for each f ∈ L, the unary placement operator @f : LP→ P.

To build terms of sort LP, ACClp has the following constants and operators:

– the deadlock constant δ : LP;
– for each a ∈ LA, the localized action constant a : LP;
– the binary alternative composition operator + : LP× LP→ LP;
– the binary sequential composition operator · : LP× LP→ LP;
– the binary parallel composition operator ‖ : LP× LP→ LP;
– the binary left merge operator bb : LP× LP→ LP;
– for each H ⊆ A, the unary encapsulation operator ∂H : LP→ LP.

To build terms of sort I, ACClp has the constants and operators of ACC to build
terms of sort I. To build terms of sort Z, ACClp has the constants and operators
of ACC to build terms of sort Z.
Terms of the different sorts are built as usual for a many-sorted signature.

We assume that there are infinitely many variables of sort LP, including r, s, r′

and s′.
The constants and operators to build terms of sort LP need no further ex-

planation. They differ from the constants and operators to build terms of sort
P in that: (i) the (non-localized) action constants are replaced by the localized
action constants and (ii) the communication merge operator | is removed.
Let L be a closed term of sort LP. Intuitively, the operators @f can be

explained as follows:

– @f (L) behaves as L with each action g.m replaced by g.m@f and each action
∼g.m replaced by ∼g.m@f .

In other words, @f turns localized processes into non-localized processes by
placing them as a whole in locus f .
The axioms of ACClp are the axioms of ACC, the axioms given in Tables 8

and 9, and copies of axioms A1–A7, CM2–CM4 and D1–D4 from Table 1 with
x, y and z replaced by different variables of sort LP, a standing for an arbitrary
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Table 9. Axiom for parallel composition of localized processes

r ‖ s = r bb s+ s bb r M1

Table 10. Additional rules for operational semantics of ACClp

r
g.m−−→lp

√

@f (r)
g.m@f−−−−→p

√
r
∼g.m−−−→lp

√

@f (r)
∼g.m@f−−−−−−→p

√
r

g.m−−→lp r′

@f (r)
g.m@f−−−−→p @f (r′)

r
∼g.m−−−→lp r′

@f (r)
∼g.m@f−−−−−−→p @f (r′)

constant of sort LP and H standing for an arbitrary subset of LA. Axioms P1–
P5 are the defining axioms of @f . Axiom M1 replaces axiom CM1. The latter
axiom is not suited for the localized case because it is not possible to perform
localized actions synchronously.
Guarded recursion can be added to ACClp as it is added to ACP in Section 3.

We write ACClp+REC for ACClp extended with the constants standing for the
unique solutions of guarded recursive specifications and the axioms RDP and
RSP.
In the structural operational semantics of ACClp+REC, the following rela-

tions are used in addition to the ones used in the structural operational semantics
of ACC+REC:

– a unary relation
a−→lp

√ ⊆ TLP, for each a ∈ LA;
– a binary relation

a−→lp ⊆ TLP × TLP, for each a ∈ LA.

We write L
a−→lp

√
instead of L ∈ a−→lp

√
and L

a−→lp L
′ instead of (L,L′) ∈ a−→lp.

The relations can be explained as follows:

– L
a−→lp

√
: localized process L is capable of first performing a and then termi-

nating successfully;
– L

a−→p L
′: localized process P is capable of first performing a and then pro-

ceeding as localized process P ′.

The structural operational semantics of ACClp+REC is described by the
rules for the operational semantics of ACC+REC, the rules given in Table 10,
and copies of the rules without the side-condition a | b = c from Table 6 with
a−→p

√
and

a−→p replaced by
a−→lp

√
and

a−→lp, respectively, x, x
′, y and y′ replaced by

different variables of sort LP, a standing for an arbitrary constant of sort LP
and H standing for an arbitrary subset of LA.
Constructing a bisimulation model of ACClp+REC can be done on the same

lines as constructing a bisimulation model of ACC+REC.

12 Conclusions

In this paper, we have built on earlier work on ACP and earlier work on interface
groups. ACP was first presented in [4] and interface groups were first proposed
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in [7]. We have introduced an interface group for process components and have
presented a theory about process components of which that interface group forms
part. The presented theory is a development on top of ACP. We have illustrated
the use of the theory by means of an example, and have given a bisimulation
semantics for process components which justifies the axioms of the theory.
Two interesting properties of the interface group for process components

introduced in this paper are: (i) the interface combination operator + is not
idempotent and (ii) for each f, g ∈ L andm ∈M, the interface element constants
f.m@g and ∼g.m@f are each other inverses. Property (i) allows for expressing
that a process component expects from a number of process components an
ability or promises a number of process components an ability. Property (ii)
allows for establishing whether a system composed of a collection of process
components is a closed system.
Like in [7], the inclusion of behavioural information in component interfaces

has been deliberately rejected in order to have orthogonality between component
interfaces and component behaviours. The distinction between active interface
elements and passive interface elements made in this paper corresponds to the
distinction between import services and export services made in [13]. Adapta-
tions of module algebra [3] that allow for this kind of distinction are investigated
in [8]. However, interface groups are not considered in those investigations.
Processes as considered in ACP have been combined with interfaces before

in the tool-supported formalisms for description and analysis of processes with
data known as µCRL [10] and PSF [11]. However, in µCRL and PSF, interfaces
serve for determining whether descriptions of processes are well-formed only.
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