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Abstract

A meadow is a commutative ring with an inverse operator satisfying two equations
and in which 0! = 0. All fields and products of fields can be viewed as meadows.
After reviewing alternate axioms for inverse, we start the development of a theory
of meadows. We give a general representation theorem for meadows and find, as
a corollary, that the equational theory of meadows coincides with the equational
theory of zero totalized fields. We also prove representation results for meadows of
finite characteristic.

Keywords. Field, meadow, division-by-zero, total versus partial functions, rep-
resentation theorems, initial algebras, equational specifications, regular ring, finite
meadows, finite fields.

1 Introduction

A meadow is a commutative ring with unit equipped with a total unary operation z71,

named inverse, that satisfies these additional equations:

(@)t =2z (1)
vo(z-27l) = (2)

The first equation we call Ref, for reflection, and the second equation Ril, for restricted
inverse law.
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Meadows provide an analysis of division which is more general than the classical theory
of fields. Meadows are total algebras in which 0! = 0. We have used algebras with
such zero totalized division in developing elementary algebraic specifications for several
algebras of rational numbers in our previous paper [3] and its companions [1, 4]. Given
the usefulness of zero totalized division for specification purposes, we will develop the
theory of meadows from a perspective of computer science. Clearly, since meadows are
commutative rings they are not without pure mathematical interest.

Let us discuss the raison d’étre of meadows and survey our results. The primary alge-
braic properties of the rational, real and complex numbers are captured by the operations
and axioms of fields. The field axioms consist of the equations that define commutative
rings and, in particular, two axioms that are not equations that define the inverse oper-
ator and the distinctness of the two constants. Traditionally, fields are partial algebras
because their inverse operations are undefined at 0. The class of fields does not possess
an equational axiomatisation.

In [3, 4, 1], various fields were investigated using the elementary specification methods
of abstract data type theory, namely total many-sorted algebras, equations, initial alge-
bras and term rewriting. The specifications are based on zero totalized division: a zero
totalized field has its inverse operator made total by setting 07! = 0. In [3], an equational
specification under initial algebra semantics of the zero totalized field of rational numbers
was presented, and specifications for other zero totalized fields were developed in [4] and
[1].

In [3] meadows were isolated by exploring alternate equational axioms for inverse.
Specifically, 12 equations were found; a set CR of 8 equations for commutative rings was
extended by a set SIP of 3 equations for inverse, including Ref, and by Ril. The single
sorted finite equational specification CR + SIP + Ril has all zero totalized fields among
its models and, in addition, a large class of structures featuring zero divisors. A model of
CR+ SIP + Ril was baptized a meadow in [3]. Because meadows are defined by equations,
finite and infinite products of zero totalized fields are meadows as well.

Our first result will be that two of the equations from CR + SIP + Ril can be derived
from the other ones. This establishes the subset Md, consisting of 10 equations of the
12 equations, including the 8 equations for CR and the equations Ref and Ril mentioned
earlier. Our second result makes a connection between meadows and commutative von
Neumann regular rings.

Our main task is to start to make a classification of meadows up to isomorphism. We
prove the following general representation theorem:

Theorem Up to isomorphism, the non-trivial meadows are precisely the subalgebras of
products of zero totalized fields.

As a consequence, the equational theory of meadows is exactly the equational theory
of fields with zero totalized division; this strengthens a result for closed equations in [3].

Next, we examine the relationship between fields and meadows of finite characteristic.
The characteristic of a meadow is the smallest natural number n € N such that n.1 =
1+41+...41=0. A prime meadow is a meadow without a proper submeadow and
without a proper non-trivial homomorphic image.



Given a positive natural number £, and writing k£ for the numeral for £, we can define
Mdy, for the initial algebra of Md + {k = 0}, i.e.,

Mdy =2 I(3, Md U{k = 0}).
The following results are obtained:
Theorem For k a prime number, Mdy, is the zero totalized prime field of characteristic k.
Theorem For k a square free number, Mdy, has cardinality k.

The roots of this investigation lie in the theory of equational specifications for com-
putable data types (see e.g., [2]) which shows that any computable data type possesses
a range of equational specifications with nice properties. The equational specification of
particular structures, such as algebras of rational numbers, is nevertheless an interesting
and necessary task, because of the challenge to perfect the properties of these specifica-
tions beyond what is delivered by the general theory. Only recently, Moss found in [11]
that there exists an equational specification of the ring of rationals (i.e., without division
or inverse) with just one unary hidden function. In [3] we proved that there exists a
finite equational specification under initial algebra semantics, without hidden functions,
but making use of an inverse operation, of the field of rational numbers. In [4], the
specification found for the rational numbers was extended to the complex rationals with
conjugation, and in [1] a specification was given of the algebra of rational functions with
field and degree operations that are all total. Full details concerning the background of
this work can be found in [3].

We assume the reader is familiar with the basics of ring theory (e.g., [10, 12]), algebraic
specifications (e.g., [15]), universal algebra (e.g., [14, 9]) and term rewriting (e.g., [13]).

2 Axioms for fields and meadows

We will add to the axioms of a commutative ring various alternative axioms for dealing
with inverse and division. The starting point is a signature Xcr for commutative rings
with unit:

signature Ycg

sorts ring

operations

0: — ring;

1: — ring;

+: ring X ring — ring;
—: ring — Ting;

-1 Ting X ring — ring
end



To the signature Ycr we add an inverse operator ! to form the primary signature X,
which we will use for both fields and meadows:

signature X
import Ycgr
operations

L ring — ring
end

2.1 Commutative rings and fields

The first set of axioms is that of a commutative ring with 1, which establishes the standard
properties of +, —, and -.

equations CR

(z+y)+z = 2+ (y+2) (3)
r+y = y+uo (4)
r+0 = =z (5)
x+(-z) = 0 (6)
(@-y)-z = z-(y-2) (7)
Ty = y-x (8)
z-1 = =z 9)
x-(y+2) rTy+a-z (10)
end
These axioms generate a wealth of properties of +, —, - with which we will assume the

reader is familiar. We will write x — y as an abbreviation of z + (—y).

2.1.1 Axioms for meadows

Having available an axiomatization of commutative rings with unit (such as the one
above), we define the equational axiomatization of meadows by

Md = (2, CR + Ref + Ril).

2.1.2 Axioms for fields

On the basis of the axioms C'R for commutative rings with unit there are different ways
to proceed with the introduction of division. The orthodoxy is to add the following two
axioms for fields: let Gil (general inverse law) and Sep (separation axiom) denote denote
the following two axioms, respectively:

r#£0 = x-27! =

1
0 #£ 1



Let (X, Tfiea) be the axiomatic specification of fields, where Tf;eq = CR + Gil + Sep.
About the status of 07! these axioms say nothing. This may mean that the inverse is:

(1) a partial function, or

(2) a total function with an unspecified value, or

(3) omitted as a function symbol but employed pragmatically as a useful notation in
some “self-explanatory” cases.

Case 3 arises in another approach to axiomatizing fields, taken in many text-books,
which is not to have an operator symbol for the inverse at all and to add an axiom /el
(inverse existence law) as follows:

r#0 = Fylz-y=1).

Each ¥ algebra satisfying T';cq also satisfies Iel. In models of (X¢g, CR + Iel + Sep)
the inverse is implicit as a single-valued definable relation, so we call this theory the
relational theory of fields RTF.

2.1.3 Totalized division in fields

In field theory, if the decision has been made to use a function symbol for inverse the value
of 07! is either left undefined, or left unspecified. However, in working with elementary
specifications, which we prefer, operations are total. This line of thought leads to totalized
division.

The class Alg(X, Tiea) is the class of all possible total algebras satisfying the axioms
in Ty;eq- For emphasis, we refer to these algebras as totalized fields.

Now, for all totalized fields A € Alg(Z, Tfieiq) and all x € A, the inverse 271 is defined.
Let 04 be the zero element in A. In particular, 0:11 is defined. The actual value 0;1 =a
can be anything but it is convenient to set 0;' = 04 (see [3], and compare, e.g., Hodges
(8], p- 695).

Definition 2.1. A field A with 0,' = 04 is called zero totalized.
This choice gives us a nice equation to use, the zero inverse law Zil:
0~'=0.
With ZTF, an extension of T;qq, we specify the class of zero totalized fields:
ZTF = Tyiqq + Zil = CR + Gil + Sep + Zil.
Let Alg(X, ZTF') denote the class of all zero totalized fields.

Lemma 2.2. Fach YXcg algebra satisfying C R+ Iel + Sep can be expanded to a Y algebra
with a unique 1mverse operator that satisfies ZTF .

Proof. To see this notice that if x -y =1 and x - z = 1 it follows by subtraction of both
equations that x - (y — z) = 0. Now:

y—z=1-(y=2)=(r-9)-(y—2)=a-(y—2)-y=0-y=0,
which implies that y = z and that the inverse is unique. Let z~! be the function that

produces this unique value (for non-zero arguments). Choose 0! to be 0 and a zero
totalized field has been built. O



2.1.4 Equations for zero totalized division

Following [3], one may replace the axioms Gil and Sep by other axioms for division, es-
pecially, the three equations in a unit called SIP for strong inverse properties. They are
considered “strong” because they are equations involving ~! without any guards, such as
x # 0. These three equations were used already by Harrison in [7].

equations SIP1,SIP2 and SIP3

(—2)™h = —(a7) (13
(x-y)™ = a7ty (14
(z™H)! (15

end

The following was proven in [3]:

Proposition 2.3. Laws for zero
1. CRUSIPFO1=0
2.CRFO-z=0.

2.2 Meadows and Rl
In [3] we add to CR + SIP the equation Ril (restricted inverse law):

r-(r-z7")==x

which, using commutativity and associativity, expresses that z -2~ ! is 1 in the presence of

x. We may write z-2~! as 1,, in which case we have the following alternative formulations

of Ril,

l, - z=zand 1, -z~ ' =z},

and also 1, = 1,-1. Following [3] we define:

Definition 2.4. A model of CR + SIP + Ril is called o meadow.

Shortly, we will demonstrate that this definition is equivalent to the definition of a
meadow given in the introduction. A meadow satisfying Sep is called non-trivial.

Example All zero totalized fields are clearly non-trivial meadows but not conversely.
In particular, the zero totalized prime fields Z, of prime characteristic are meadows.
That the initial algebra of CR + SIP + Ril is not a field follows from the fact that
(141)-(14+1)' =1 cannot be derivable because it fails to hold in the prime field Z, of
characteristic 2 which is a model of these equations as well.

Whilst the initial algebra of CR is the ring of integers, we found in [3] that

Lemma 2.5. The initial algebra of CR + SIP + Ril is a computable algebra but it is not
an integral domain.



2.3 Derivable properties of meadows

We will now derive some equational facts from the specification Md or relevant subsets
of it.

Proposition 2.6.
CR+Riltz-27!=0+<2=0.

Proof. Indeed, we have x - 27! = 0= x-27! -2 = 0 -z, by multiplication. Thus, x =0
by applying Ril to the LHS and simplifying the RHS. The other direction is immediate
from 0 -2 = 0. O

To improve readability we denote 2= by T and use 1, = z - z~!. Recall that 1, = 15.

Proposition 2.7. Implicit definition of inverse:
CR+Riltz-y=1—a1t=y

Proof. T=1-T=2-y-T=1,-y=(1,40)-y=(1,+0-2)-y=(1,+(x—2)-T) -y =
(ly+(z-1—2z-2-7)- %) y=(l,+(z-z-y—2-2-7)-7) - y=(lp+zx-2-(y—7)-7)-y =
Lotz (y—72) y=Ne+a-y—a-7)-y=a-y-y=1-y=y O

Proposition 2.8. Deriwvability of SIP1 and SIP2:
1. Md+ (zy)~! =z~ ty~!
2. MdF (—2)™' = —(a7)

Proof. 1. First we show that 1,, = 1,-1,. Indeed we have: 1,,-1,-1, =z-y-Ty-2-T-y-yY
Applying Ril twice we have z -y -2 -Z -y -y = x -y , and therefore 1., -1, -1, =
x-y-TY = lzy. On the other hand applying Ril once we have x -y -2y -2 -y =2 -y
and therefore 1,,-1,-1, =2 -y-Z -y =1, - 1, This proves the auxiliary equation. Now:
@=$_y-1xy=fc_y-i-1y=@-fc-f-y-§= lyy T-y=1,-1,-T-y=T-7.

2. The fact that —1 = —1 follows by an application of Proposition 2.7 to (—1)-(—1) =1
which is a consequence of CR. We now conclude with the help of 1: —z = (=1) -2z =
(-1)-z=(-1)-T=-T O

Thanks to Proposition 2.8 we obtain:
Corollary 2.9. Md axiomatizes the meadows, i.e. Md is equivalent to CR + SIP + Ril.

Proposition 2.10.

1. CR+Ril+SIP2 -2 =0 o =01
2. Md+-23=x—x=2"1, and

3 Mdt+at=a— =22

1 1

Proof.
l.x=z-x-27"=x-2~ :.’L‘-(_’L‘-x)_lz.r.x
3. -1 _

2. From the assumption we obtain z° - x and then z -2 = x - 27, Thus

r-z-xt=g-x7 - whence z = ((z -2t -x7) ) = (@7t p-x) =27

3. From the assumption we obtain 2*- 27! = 2 - 27! and then 2% = z - 27!, from which
1

we get 2% -2l =g-27!- 27! and 2% = 271 O



2.4 Meadows and von Neumann regular rings with unit

A commutative von Neumann reqular ring (e.g., see [10, 5]) is a X algebra that satisfies
CR and which in addition satisfies the following axiom regular ring (RR):

Vedy.(z-y-x=x).

A value y which satisfies x -y - * = x is called a pseudoinverse of x.

Because Ril indicates that ! is a pseudoinverse of x, the Ycr-reduct of a meadow is
a commutative von Neumann regular ring. We thank Robin Chapman (Exeter, UK) for
pointing out to us the following observation:

Lemma 2.11. Every commutative von Neumann reqular ring can be expanded to a meadow.
First, we notice a lemma that holds for any commutative ring.
Lemma 2.12. Gwen anz, anyy withz -z -y=2x and y-y - =y 1S unique.

Proof. Assume that, in addition, x -z -z = x and z - 2z - * = z. By subtracting the first
equations of both pairs, we get x-x - (y — z) = 0, which implies z-z-(y —z)-y = 0-y, on
multiplying both sides by y. Since x -z - y = x, we deduce that z - (y — z) = 0 and that
x -y =x-z. Now, substituting into y - y - * = y, this yields y - z - x = y; and substituting
into z-z-x = z it yields z - y - x = z; taken together, we conclude y = z. O

Proof. Then we proceed with the proof of Lemma 2.11. Suppose that Y- algebra A
satsifies RR. First, expand the A to an algebra A’ with an operator i : ring — ring that
satisfies « - i(x) - © = z. This function i need not be unique, because i(0) can take any
value in A. However, if j(z) is another function on the domain of A such that for all z,
x-j(x) - x =z, then for all z,

i(x) -z -i(z) = j(z) -z - j(2).

To see this, write: p(z) = i(x) - x - i(z) and ¢(z) = j(z) -z - j(z). Now z -z - p(x) =
x-x-i(z)-z-i(x)=x-x-i(r) =x and p(z) - p(z) -z =i(x) -z -i(x) -i(x) -z -i(z) -2z =
i(x) -z -i(x)-i(x) -2 = x -i(x) - i(x) = p(x). An application of Lemma 2.12 establishes
that p(z) = g(x) for all z. It follows that p is independent of the choice of i.

Then expand A’ to the X algebra A” by introducing an inverse operator as follows:

rt=p(x) =i(z) -z i(x).

We will show that both Ril and Ref are satisfied. For Ril we make use of the equations
just derived for p(—) and find: z -z -27' =2 -2 p(zx) = .

Now Ref has to be established for the proposed inverse operator. In order to prove
that (u™')™' = u, writex = v, y=2"" and z = u.

Then, using straightforward calculations, we obtain: x-x-y =2, y-y-c =y, r-x-2 =
and z-z-x = z. It follows by Lemma 2.12 that y = z, which is the required identity. [



3 The embedding theorem

Because the theory of meadows is equational we know from universal algebra (see [9, 14])
that:

Theorem 3.1. The class of meadows s closed under subalgebras, direct products and
homomorphic images.

Thus, every subalgebra of a product of zero totalized fields is a meadow. Our main
task is to show that every non-trivial meadow is isomorphic to a subalgebra of a product
of zero totalized fields. First, we recall some basic properties of commutative rings, which
can be found in many textbooks (e.g., [10]).

3.1 Preliminaries on rings

Let R be a commutative ring. An ideal in a ring R is a subset [ with 0, and such that if
z,y€land z € R, then x +y € I, and z-x € I. R itself and {0} are the trivial ideals.
Any other ideal is a proper ideal.

The ideal R-x ={y-x| y € R } is the principal ideal generated by z. Since R has a
unit, the generator x =z -11is in R - x. This is the smallest ideal that includes .

If I is an ideal then the following relation is a Xcg congruence:

r=y iff x—yel

The set of classes R/I is a ring. The quotient map maps every element a of R to
its equivalence class, which is denoted by a + I or by a/I. The quotient map is a Ycg
homomorphism from R onto R/I (an epimorphism). It is clear what it means that [ is a
maximal ideal in R.

Lemma 3.2. Every ideal is contained in (at least one) mazximal ideal.

Proof. The union of a chain of ideals containing I and not 1 does not include 1. Therefore,
by Zorn’s lemma there is a maximal such ideal. O

Lemma 3.3. [ is a mazimal ideal iff R/ is a field.

Proof. If x is not in I then the ideal generated by I and z is R. Hence for some ¢ in [
and y in R we have 1 = i + xy. It follows that the classes of x and of y are inverse to
each other. Since x is arbitrary outside I, every class except for the class 0 (i.e, the set
I) has an inverse. O

Recall that e € R is called an idempotent if e - e = e.

Proposition 3.4. Let e € R be an idempotent and e-R the principal ideal that it generates.
Then

1. e 1s a unit in the ring e - R,

2. the mapping H(a) = e - a is a Xcr homomorphism from R onto the ring e - R.

3. Foreveryr € R:x€e-R iff e-x==x



Proof.
1. Note that e = e - 1 and therefore e € e- R. For every element e¢-a in e - R we have
e- (e-a) = e-a, by associativity, and because e - e = e. Therefore e is a unit in e - R.
2. H is a Y cg homomorphism since:
e-0=0and e-1 = ¢, so that zero is mapped to zero, and the unit is mapped to the
unit.
e(a+b)=e-a+e-bande-(—a) = —e-a, so that + and — are preserved.
e(f-g)=1(e-e)(f-g)=(e- f)(e-g) so that multiplication is preserved.
3. lf t € e- Rthen e-x =x by (a). And if x = e -z then the right side testifies that it is
an element of e - R. O

3.2 Principal ideals in a meadow

Let R be a non-trivial meadow, and x € R a non zero element. Note that by Ril, 1, is
an idempotent.

Proposition 3.5. The principal ideal x - R has the following properties:
(a)1,-R==z-R, and z,1, and z~" are all in x - R.

(b) x - R is a ring with a unit, x is invertible in the ring and H(y) = 1, -y is a Scr
homomorphism from R onto x - R.

Proof. (a) Nowl, =2~ '-x hence 1, € z- R, and x = z - 1, hence x € 1, - R. Therefore,
x-R =1, - R. Consequently, both x and 1, belong to the ideal that they generate, and
since x7!' =1,-27!, v tisalsoin 1, - R.

(b) Since 1, is an idempotent, this is Proposition 3.4. Note that x is invertible since
x -z~ ! is the unit in this ring, and 27! is also in it. O

Proposition 3.6. Let R be a meadow. For every non-zero x € R there is a Xcr homo-
morphism H, : R — F, from R onto a zero totalized field F, with H,(x) # 0.

Proof. Let x # 0 be given, and let I be a maximal ideal in the ring 1, - R. Then R/I is a
field, and the mapping H,(y) = (y-1;)/I is a ¥¢g homomorphism as it is the composition
of two Y cr homomorphisms. Now H,(x) = x/I and H,(x) # 0 because if an invertible
element of 1, - R is mapped to 0 by the quotient map, then 1 = 0 in the quotient R/I. O

Proposition 3.7. If H: R — F is a ¥cg homomorphism from a meadow R into a zero
totalized field F' then H preserves inverses and so is a ¥ homomorphism.

Proof. If H(x) = 0 then H(1,) = H(z -2 ') = H(z)- H(z™!) = 0 so that also implies
H(zY)=H(,-27') = H(l,) - H(z"!) = 0= H(z)"'. The latter holds because F is
zero totalized. Secondly, we consider the case that H(z) # 0. Then H(z) = H(1, -z) =
H(1,) - H(z) which proves that H(1,) = 1, by cancellation in fields. In other words
1=H(x-z7') = H(x) - H(z"), which proves that H(z™') = H(x)™' using Proposition
2.7. U

The image of H is subfield of F', so it follows that given R and non-zero z € R a
meadow homomorphism onto a field F' can be found which maps x to a non-zero element
of F'. Using these preparations, we can prove the embedding theorem:

10



Theorem 3.8. A X structure is a non-trivial meadow if and only if it is a X-substructure
of a product of zero totalized fields.

Proof. By Theorem 3.1 a ¥ subalgebra of a product of zero totalized fields is always a
meadow.

Let R be a meadow. Combining Propositions 3.6 and 3.7, for each nonzero = in R
there is a field F, and a ¥ homomorphism H, : R — F,, such that H,(x) # 0.

We define the product of fields: K = [] ., F,». K is a meadow with the operations
defined at each coordinate. We define the map H from R to the product as follows:
for every z in R, H(z) is the vector that has H,(z) in the place x. Since H, is a X-
homomorphism with respect to all meadow operations, following the principles of universal
algebra, the same is true for H as well.

If z # 0 then H,(z) # 0 and consequently H(z) # 0. Therefore H is a ¥-monomorphism,
which concludes the proof. O

Corollary 3.9. A finite non-trivial meadow R is a Y-substructure of a finite product of
finite fields.

3.3 Equational theory of zero totalized fields

The equational theory of zero totalized fields and of meadows are the same. More precisely:
Theorem 3.10. For every Y-equation e, Alg(X, ZTF) = e < Alg(3, Md) E e.

Proof. Let e be an equation that holds in every zero totalized field, then it holds also in
every product of fields and in every X subalgebra of a product of fields, and therefore,
by the embedding theorem, also in every non-trivial meadow. Evidently, every equation
holds in the trivial meadow as well.

The other way around, that equations true for all meadows hold in all zero totalized
fields, is obvious because zero totalized fields are a subclass of meadows. O

4 Finite meadows

The characteristic of a meadow is the smallest natural number k£ € N such that £ > 0
and k.1 =141+...4+1=0. As usual, we will define 0 as 0 and kK +1 =k +1 and given
a positive natural number k£ we define the equation Z; by

k=0.

We recall that a natural number £ is called squarefree if its prime factor decomposition is
the product of distinct primes.

Lemma 4.1. Let M be a meadow of finite characteristic k > 0. Then k is squarefree.

Proof. Let M = k = 0. Suppose k has two repeated prime factors, k = p-p-¢. Then,
using Ril we have

Bg:(gﬁp_l)g:(ggg)g_lzkp_lz()E_l:O

11



Thus, k is not the characteristic (= least summand that is 0) which is a contradition. O

Thus, from Lemma 4.1, the possible finite characteristics have the form k£ = p;...p,
where the p; are all distinct primes. All finite meadows have finite characteristic. It
follows that if a finite meadow M consists of an initial segment of the numerals 0, ...,
k-1 (like the prime fields of positive characteristic) its cardinality #(M) = k can only be
a product of different primes.

Definition 4.2. Let Mdy be the initial algebra of Md U {Z}.

What are the initial algebras? Clearly, Md; has finite characteristic < k. Notice the
following:

Lemma 4.3. If | dwides k then the Md + Z; - Zy. Thus, if | divides k then there is a X
epimorphism ¢: Md, — Md,, i.e., Md; is a homomorphic image of Md.

Thus, we have that for £ = p;...p, where the p; are all distinct primes we have a X
epimorphism ¢: Md, — Md,,. Furthermore, can be seen that for p a prime number, Md,,
is the zero totalized prime field Z, of characteristic p. To see this notice that for each x
different from 0 there is an y with x - y = 1. It follows that the zero totalized prime field
mod p satisfied WIP and for that reason it is a meadow. As a consequence we have a X
epimorphism ¢: Mdy, — Z,,.

Theorem 4.4. If k is squarefree then Mdy, has k elements.

Proof. If k = py...p, is a product of different primes that is no prime factor appears
twice then we first show that Md; has at least k& elements. To see this notice that for
each prime factor p of k the prime field Z, of characteristic p is a model of Md,, (as the
equation Z, implies Z;). Because that structure is a quotient of the additive group of Mdj
its number of elements is a divisor of the cardinality #(Mdy) of Mdy. As a consequence
#(Mdy) is a multiple of all factors of £ and because k contains all of them only once
#(Mdy) > k.

In order to prove that #(Mdy) = k it suffices to find an inverse (in the sense of
a meadow) for each n for n < k of the form m for m < k. We may assume that
k > 0 otherwise the inverse is obvious. To find the inverse consider the power series
n’(=1),n',n%.. Each value in this series is of the form m for m < k because arithmetic
is done modulo k. Therefore there are k and [ with k > [+1 > 0 such that Md; = n* = n'.
Let k — 1 — [ = i. Notice that i > 0. Working in Md;, by SIP2 we have n=* = n~!, and
thus n™!' =n*-nF 1 =n=t.nf~1 = n*~1-! = p’. This demonstrates that the inverse is a
numeral (modulo k) as required. O

It follows from the proof that the interpretation of inverse is unique in a minimal finite
meadow. Recall that an algebra is minimal when it has no subalgebras or, equivalently,
is generated by elements named in its signature. By Lemma 4.4, if £ is a product of
different primes then Mdj is the minimal meadow of characteristic k. It also follows from
the proof that Mdy consists of 0,...k — 1.
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Example 1. Concrete examples can be easily given, for instance Mdg has the following
inverse function: 07! = 0,17' = 1,271 =2,37! = 3,47! = 4, and 57! = 5. Mdg is the
smallest non-trivial minimal meadow which is not a field.

Example 2. In Md,, the inverse function is given by: 07! = 0,171 =1,271 = 8,37 ! =
7,471 =45"1=56"1=6,71=3,81=2 and 97! =09.

Example 3. Consider Md,. This is a non-minimal meadow because its size of four ele-
ments exceeds its characteristic. The inverse function is the identity function. Md, is the
smallest non-trivial meadow which is not a field.

Lemma 4.5. Let M be a meadow of finite characteristic k > 0. Then there is a %
monomorphism : Md, — M.

Proof. It M has characteristic k then M = k = 0. Thus, by initiality, there is a ¥ homo-
morphism : Md, — M. If this map were not injective then M would have characteristic
lower then k. O

Lemma 4.6. Let M be a minimal meadow of finite characteristic k > 0. Then Mdy and
M are ¥ isomorphic.

Proof. If M has characteristic k£ then M = k = 0. Thus, following the previous lemma
there is a ¥ monomorphism : Md, — M. Because M is minimal, 1 is surjective as
well. 0

Lemma 4.7. Let M be a meadow of prime cardinality p. Then M 1is the zero totalized
prime field of cardinality p.

Proof. If M has characteristic £ then £ > 0 is the cardinality of the smallest additive
subgroup of M which contains 1. Thus £ divides p and hence k£ = p which implies that M
is minimal. Following Lemma 4.6 there is a monomorphism Md}, is isomorphic with M.
At the same time the zero totalized prime field of cardinality p is a meadow and according
to Lemma 4.6 it is also isomorphic to Mdy. O

Lemma 4.8. All finite and minimal meadows are of the form Md; for some positive
natural number k.

Proof. Let M be a finite meadow. Then M has a finite characteristic, say k. By 4.7,
there is a homomorphism ¢: Md, — M,. By Lemma 4.6, there is also a homomorphism

If its non-zero characteristic is not a prime, a finite meadow has proper zero-divisors
and fails to be an integral domain and, of course, it is no field either.

Lemma 4.9. If k = pi* ... p%» then Mdy = Md,, . ,,. Therefore, if k andl have the same
set of prime factors then Md, = Md,.

Proof. Using the same argument as in Lemma 4.1, we can show that for py, ..., p, be any
primes and k£ = pi" ...pS" we have Mdy, = Md,,. ,,.. Suppose that k& = p{" ...p%" and
l = pfl ...p%». Then by the first part of the lemma, Md, = Md,, . p, and Md; = Md,,. .,
and hence Md,; = Md,.

O
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5 Concluding remarks and further questions

At the heart of the theory of meadows is the idea to use a totalized form of division.
We do not claim that division by zero in the rationals or reals is possible, but we do we
hold that zero totalized division is algebraically and computationally useful. In fact, we
expect that for some application areas zero totalized division, based on equations and
rewriting, is appropriate because it is conceptually simpler than the conventional concept
of partial division. These areas include elementary school algebra as well as specifying
and understanding calculators and spreadsheets. Our theory of meadows is a theory of
zero totalized division and constitutes a generalization of the theory of fields.

There are many opportunities for the further development of the theory of meadows.
Leaving aside questions that may emerge from the perspective of pure algebra, where
the properties of invertibility and symmetry are central, and there is the connection with
commutative von Neumann regular rings, we conclude with some computational and
logical open questions that add to the questions posed in [3]:

Is the equational theory of meadows decidable. Is its conditional equational theory
decidable?

Does Md, or a useful extension of it, admit Knuth-Bendix completion?

For a minimal meadow of finite characteristic it is interesting to know what fraction
of non properly invertible elements satisfies z = z .

Returning to the equational theory of meadows, following [3], let Z(z) =1 —z -z %
For n > 0, let L,, be the equation: Z(1 + z? + .... + 22) = 0. Clearly from CR it follows
that L, implies L, when & > n. All L, are valid in the zero totalized field of rational
numbers. From [3] and Proposition 2.8, it follows that Md + L, constitutes an initial
algebra specification of the zero totalized field of rational numbers, which indicates the
relevance of Ly. Now, conversely, the question arises if Md+ L,, proves L, (again assuming
k> n).

A related problem is to characterize the initial algebras of Md + L, forn =1, n = 2,
and n = 3.

A restricted version of Theorem 3.10 for equations between closed terms only, was
shown in [3]. That proof is longer and more syntactic in style and uses a normal form result
and straightforward induction, in spite of the fact that the result is weaker. However, it
provides the additional information that the initial algebra of Md is a computable algebra.
The proof given here uses the maximal ideal theorem, which is weaker than the axiom of
choice, but still independent of the axiom system ZF for set theory. It is unlikely that the
equality or inequality between the equational theories of zero totalized fields and meadows
is independent of ZF. A more elementary proof of Theorem 3.10 should be sought.
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