
Univer sity of Amsterdam
Programming Research Group

Machine Structure Oriented Control
Code Logic

(Extended Version)

J.A. Bergstra
C.A. Middelburg

Report PRG0704 September 2007

J.A. Bergstra

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel. +31 20 525.7591
e-mail: janb@science.uva.nl

C.A. Middelburg

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

e-mail: kmiddelb@science.uva.nl

Programming Research Group Electronic Report Series

Machine Structure Oriented Control Code Logic?

(Extended Version)

J.A. Bergstra1,2, C.A. Middelburg1

1 Programming Research Group, University of Amsterdam,
P.O. Box 41882, 1009 DB Amsterdam, the Netherlands

2 Department of Philosophy, Utrecht University,
P.O. Box 80126, 3508 TC Utrecht, the Netherlands
e-mail: J.A.Bergstra@uva.nl, C.A.Middelburg@uva.nl

Abstract Control code is a concept that is closely related to a frequently occur-
ring practitioner’s view on what is a program: code that is capable of controlling
the behaviour of some machine. We present a logical approach to explain issues
concerning control codes that are independent of the details of the behaviours that
are controlled. Using this approach, such issues can be explained at a very abstract
level. We illustrate this among other things by means of an example about the pro-
duction of a new compiler from an existing one. The approach is based on abstract
machine models, called machine structures. We introduce a model of execution
environments for the executable codes of machine structures and use it to go into
portability of control codes.

Keywords control code – machine structure – execution architecture – compiler
£xed point – control code portability

Note This paper is a substantially extended version of [7].

1 Introduction

In theoretical computer science, the meaning of programs usually plays a promi-
nent part in the explanation of many issues concerning programs. Moreover, what
is taken for the meaning of programs is mathematical by nature. On the other hand,
it is customary that practitioners do not fall back on the mathematical meaning of
programs in case explanation of issues concerning programs is needed. More often
than not, they phrase their explanations from the viewpoint that a program is code

? This research was carried out as part of the Jacquard-project Symbiosis, which is funded
by the Netherlands Organisation for Scienti£c Research (NWO).

2 J.A. Bergstra, C.A. Middelburg

that is capable of controlling the behaviour of some machine. Both theorists and
practitioners tend to ignore the existence of this contrast. In order to break through
this, we as theorists make in this paper an attempt to map out the way in which
practitioners explain issues concerning programs.

We informally de£ne control code as code that is capable of controlling the be-
haviour of some machine. We believe that there are control codes that fail to qualify
as programs. For that reason, we make the distinction between control codes and
programs. However, there are issues concerning programs that can be explained
at the level of control codes by considering them as control codes that qualify as
programs. Relative to a £xed machine, the machine-dependent concept of control
code that quali£es as program is more abstract than the machine-independent con-
cept of program: control code that quali£es as program is just representative (on
the £xed machine) of behaviour associated with a program that is not known. This
might be an important motive to explain issues concerning programs at the level
of control codes.

To simplify matters, we consider in this paper non-interactive behaviour only.
We consider this simpli£cation desirable to start with. Henceforth, control codes
are implicitly assumed to control non-interactive behaviour only and the be-
haviours associated with programs are implicitly assumed to be non-interactive.

Our attempt to map out the way in which practitioners explain issues concern-
ing programs yields a logical approach to explain issues concerning control codes
that are independent of the details of the behaviours that are controlled. Machine
structures are used as a basis of the approach. They are inspired by the machine
functions introduced in [12] to provide a mathematical basis for the T-diagrams
proposed in [10]. A machine structure offers a machine model at a very abstract
level.

Mapping out the way in which practitioners explain issues concerning pro-
grams, being a matter of applied mathematics, turns out to follow a line of itself.
This means among other things that steps made in this paper cannot always be
motivated directly from the practice that we map out. This is an instance of a
general problem of applied mathematics that unfortunately we cannot get round.
The general problem is that the design of a mathematical theory does not follow
imperatively from the problems of the application area concerned.

We believe that the presented approach is useful because in various areas fre-
quently no distinction is made between programs and control codes and interest is
primarily in issues concerning control codes that are independent of the details of
the behaviours that are controlled. Some examples of such areas are IT portfolio
management, software asset sourcing, and software patents.1 Moreover, we £nd
that control code production is in the end what software construction is about.

Machine structures in themselves are not always suf£cient to explain issues
concerning control codes that are independent of the details of the behaviours that
are controlled. If systems that provide execution environments for the executable

1 An in-depth treatment of quantitative IT portfolio management can be found in [20].
Software asset sourcing is an important part of IT sourcing, see e.g. [18,11]. An extensive
study of software patents and their implications on software engineering practices can be
found in [4].

Machine Structure Oriented Control Code Logic 3

codes of machine structures are involved, then more is needed. We introduce an
execution architecture for machine structures as a model of such systems and ex-
plain portability of control codes using this execution architecture. An extension
of basic thread algebra, introduced in [5] under the name basic polarized process
algebra, is used to describe processes that operate upon the execution architecture.
The reason to use basic thread algebra is that it has been designed as an algebra
of processes that interact with machines of the kind to which also the execution
architecture belongs. It is quite awkward to describe processes of that kind using a
general process algebra such as ACP [13], CCS [19] or CSP [16].

This paper is organized as follows. First, we introduce machine structures (Sec-
tion 2). Next, we introduce control code notations and program notations (Sec-
tion 3). Then, we present our approach to explain issues concerning control codes
by means of examples about the production of a new assembler using an existing
one and the production of a new compiler using an existing one (Section 4). We
also use this approach to explain the relation between compilers and interpreters
(Section 5). Following this, we sum up the effects of withdrawing a simplifying
assumption concerning the representation of control codes made in the foregoing
(Section 6). After that, we outline an execution architecture for machine structures
(Section 7). Then, we review the extension of basic thread algebra that covers the
effects of applying threads to services (Section 8). Following this, we formalize
the execution architecture for machine structures and de£ne the family of services
determined by it (Section 9). After that, we explain portability of control codes
using thread algebra and the execution architecture services (Section 10). Finally,
we make some concluding remarks (Section 11).

Up to Section 7, this paper is a major revision of [2]. It has been substantially
rewritten so as to streamline the material. Several important technical aspects have
been signi£cantly modi£ed.

2 Machine Functions and Machine Structures

In this section, machine structures are introduced. Machine structures are the basis
for our approach to explain issues concerning control codes. They offer models
of machines at a very abstract level and cover non-interactive machine behaviour
only.

First, we introduce the notion of machine function introduced in [2]. It gen-
eralizes the notion of machine function introduced in [12] by covering machines
with several outputs. Machine structures can easily be de£ned without reference to
machine functions. The introduction of machine functions is mainly for expository
reasons.

2.1 Machine Functions

A machine function µ is actually a family of functions: it consists of a function
µn for each natural number n > 0. Those functions map each £nite sequence of
bit sequences to either a bit sequence or M or D. Here, M stands for meaningless

4 J.A. Bergstra, C.A. Middelburg

and D stands for divergent. A machine function is supposed to model a machine
that takes several bit sequences as its inputs and produces several bit sequences as
its outputs unless it does not halt on the inputs. Let x1, . . . , xm be bit sequences.
Then the connection between the machine function µ and the machine modelled
by it can be understood as follows:2

– if µn(〈x1, . . . , xm〉) is a bit sequence, then the machine function µ models a
machine that produces µn(〈x1, . . . , xm〉) as its nth output on it taking x1, . . . ,
xm as its inputs;

– if µn(〈x1, . . . , xm〉) is M, then the machine function µ models a machine that
produces less than n outputs on it taking x1, . . . , xm as its inputs;

– if µn(〈x1, . . . , xm〉) is D, then the machine function µ models a machine that
does not produce any output on it taking x1, . . . , xm as its inputs because it
does not halt on the inputs.

Concerning the machine modelled by a machine function, we assume the follow-
ing:

– if it does not halt, then no output gets produced;
– if it does halt, then only £nitely many outputs are produced;
– if it does not halt, then this cannot be prevented by providing more inputs;
– if it does halt, then the number of outputs cannot be increased by providing

less inputs.

The intuitions behind the £rst two assumptions are obvious. The intuition behind
the third assumption is that, with respect to not halting, a machine does not use
more inputs than it needs. The intuition behind the last assumption is that, with
respect to producing outputs, a machine does not use more inputs than it needs.

Henceforth, we write BS for the set {0, 1}∗ of bit sequences. It is assumed that
M 6∈ BS and D 6∈ BS.

We now de£ne machine functions in a mathematically precise way.
Let BS ⊆ BS . Then a machine function µ on BS is a family of functions

{µn : BS∗ → (BS ∪ {D,M}) | n ∈ N}

satisfying the following rules:

∧

n∈N
(
∧

m∈N(µn(χ) = D ⇒ µm(χ) = D)
)

,
∧

n∈N
(

µn(χ) 6= D ⇒
(
∨

m∈N,m>n µm(χ) = M
))

,
∧

n∈N
(
∧

m∈N,m>n(µn(χ) = M ⇒ µm(χ) = M)
)

,
∧

n∈N(µn(χ) = D ⇒ µn(χ y χ′) = D) ,
∧

n∈N(µn(χ y χ′) = M ⇒ µn(χ) = M) .

We writeMF for the set of all machine functions.
2 We write 〈 〉 for the empty sequence, 〈x〉 for the sequence having x as sole element,

and χ y χ′ for the concatenation of £nite sequences χ and χ ′. We use 〈x1, . . . , xn〉 as
a shorthand for 〈x1〉 y . . . y 〈xn〉. We write X∗ for the set of all £nite sequences with
elements from set X .

Machine Structure Oriented Control Code Logic 5

Example 1 Take a high-level programming language PL and an assembly lan-
guage AL. Consider a machine function cf , which models a machine dedicated
to compiling PL programs, and a machine function df , which models a machine
dedicated to disassembling executable codes. Suppose that the compiling machine
takes a bit sequence representing a PL program as its only input and produces a
bit sequence representing an AL version of the PL program as its £rst output, a
bit sequence representing a listing of error messages as its second output, and an
executable code for the PL program as its third output. Moreover, suppose that the
disassembling machine takes an executable code as its only input and producing a
bit sequence representing an AL version of the executable code as its £rst output
and a bit sequence representing a listing of error messages as its second output.
The relevant properties of the machines modelled by cf and df that may now be
formulated include:

cf 2(〈x〉) = 〈 〉 ⇒ cf 1(〈x〉) 6= 〈 〉 ,

df 2(〈x〉) = 〈 〉 ⇒ df 1(〈x〉) 6= 〈 〉 ,

cf 2(〈x〉) = 〈 〉 ⇒ df 1(cf 3(〈x〉)) = cf 1(〈x〉) .

These formulas express that executable code is produced by the compiling ma-
chine unless errors are found, disassembly succeeds unless errors are found, and
disassembly is the inverse of assembly.

Machines such as the compiling machine and the disassembling machine are
special purpose machines. They are restricted to exhibit a particular type of be-
haviour. Computers are general purpose machines that can exhibit different types
of behaviour at different times. This is possible because computers are code con-
trolled machines. A code controlled machine takes one special input that controls
its behaviour. In general, not all bit sequences that a code controlled machine can
take as its inputs are capable of controlling the behaviour of that machine. The bit
sequences that are capable of controlling its behaviour are known as its executable
codes. Note that executable code is a machine-dependent concept.

Machine functions can be used to model code controlled machines as well. We
will use the phrase code controlled machine function for machine functions that
are used to model a code controlled machine. We will use the convention that the
£rst bit sequence in the argument of the functions that make up a code controlled
machine function corresponds to the special input that controls the behaviour of the
machine modelled. Because, in general, not all bit sequences that a code controlled
machine can take as its inputs are executable codes, more than just a machine
function is needed to model a code controlled machine. That is why we introduce
machine structures.

2.2 Machine Structures

A machine structure M consists a set of bit sequences BS , functions µn that make
up a machine function on BS , and a subset E of BS . If E is empty, then the

6 J.A. Bergstra, C.A. Middelburg

machine structure M is essentially the same as the machine function contained in
it. If E is not empty, then the machine structure M is supposed to model a code
controlled machine. In the case where E is not empty, the connection between
the machine structure M and the code controlled machine modelled by it can be
understood as follows:

– BS is the set of all bit sequences that the code controlled machine modelled
by M can take as its inputs;

– if x ∈ E , then the bit sequence x belongs to the executable codes of the code
controlled machine modelled by M;

– if x ∈ E , then the functions µ′n that are de£ned by µ′n(〈y1, . . . , ym〉) =
µn(〈x, y1, . . . , ym〉) make up a machine function on BS modeling a machine
that exhibits the same behaviour as the code controlled machine modelled by
M exhibits under control of the executable code x.

The assumptions made about the machine modelled by a machine structure are the
same as the assumptions made before about the machine modelled by a machine
function. It is tempting to add the following assumption:

– if the special input meant to control its behaviour does not belong to its exe-
cutable codes, then the machine halts without having produced any output.

We refrain from adding this assumption because it is to be expected that: (a) we
can do without it in explaining issues concerning control codes; (b) it does not hold
good for all machines that we may encounter. Moreover, in case we would incor-
porate this assumption in the notion of machine structure, it would not supersede
the notion of machine function.

We now de£ne machine structures in a mathematically precise way.
A machine structure M is a structure composed of

– a set BS ⊆ BS ,
– a unary function µn : BS∗ → (BS ∪ {D,M}), for each n ∈ N,
– a unary relation E ⊆ BS ,

where the family of functions {µn :BS∗ → (BS ∪{D,M}) | n ∈ N} is a machine
function on BS . We say that M is a code controlled machine structure if E 6= ∅,
and we say that M is a dedicated machine structure if E = ∅.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure, and
let x ∈ E . Then the meaning of x with respect to M, written |x|M, is the machine
function

{µ′n : BS∗ → (BS ∪ {D,M}) | n ∈ N} ,

where the functions µ′n are de£ned by

µ′n(〈y1, . . . , ym〉) = µn(〈x, y1, . . . , ym〉) .

Moreover, let x′, x′′ ∈ E . Then x′ is behaviourally equivalent to x′′ on M, written
x′ ≡M

beh x
′′, if |x′|M = |x′′|M.

Machine Structure Oriented Control Code Logic 7

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure.
Then we will write

x ••n
M
y1, . . . , ym for µn(〈x, y1, . . . , ym〉) .

Moreover, we will write

x ••
M
y1, . . . , ym for x ••1

M
y1, . . . , ym .

We will also omit M if the machine structure is clear from the context.

Example 2 Take a code controlled machine structure M = (BS , {µn | n ∈
N},E). Consider again the machine functions cf and df from Example 1. These
machine functions model a machine dedicated to compiling programs in some
high-level programming language PL and a machine dedicated to disassembling
executable codes, respectively. Let ecf , edf ∈ E be such that

|ecf |M = cf and |edf |M = df .

Then ecf and edf are executable codes that control the behaviour of the code con-
trolled machine modelled by M such that this machine behaves the same as the
dedicated machine modelled by cf and the dedicated machine modelled by df ,
respectively. This implies that for all x ∈ BS and n ∈ N:

ecf ••nM x = cf n(〈x〉) and edf ••nM x = df n(〈x〉) .

Note that for cf there may be an e′cf ∈ E with e′cf 6= ecf such that |e′cf |
M = cf ,

and likewise for df .

A code controlled machine structure M = (BS , {µn | n ∈ N},E) determines
all by itself a machine model. For an execution, which takes a single step, an ex-
ecutable code x ∈ E , a sequence 〈y1, . . . , ym〉 ∈ BS ∗ of inputs and the machine
function {µn | n ∈ N} are needed. The executable code is not integrated in the
machine in any way. In particular, it is not stored in the machine. As nothing is
known about any storage mechanism involved, due to the abstract nature of ma-
chine structures, it is not plausible to classify the model as a stored code machine
model.

2.3 Identifying the Input that Controls Machine Behaviour

It is a matter of convention that the £rst bit sequence in the argument of the func-
tions that make up the machine function of a code controlled machine structure
corresponds to the special input that controls the behaviour of the machine mod-
elled. The issue is whether a justi£cation for this correspondence can be found in
properties of the code controlled machine structure. This amounts to identifying
the input that controls the behaviour of the machine modelled.

Take the simple case where always two inputs are needed to produce any output
and always one output is produced. Then a justi£cation for the correspondence

8 J.A. Bergstra, C.A. Middelburg

mentioned above can be found only if the machine function involved is asymmetric
and moreover the £rst bit sequence in the argument of the function that yields the
£rst output overrules the second bit sequence. Here, by overruling is meant being
more in control.

In this simple case, the criteria of asymmetry and overruling can easily be made
more precise. Suppose that M = (BS , {µn | n ∈ N},E) is a code controlled
machine structure that models a machine that needs always two inputs to produce
any output and produces always one output. Then the machine function {µn | n ∈
N} is asymmetric if there exist x, y ∈ BS such that µ1(x, y) 6= µ1(y, x). The £rst
bit sequence in the argument of the function µ1 overrules the second one if there
exist x1, x2 ∈ E and z1, z2 ∈ BS with z1 6= z2 such that µ1(x1, y) = z1 and
µ1(x2, y) = z2 for all y ∈ BS . It is easily proved that the £rst bit sequence in
the argument of the function µ1 overrules the second one only if the second bit
sequence in the argument of the function µ1 does not overrule the £rst one.

The criterion of overruling becomes more interesting if more than two inputs
may be needed to produce any output, because this is usually the case with general-
purpose machines. For example, on a general-purpose machine, the £rst input may
be an executable code for an interpreter of intermediate codes produced by a com-
piler for some high-level programming language PL, the second input may be a bit
sequence representing the intermediate code for a PL program, and one or more
subsequent inputs may be bit sequences representing data needed by that program.
In this example, the £rst input overrules the second input and subsequent inputs
present and in addition the second input overrules the third input and subsequent
inputs present.

3 Control Code Notations and Program Notations

In this section, we introduce the concepts of control code notation and program
notation and discuss the differences between these concepts.

3.1 Control Code Notations

The intuition is that, for a £xed code controlled machine, control codes are objects
(usually texts) representing executable codes of that code controlled machine. The
principal examples of control codes are the executable codes themselves. Note
that, like the concept of executable code, the concept of control code is machine-
dependent. A control code notation for a £xed code controlled machine is a collec-
tion of objects together with a function which maps each of the objects from that
collection to a particular executable code of the code controlled machine.

In order to make a code controlled machine transform members of one control
code notation into members of another control code notation, like in compiling and
assembling, control codes that are not bit sequences must be represented by bit se-
quences. To simplify matters, we will assume that all control code notations are
collections of bit sequences. Assuming this amounts to identifying control codes

Machine Structure Oriented Control Code Logic 9

with the bit sequences representing them. In Section 6, we will withdraw this as-
sumption.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure.
Then a control code notation for M consists of a set CCN ⊆ BS and a function
ψ:CCN → E . The members ofCCN are called control codes for M. The function
ψ is called a machine structure projection.

Let (CCN , ψ) be a control code notation for a code controlled machine struc-
ture (BS , {µn | n ∈ N},E). Then we assume that ψ(c) = c for all c ∈ CCN ∩E .

Let M be a code controlled machine structure, let (CCN , ψ) be a control code
notation for M, and let c ∈ CCN . Then the meaning of c with respect to M,
written |c|MCCN , is |ψ(c)|M.

Control codes, like executable codes, are given a meaning related to one code
controlled machine structure. The executable codes of a code controlled machine
structure themselves make up a control code notation for that machine structure.
Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure, and let
1E be the identity function on E. Then (E, 1E) is a control code notation for M.
We trivially have |e|ME = |e|M for all e ∈ E. Henceforth, we loosely write E for
the control code notation (E , 1E).

3.2 Program Notations

To investigate the conditions under which it is appropriate to say that a control code
notation quali£es as a program notation, it is in fact immaterial how the concept of
program is de£ned. However, it is at least convenient to make the assumption that,
whatever the program notation, there is a hypothetical machine model by means
of which the intended behaviour of programs from the program notation can be
explained at a level that is suited to our purpose. We believe that this assumption
is realistic.

Let some theory of programming be given that offers a reliable de£nition of
the concept of program. Then an acknowledged program notation is a set PGN
of programs. It is assumed that there is a well-understood hypothetical machine
model by means of which the intended behaviour of programs from PGN can
be explained at a level that allows for the input-output relation of programs from
PGN , i.e. the kind of behaviour modelled by machine functions, to be derived. It is
also assumed that this hypothetical machine model determines a function | |PGN :
PGN → MF which maps programs to the machine functions modelling their
behaviour at the abstraction level of input-output relations.

In [5], a theory, called program algebra, is introduced in which a program is
a £nite or in£nite sequence of instructions. Moreover, the intended behaviour of
instruction sequences is explained at the level of input-output relations by means
of a hypothetical machine model which involves processing of one instruction at
a time, where some machine changes its state and produces a reply in case the in-
struction is not a jump instruction. This hypothetical machine model is an analytic
execution architecture in the sense of [9]. In the current paper, the de£nition of the
concept of program from [5] could be used. However, we have not £xed a particu-

10 J.A. Bergstra, C.A. Middelburg

lar concept of program because we intend to abstract from the details involved in
any such conceptual de£nition.

Note that programs, unlike control codes, are given a meaning using a hypo-
thetical machine model. This means that the given meaning is not related to some
code controlled machine structure.

3.3 Control Code Notations Qualifying as Program Notations

The intuition is that a control code notation for a code controlled machine quali£es
as a program notation if there exist an acknowledged program notation and a func-
tion from the control code notation to the program notation that maps each control
code to a program such that, at the level of input-output relations, the machine
behaviour under control of the control code coincides with the behaviour that is
associated with the corresponding program. If a control code notation quali£es as
a program notation, then its elements are considered programs.

Let M be a code controlled machine structure, and let (CCN , ψ) be a control
code notation for M. Then (CCN , ψ) quali£es as a program notation if there exist
an acknowledged program notation PGN and a function φ : CCN → PGN such
that for all c ∈ CCN :

|ψ(c)|M = |φ(c)|PGN .

This de£nition implies that, in the case of a control code notation that quali£es
as a program notation, control codes can be given a meaning using a hypothetical
machine model. Control code by itself is just representative of machine behaviour
without any indication that it originates from a program with which it is possi-
ble to explain the behaviour by means of a well-understood hypothetical machine
model. The function φ whose existence is demanded in the de£nition is suggestive
of reverse engineering: by its existence, control codes look to be implementations
of programs on a code controlled machine. We might say that the reason for clas-
sifying a control code notation in the ones that qualify as a program notation lies
in the possibility of reverse engineering. The function φ is the opposite of a repre-
sentation. It might be called a co-representation.

Suppose that M = (BS , {µn | n ∈ N},E) is a code controlled machine
structure and (E, 1E) quali£es as a program notation. Then M models a code
controlled machine whose executable codes constitute a control code notation that
quali£es as a program notation. Therefore, it is appropriate to call M a program
controlled machine structure. A program controlled machine structure is a code
controlled machine structure, but there is additional information which is consid-
ered to make it more easily understood from the tradition of computer program-
ming: each executable code can be taken for a program and the intended behaviour
of that program can be explained by means of a well-understood hypothetical ma-
chine model. It is plausible that, for any code controlled machine structure model-
ing a real machine, there is additional information which is considered to make it
more easily understood from some tradition or another.

We take the view that a code controlled machine structure having both exe-
cutable codes that can be considered programs and executable codes that cannot

Machine Structure Oriented Control Code Logic 11

be considered programs are improper. Therefore, we introduce the notion of proper
code controlled machine structure.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure.
Then M is a proper code controlled machine structure if (E ′, 1E′) quali£es as a
program notation for someE′ ⊆ E only if (E, 1E) quali£es as a program notation.

3.4 Control Code Notations Not Qualifying as Program Notations

The question arises whether all control code notations qualify as program nota-
tions. If that were true, then the conceptual distinction between control code no-
tations and program notations is small. If a control code notation quali£es as a
program notation, then all control codes concerned can be considered the result of
implementing a program on a code controlled machine. This indicates that coun-
terexamples to the hypothesis that all control code notations qualify as program
notations will concern control codes that do not originate from programming. We
give two counterexamples where control codes arise from arti£cial intelligence.

Consider a neural network in hardware form, which is able to learn while work-
ing on a problem and thereby de£ning parameter values for many £ring thresholds
for arti£cial neurons. The parameter values for a particular problem may serve as
input for a machine that needs to address that problem. These problem dependent
parameter inputs can be considered control codes by all means. However, there is
no conceivable theory of programming according to which these problem depen-
dent parameter inputs can be considered programs. The feature of neural networks
that is important here is their ability to acquire control code by another process
than programming.

Consider a purely hardware made robot that processes geographical data
loaded into it to £nd a target location. The loaded geographical data constitute the
only software that determines the behaviour of the robot. Therefore, the loaded ge-
ographical data constitute control code. However, there is no conceivable theory of
programming according to which such control codes can be considered programs.
They are certainly acquired by another process than programming.

In the case of control code notations that qualify as program notations, the
control codes are usually produced by programming followed by compiling or
assembling. The examples illustrate different forms of control code production
that involve neither programming nor compiling or assembling. The £rst example
shows that control codes can be produced without programming by means of arti-
£cial intelligence based techniques. The second example shows that the behaviour
of machines applying arti£cial intelligence based techniques can be controlled by
control codes that are produced without programming.

4 Assemblers and Compilers

In the production of control code, practitioners often distinguish two kinds of con-
trol codes in addition to executable codes: assembly codes and source codes. An

12 J.A. Bergstra, C.A. Middelburg

assembler is a control code corresponding to an executable code of a code con-
trolled machine that controls the behaviour of that code controlled machine such
that it transforms assembly codes into executable codes and a compiler is a con-
trol code corresponding to an executable code of a code controlled machine that
controls the behaviour of that code controlled machine such that it that transforms
source codes into assembly codes or executable codes.

In this section, we consider the issue of producing a new assembler for some
assembly code notation using an existing one and the similar issue of producing
a new compiler for some source code notation using an existing one. Whether an
assembly code notation or a source code notation quali£es as a program notation
is not relevant to these issues.

4.1 Assembly Code Notations and Source Code Notations

At the level of control codes for machine structures, the control code notations
that are to be considered assembly code notations and the control code notations
that are to be considered source code notations cannot be characterized. The level
is too abstract. It happens to be suf£cient for many issues concerning assemblers
and compilers, including the ones considered in this section, to simply assume that
some collection of control code notations comprises the assembly code notations
and some other collection of control code notations comprises the source code
notations.

Henceforth, we assume that, for each machine structure M, disjoint sets
ACNM and SCNM of control code notations for M have been given. The members
of ACNM and SCNM are called assembly code notations for M and source code
notations for M, respectively.

The following gives an idea of the grounds on which control code notations
are classi£ed as assembly code notation or source code notation. Assembly code
is control code that is very close to executable code. This means that there is a
direct translation of assembly codes into executable codes. An assembly code no-
tation is speci£c to a machine. Source code is control code that is not very close
to executable code. The translation of source code into executable code is more
involved than the translation of assembly code into executable code. Usually, a
source code notation is not speci£c to a machine.

A high-level programming language, such as Java [14] or C# [15], is consid-
ered a source code notation. The term high-level programming language suggests
that it concerns a notation that quali£es as a program notation. However, as men-
tioned above, whether a source code notation quali£es as a program notation is not
relevant to the issues considered in this section.

4.2 Control Code Notations Involved in Assemblers and Compilers

Three control code notations are involved in an assembler or compiler: it lets a code
controlled machine transform members of one control code notation into members
of another control code notation and it is itself a member of some control code

Machine Structure Oriented Control Code Logic 13

notation. We introduce a special notation to describe this aspect of assemblers and
compilers succinctly.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure,
and let (CCN , ψ), (CCN ′, ψ′) and (CCN ′′, ψ′′) be control code notations for M.
Then we write cc [CCN ′→ CCN ′′] : CCN for

cc ∈ CCN ∧ ∀cc′ ∈ CCN ′
• (∃cc′′ ∈ CCN ′′

• ψ(cc) ••
M
cc′ = cc′′) .

We say that cc is in executable form if CCN ⊆ E , that cc is in assembly form if
CCN ∈ ACNM, and that cc is in source form if CCN ∈ SCNM.

4.3 The Assembler Fixed Point

In this subsection, we consider the issue of producing a new assembler for some
assembly code notation using an existing one.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure, and
let (ACN , ψ) be a control code notation for M that belongs to ACNM. Suppose
that ass [ACN → E] : E is an existing assembler for ACN . This assembler is in
executable form. Suppose further that a new assembler ass ′ [ACN→E]:ACN for
ACN is made available. This new assembler is not in executable form. It needs to
be assembled by means of the existing assembler. The new assembler is considered
correct if behaviourally equivalent executable codes are produced by the existing
assembler and the one obtained by assembling the new assembler by means of the
existing assembler, i.e.

∀ac ∈ ACN • ass •• ac ≡M

beh (ass •• ass ′) •• ac . (1)

Let ass ′′ be the new assembler in executable form obtained by assembling ass ′

by means of ass , i.e. ass ′′ = ass •• ass ′. Now, ass ′ could be assembled by means
of ass ′′ instead of ass . In case ass ′′ produces more compact executable codes than
ass , this would result in a new assembler in executable form that is more compact.
Let ass ′′′ be the new assembler in executable form obtained by assembling ass ′

by means of ass ′′, i.e. ass ′′′ = ass ′′ •• ass ′ = (ass •• ass ′) •• ass ′. If ass ′ is
correct, then ass ′′ and ass ′′′ produce the same executable codes. That is,

ass ′′ ≡M

beh ass
′′′ . (2)

This is easy to see: rewriting in terms of ass and ass ′ yields

ass •• ass ′ ≡M

beh (ass •• ass ′) •• ass ′ , (3)

which follows immediately from (1).
Now, ass ′ could be assembled by means of ass ′′′ instead of ass ′′. However, if

ass ′ is correct, this would result in ass ′′′ again. That is,

ass ′′′ = ass ′′′ •• ass ′ . (4)

14 J.A. Bergstra, C.A. Middelburg

This is easy to see as well: rewriting the left-hand side in terms of ass ′ and ass ′′

yields

ass ′′ •• ass ′ = ass ′′′ •• ass ′ , (5)

which follows immediately from (2). The phenomenon expresses by equation (4)
is called the assembler £xed point.

In theoretical computer science, correctness of a program is taken to mean that
the program satis£es a mathematically precise speci£cation of it. For the assem-
bler ass ′, ∀ac ∈ ACN • ψ(ass ′) •• ac = ψ(ac) would be an obvious math-
ematically precise speci£cation. More often than not, practitioners have a more
empirical view on the correctness of a program that is a new program serving as a
replacement for an old one on a speci£c machine: correctness of the new program
is taken to mean that the old program and the new program give rise to the same
behaviour on that machine. The correctness criterion for new assemblers given
above, as well as the correctness criterion for new compilers given below, is based
on this empirical view.

4.4 The Compiler Fixed Point

In this subsection, we consider the issue of producing a new compiler for some
source code notation using an existing one. Compilers may produce assembly
code, executable code or both. We deal with the case where compilers produce
assembly code only. The reason for this choice will be explained at the end this
subsection.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure,
let (SCN , ψs) be a control code notation for M that belongs to SCNM, and let
(ACN , ψa) be a control code notation for M that belongs toACNM. Suppose that
com [SCN→ACN]:ACN is an existing compiler for SCN and ass [ACN→E]:E
is an existing assembler for ACN . The existing compiler is in assembly form.
However, a compiler in executable form can always be obtained from a compiler
in assembly form by means of the existing assembler. Suppose further that a new
compiler com ′ [SCN →ACN] : SCN for SCN is made available. This new com-
piler is not in assembly form. It needs to be compiled by means of the existing
compiler. The new compiler is considered correct if

∀sc ∈ SCN •

ass •• ((ass •• com) •• sc)
≡M

beh ass •• ((ass •• ((ass •• com) •• com ′)) •• sc) .
(6)

Let com ′′ be the new compiler in assembly form obtained by compiling com ′

by means of com , i.e. com ′′ = (ass •• com) •• com ′. Now, com ′ could be com-
piled by means of com ′′ instead of com . In case com ′′ produces more compact
assembly codes than com , this would result in a new compiler in assembly form
that is more compact. Let com ′′′ be the new compiler in assembly form obtained
by compiling com ′ by means of com ′′, i.e. com ′′′ = (ass •• com ′′) •• com ′ =

Machine Structure Oriented Control Code Logic 15

(ass •• ((ass •• com)•• com ′))•• com ′. If com ′ is correct, then com ′′ and com ′′′

produce the same assembly codes. That is,

ass •• com ′′ ≡M

beh ass •• com
′′′ . (7)

This is easy to see: rewriting in terms of ass , com and com ′ yields

ass •• ((ass •• com) •• com ′)
≡M

beh ass •• ((ass •• ((ass •• com) •• com ′)) •• com ′) ,
(8)

which follows immediately from (6).
Now, com ′ could be compiled by means of com ′′′ instead of com ′′. However,

if com ′ is correct, this would result in com ′′′ again. That is,

com ′′′ = (ass •• com ′′′) •• com ′ . (9)

This is easy to see as well: rewriting the left-hand side in terms of ass , com ′ and
com ′′ yields

(ass •• com ′′) •• com ′ = (ass •• com ′′′) •• com ′ , (10)

which follows immediately from (7). The phenomenon expresses by equation (9)
is called the compiler £xed point. It is a non-trivial insight among practitioners
involved in matters such as software con£guration and system administration.

The explanation of the compiler £xed point proceeds similar to the explana-
tion of the assembler £xed point in Section 4.3, but it is more complicated. The
complication vanishes if compilers that produce executable code are considered.
In that case, due to the very abstract level at which the issues are considered, the
explanation of the compiler £xed point is essentially the same as the explanation
of the assembler £xed point.

5 Intermediate Code Notations and Interpreters

Sometimes, practitioners distinguish additional kinds of control codes. Intermedi-
ate code is a frequently used generic name for those additional kinds of control
codes. Source code is often implemented by producing executable code for some
code controlled machine by means of a compiler or a compiler and an assembler.
Sometimes, source code is implemented by means of a compiler and an inter-
preter. In that case, the compiler used produces intermediate code. The interpreter
is a control code corresponding to an executable code of a code controlled machine
that makes that code controlled machine behave as if it is another code controlled
machine controlled by an intermediate code.

In this section, we brie¤y consider the issue of the correctness of such a com-
bination of a compiler and an interpreter.

16 J.A. Bergstra, C.A. Middelburg

5.1 Intermediate Code Notations

At the level of control codes for machine structures, like the control code notations
that are to be considered assembly code notations and the control code notations
that are to be considered source code notations, the control code notations that are
to be considered intermediate code notations of some kind cannot be characterized.
It happens to be suf£cient for many issues concerning compilers and interpreters,
including the one considered in this section, to simply assume that some collection
of control code notations comprises the intermediate code notations of interest.

Henceforth, we assume that, for each machine structure M, a set ICNM of
control code notations for M has been given. The members of ICNM are called
intermediate code notations for M.

The following gives an idea of the grounds on which control code notations are
classi£ed as intermediate code notation. An intermediate code notation is a control
code notation that resembles an assembly code notation, but it is not speci£c to any
machine. Often, it is speci£c to a source code notation or a family of source code
notations.

An intermediate code notation comes into play if source code is implemented
by means of a compiler and an interpreter. However, compilers for intermediate
code notations are found where interpretation is largely eliminated in favour of
just-in-time compilation, see e.g. [1], which is material to contemporary program-
ming languages such as Java and C#.

In the case where an intermediate code notation is speci£c to a family of source
code notations, it is a common intermediate code notation for the source code no-
tations concerned. The Common Intermediate Language from the .NET Frame-
work [21] is an example of a common intermediate code notation.

5.2 Interpreters

Interpreters are quite different from assemblers and compilers. An assembler for
an assembly code notation makes a code controlled machine transform members
of the assembly code notation into executable codes and a compiler for a source
code notation makes a code controlled machine transform members of the source
code notation into members of an assembly code notation or executable codes,
whereas an interpreter for an intermediate code notation makes a code controlled
machine behave as if it is a code controlled machine for which the members of the
intermediate code notation serve as executable codes.

We consider the correctness of an interpreter combined with a compiler going
with it. The correctness criterion given below is in the spirit of the empirical view
on correctness discussed at the end of Section 4.3.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure, let
(SCN , ψs) be a control code notation for M that belongs to SCNM, let (ICN , ψi)
be a control code notation for M that belongs to ICNM, and let (ACN , ψa) be a
control code notation for M that belongs to ACNM. Suppose that coma [SCN →
ACN] : ACN is an existing compiler for SCN and ass [ACN → E] : E is an

Machine Structure Oriented Control Code Logic 17

existing assembler for ACN . The compiler coma lets M transform source codes
into assembly codes. Suppose further that a new compiler com i [SCN → ICN] :
ACN for SCN and a new interpreter int ∈ E for ICN are made available. The
compiler com i lets M transform source codes into intermediate codes.

The combination of com i and int is considered correct if

∀sc ∈ SCN , 〈bs1, . . . , bsm〉 ∈ BS
∗
•

(ass ••
M

((ass ••
M
coma) ••M

sc)) ••
M
bs1, . . . , bsm

= int ••
M

((ass ••
M
com i) ••M

sc), bs1, . . . , bsm .

(11)

While being controlled by an interpreter, the behaviour of a code controlled
machine can be looked upon as another code controlled machine of which the ex-
ecutable codes are the intermediate codes involved. The latter machine might ap-
propriately be called a virtual machine. By means of interpreters, the same virtual
machine can be obtained on different machines. Thus, all machine-dependencies
are taken care of by interpreters. A well-known virtual machine is the Java Virtual
Machine [17].

6 The Bit Sequence Representation of Control Codes

In order to make a code controlled machine transform members of one control
code notation into members of another control code notation, like in assembling
and compiling, control codes that are not bit sequences must be represented by bit
sequences. To simplify matters, we assumed up to now that all control code nota-
tions are collections of bit sequences. In this section, we present the adaptations
needed in the preceding sections when withdrawing this assumption. It happens
that the changes are small.

The Concept of Control Code Notation

First of all, we have to adapt the concept of control code notation slightly.
Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure. Then

a control code notation for M consists of a set CCN , a function ψ : CCN → E ,
and a function ρ : CCN → BS . For all c ∈ CCN , ρ(c) is called the bit sequence
representation of c on M. The function ρ is called the bs-representation function
of CCN .

Let (CCN , ψ, ρ) be a control code notation for a code controlled machine
structure (BS , {µn | n ∈ N},E). Then we assume that ψ(c) = c for all c ∈
CCN ∩ E , ρ(c′) = c′ for all c′ ∈ CCN ∩ BS , and ρ(c′′) = c′′ for all c′′ ∈ CCN
with ρ(c′′) ∈ E .

The Special Notation cc [CCN ′→ CCN ′′] : CCN

We have to change the de£nition of the special notation cc [CCN ′→CCN ′′]:CCN
slightly.

18 J.A. Bergstra, C.A. Middelburg

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure, and
let (CCN , ψ, ρ), (CCN ′, ψ′, ρ′) and (CCN ′′, ψ′′, ρ′′) be control code notations
for M. Then we write cc [CCN ′→ CCN ′′] : CCN for

cc ∈ CCN ∧ ∀cc′ ∈ CCN ′
• (∃cc′′ ∈ CCN ′′

• ψ(cc) ••
M
ρ′(cc′) = ρ′′(cc′′)) .

The Explanation of the Assembler Fixed Point

In the explanation of the assembler £xed point given in Section 4.3, we have
to replace the de£nitions of ass ′′ and ass ′′′ by ass ′′ = ass •• ρ(ass ′) and
ass ′′′ = (ass •• ρ(ass ′))•• ρ(ass ′), assuming that ρ is the bs-representation func-
tion of ACN . Moreover, we have to adapt Formulas (1), (3), (4), and (5) slightly.
Formula (1) must be replaced by

∀ac ∈ ACN • ass •• ρ(ac) ≡M

beh (ass •• ρ(ass ′)) •• ρ(ac) .

Formula (3) must be replaced by

ass •• ρ(ass ′) ≡M

beh (ass •• ρ(ass ′)) •• ρ(ass ′) .

Formula (4) must be replaced by

ass ′′′ = ass ′′′ •• ρ(ass ′) .

Formula (5) must be replaced by

ass ′′ •• ρ(ass ′) = ass ′′′ •• ρ(ass ′) .

The Explanation of the Compiler Fixed Point

In the explanation of the compiler £xed point given in Section 4.4, we have to re-
place the de£nitions of com ′′ and com ′′′ by com ′′ = (ass••ρa(com))••ρs(com

′)
and com ′′′ = (ass •• ((ass ••ρa(com))••ρs(com

′)))••ρs(com
′), assuming that

ρs is the bs-representation function of SCN and ρa is the bs-representation func-
tion of ACN . Moreover, we have to adapt Formulas (6), (8), (9), and (10) slightly.
Formula (6) must be replaced by

∀sc ∈ SCN •

ass •• ((ass •• ρa(com)) •• ρs(sc))

≡M

beh ass •• ((ass •• ((ass •• ρa(com)) •• ρs(com
′))) •• ρs(sc)) .

Formula (8) must be replaced by

ass •• ((ass •• ρa(com)) •• ρs(com
′))

≡M

beh ass •• ((ass •• ((ass •• ρa(com)) •• ρs(com
′))) •• ρs(com

′)) .

Machine Structure Oriented Control Code Logic 19

Formula (9) must be replaced by

com ′′′ = (ass •• com ′′′) •• ρs(com
′) .

Formula (10) must be replaced by

(ass •• com ′′) •• ρs(com
′) = (ass •• com ′′′) •• ρs(com

′) .

The Correctness Criterion for Interpreters

The correctness criterion for interpreters given in Section 5.2, i.e. Formula (11),
must be replaced by

∀sc ∈ SCN , 〈bs1, . . . , bsm〉 ∈ BS
∗
•

(ass ••
M

((ass ••
M
ρa(coma)) ••M

ρs(sc))) ••M
bs1, . . . , bsm

= int ••
M

((ass ••
M
ρa(com i)) ••M

ρs(sc)), bs1, . . . , bsm ,

assuming that ρs is the bs-representation function of SCN , ρi is the bs-represen-
tation function of ICN , and ρa is the bs-representation function of ACN .

7 An Execution Architecture for Machine Structures

In this section, we outline a synthetic execution architecture for code controlled
machine structures.3

The synthetic execution architecture for code controlled machine structures,
which is parametrized by a code controlled machine structure M, is an abstract
model of a system that provides an execution environment for the executable codes
of M. It can be looked upon as a machine. This machine is operated by means of
instructions that either yield a reply or diverge. The possible replies are T and
F. File names are used in the instructions to refer to the bit sequences present in
the machine. It is assumed that a countably in£nite set FNm of £le names has
been given. While designing the instruction set, we focussed on convenience of
use rather than minimality.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure.
Then the instruction set consists of the following instructions:

– for each f ∈ FNm and bs ∈ BS , a set instruction set:f :bs;
– for each f ∈ FNm , a remove instruction rm:f ;
– for each f1, f2 ∈ FNm , a copy instruction cp:f1:f2;
– for each f1, f2 ∈ FNm , a move instruction mv:f1:f2;
– for each f1, f2 ∈ FNm , a concatenation instruction cat:f1:f2;
– for each f1, f2 ∈ FNm , a test on equality instruction tsteq:f1:f2;

3 Analytic execution architectures, which are referred to in Section 3.2, and synthetic
execution architectures are discussed in [9].

20 J.A. Bergstra, C.A. Middelburg

– for each f1, f2 ∈ FNm , a test on difference instruction tstne:f1:f2;
– for each f ∈ FNm , a test on existence instruction tstex:f ;
– for each f ∈ FNm , a load instruction load:f ;
– for each f1, . . . , fm ∈ FNm and f ′1 , . . . , f

′
n ∈ FNm , an execute instruction

exec:f1: . . . :fm>f
′
1 : . . . :f ′n.

We write I for this instruction set.
We say that a £le name is in use if it has a bit sequence assigned. A state of

the machine comprises the £le names that are in use, the bit sequences assigned to
those £le names, a ¤ag indicating whether there is a loaded executable code, and
the loaded executable code if there is one.

The instructions can be explained in terms of the effect that they have and the
reply that they yield as follows:

– set:f :bs: the £le name f is added to the £le names in use if it is not in use, the
bit sequence bs is assigned to f , and the reply is T;

– rm:f : if the £le name f is in use, then it is removed from the £le names in use
and the reply is T; otherwise, nothing changes and the reply is F;

– cp:f1:f2: if the £le name f1 is in use, then the £le name f2 is added to the £le
names in use if it is not in use, the bit sequence assigned to f1 is assigned to f2,
and the reply is T; otherwise, nothing changes and the reply is F;

– mv:f1:f2: if the £le name f1 is in use, then the £le name f2 is added to the £le
names in use if it is not in use, the bit sequence assigned to f1 is assigned to f2,
f1 is removed from the £le names in use, and the reply is T; otherwise, nothing
changes and the reply is F;

– cat:f1:f2: if the £le names f1 and f2 are in use, then the concatenation of the
bit sequence assigned to f2 and the bit sequence assigned to f1 is assigned to f2
and the reply is T; otherwise, nothing changes and the reply is F;

– tsteq:f1:f2: if the £le names f1 and f2 are in use and the bit sequence assigned
to f1 equals the bit sequence assigned to f2, then nothing changes and the reply
is T; otherwise, nothing changes and the reply is F;

– tstne:f1:f2: if the £le names f1 and f2 are in use and the bit sequence assigned
to f1 does not equal the bit sequence assigned to f2, then nothing changes and
the reply is T; otherwise, nothing changes and the reply is F;

– tstex:f : if the £le name f is in use, then nothing changes and the reply is T;
otherwise, nothing changes and the reply is F;

– load:f : if the £le name f is in use and the bit sequence assigned to f is a
member of E , then the bit sequence assigned to f is loaded and the reply is T;
otherwise, nothing changes and the reply is F;

– exec:f1: . . . :fm>f
′
1 : . . . :f ′n: if the £le names f1, . . . , fm have bit sequences as-

signed, say bs1, . . . , bsm, and there is a loaded executable code, say x, then:
– if x ••1

M
bs1, . . . , bsm ∈ BS , then:

• x ••i
M
bs1, . . . , bsm is assigned to f ′i for each i with 1 ≤ i ≤ n such

that x ••i
M
bs1, . . . , bsm ∈ BS ,

• f ′i is removed from the £le names in use for each iwith 1 ≤ i ≤ n such
that x ••i

M
bs1, . . . , bsm = M,

and the reply is T;

Machine Structure Oriented Control Code Logic 21

– if x ••1
M
bs1, . . . , bsm = M, then nothing changes and the reply is F;

– if x ••1
M
bs1, . . . , bsm = D, then the machine does not halt;

otherwise, nothing changes and the reply is F.

Note that there are three cases in which the instruction exec:f1: . . . :fm>f
′
1 : . . . :f ′n

yields the reply F: (a) there is no loaded executable code; (b) there is some £le
name among f1, . . . , fm that is not in use; (c) there is no output produced, although
the machine halts.

The instructions of which the effect depends on the code controlled machine
structure M are the load and execute instructions only. All other instructions could
be eliminated in favour of executable codes, assigned to known £le names. How-
ever, we believe that elimination of these instructions would not contribute to a
useful execution architecture. The distinction made between loading and execu-
tion of executable codes allows for telling load-time errors from run-time errors.

8 Thread Algebra

In Section 10, BTA (Basic Thread Algebra) extended with thread-to-service appli-
cation is used to describe processes that operate upon the execution architecture
outlined above. BTA is introduced in [5] under the name BPPA (Basic Polarized
Process Algebra). In this section, we review BTA, including guarded recursion and
the approximation induction principle, and extend it with thread-to-service appli-
cation.

8.1 Basic Thread Algebra

BTA is a form of process algebra which is tailored to the description of the be-
haviour of deterministic sequential programs under execution. The behaviours
concerned are called threads.

In BTA, it is assumed that there is a £xed but arbitrary set of basic actions A.
The intuition is that each basic action performed by a thread is taken as a com-
mand to be processed by a service provided by the execution environment of the
thread. The processing of a command may involve a change of state of the service
concerned. At completion of the processing of the command, the service produces
a reply value. This reply is either T or F and is returned to the thread concerned.

Although BTA is one-sorted, we make this sort explicit. The reason for this is
that we will extend BTA with additional sorts in Section 8.2.

The algebraic theory BTA has one sort: the sort T of threads. BTA has the
following constants and operators:

– the deadlock constant D : T;
– the termination constant S : T;
– for each a ∈ A, the binary postconditional composition operator E aD :

T×T→ T.

22 J.A. Bergstra, C.A. Middelburg

Table 1 Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X= tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

Terms of sort T are built as usual. Throughout the paper, we assume that there are
in£nitely many variables of sort T, including x, y, z.

We use in£x notation for postconditional composition. We introduce action
pre£xing as an abbreviation: a◦p, where p is a term of sort T, abbreviates pE aDp.

Let p and q be closed terms of sort T and a ∈ A. Then pE aD q will perform
action a, and after that proceed as p if the processing of a leads to the reply T
(called a positive reply) and proceed as q if the processing of a leads to the reply
F (called a negative reply).

Each closed term of sort T from the language of BTA denotes a £nite thread,
i.e. a thread of which the length of the sequences of actions that it can perform is
bounded. Guarded recursive speci£cations give rise to in£nite threads.

A guarded recursive speci£cation over BTA is a set of recursion equations
E = {X = tX | X ∈ V }, where V is a set of variables of sort T and each tX
is a term of sort T that has the form D, S or tE aD t′. We write V(E) for the set
of all variables that occur on the left-hand side of an equation in E. We are only
interested in models of BTA in which guarded recursive speci£cations have unique
solutions, such as the projective limit model of BTA presented in [3].

We extend BTA with guarded recursion by adding constants for solutions of
guarded recursive speci£cations and axioms concerning these additional constants.
For each guarded recursive speci£cationE and eachX ∈ V(E), we add a constant
of sort T standing for the unique solution of E for X to the constants of BTA.
The constant standing for the unique solution of E for X is denoted by 〈X|E〉.
Moreover, we add the axioms for guarded recursion given in Table 1 to BTA,
where we write 〈tX |E〉 for tX with, for all Y ∈ V(E), all occurrences of Y in tX
replaced by 〈Y |E〉. In this table,X , tX andE stand for an arbitrary variable of sort
T, an arbitrary term of sort T from the language of BTA, and an arbitrary guarded
recursive speci£cation over BTA, respectively. Side conditions are added to restrict
the variables, terms and guarded recursive speci£cations for which X , tX and E
stand. The equations 〈X|E〉 = 〈tX |E〉 for a £xed E express that the constants
〈X|E〉 make up a solution of E. The conditional equations E ⇒ X = 〈X|E〉
express that this solution is the only one.

We will write BTA+REC for BTA extended with the constants for solutions of
guarded recursive speci£cations and axioms RDP and RSP.

In [6], we show that the processes considered in BTA+REC can be viewed as
processes that are de£nable over ACP [13].

Closed terms of sort T from the language of BTA+REC that denote the
same in£nite thread cannot always be proved equal by means of the axioms of
BTA+REC. We introduce the approximation induction principle to remedy this.
The approximation induction principle, AIP in short, is based on the view that two
threads are identical if their approximations up to any £nite depth are identical.

Machine Structure Oriented Control Code Logic 23

Table 2 Approximation induction principle

∧

n≥0 πn(x) = πn(y) ⇒ x = y AIP

Table 3 Axioms for projection operators

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(xE aD y) = πn(x) E aD πn(y) P3

The approximation up to depth n of a thread is obtained by cutting it off after
performing a sequence of actions of length n.

AIP is the in£nitary conditional equation given in Table 2. Here, following [5],
approximation of depth n is phrased in terms of a unary projection operator πn.
The axioms for the projection operators are given in Table 3. In this table, a stands
for an arbitrary member of A.

8.2 Applying Threads to Services

We extend BTA+REC to a theory that covers the effects of applying threads to
services.

It is assumed that there is a £xed but arbitrary set of foci F and a £xed but
arbitrary set of methods M. For the set of basic actions A, we take the set FM =
{f.m | f ∈ F ,m ∈M}. Each focus plays the role of a name of a service provided
by the execution environment that can be requested to process a command. Each
method plays the role of a command proper. Performing a basic action f.m is
taken as making a request to the service named f to process the command m.

We introduce a second sort: the sort S of services. However, we will not in-
troduce constants and operators to build terms of this sort. S is a parameter of
theories with thread-to-service application. S is considered to stand for the set
of all services. It is assumed that each service can be represented by a function
H :M+ → {T,F,D} with the property that H(γ) = D ⇒ H(γ y 〈m〉) = D for
all γ ∈M+ and m ∈M. This function is called the reply function of the service.
Given a reply function H and a method m ∈ M, the derived reply function of H
after processing m, written ∂

∂m
H , is de£ned by ∂

∂m
H(γ) = H(〈m〉y γ).

The connection between a reply function H and the service represented by it
can be understood as follows:

– if H(〈m〉) = T, the request to process command m is accepted by the service,
the reply is positive and the service proceeds as ∂

∂m
H;

– if H(〈m〉) = F, the request to process command m is accepted by the service,
the reply is negative and the service proceeds as ∂

∂m
H;

– if H(〈m〉) = D, either the processing of command m by the service does not
halt or the processing of a previous command by the service did not halt.

24 J.A. Bergstra, C.A. Middelburg

Table 4 Axioms for apply

x •f ↑ = ↑ TSA0

S •f H = H TSA1

D •f H = ↑ TSA2

(xE g.mD y) •f H = ↑ if f 6= g TSA3

(xE f.mD y) •f H = x •f
∂

∂m
H if H(〈m〉) = T TSA4

(xE f.mD y) •f H = y •f
∂

∂m
H if H(〈m〉) = F TSA5

(xE f.mD y) •f H = ↑ if H(〈m〉) = D TSA6

(
∧

n≥0 πn(x) •f H = ↑) ⇒ x •f H = ↑ TSA7

Henceforth, we will identify a reply function with the service represented by it.

It is assumed that there is an unde£ned service ↑ with the property that ↑(γ) =
D for all γ ∈M+.

For each f ∈ F , we introduce the binary apply operator •f : T× S → T.
Intuitively, p•fH is the service that evolves fromH on processing all basic actions
performed by thread p that are of the form f.m by H . When a basic action f.m
performed by thread p is processed by H , p proceeds on the basis of the reply
value produced.

The axioms for the apply operators are given in Table 4. In this table, f and g
stand for arbitrary foci from F andm stands for an arbitrary method fromM. The
axioms show that p •f H does not equal ↑ only if thread p performs no other basic
actions than ones of the form f.m and eventually terminates successfully.

Let p be a closed term of sort T from the language of BTA+REC and H be a
closed term of sort S. Then p converges from H on f if there exists an n ∈ N such
that πn(p) •f H 6= ↑. Notice that axiom TSA7 can be read as follows: if x does
not converge from H on f , then x •f H equals ↑.

The extension of BTA introduced above originates from [8]. In the remainder
of this paper, we will use just one focus. We have introduced the general case here
because the use of several foci might be needed on further elaboration of the work
presented in this paper.

9 The Execution Architecture Services

In order to be able to use the extension of BTA presented above to describe pro-
cesses that operate upon the execution architecture for code controlled machine
structures outlined in Section 7, we have to associate a service with each state of
the execution architecture. In this section, we £rst formalize the execution archi-
tecture for code controlled machine structures and then associate a service with
each of its states.

Machine Structure Oriented Control Code Logic 25

9.1 The Execution Architecture Formalized

The execution architecture for code controlled machine structures consists of an
instruction set, a state set, an effect function, and a yield function. The effect and
yield functions give, for each instruction u and state s, the state and reply, respec-
tively, that result from processing u in state s.

It is assumed that sD 6∈ (
⋃

F∈Pfin(FNm)(F → BS)) × (BS ∪ {M}). Here, sD

stands for a state of divergence.
Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure.

Then the execution architecture for M consists of

– the instruction set I de£ned in Section 7;
– the state set S de£ned by

S =

((

⋃

F∈Pfin(FNm)

(F → BS)

)

× (E ∪ {M})

)

∪ {sD} ;

– the effect function eff : I × S → S de£ned in Table 5;
– the yield function yld : I × S → {T,F,D} de£ned in Table 6.

We use the following notation for functions: [] for the empty function; [d 7→ r] for
the function f with dom(f) = {d} such that f(d) = r; f ⊕ g for the function h
with dom(h) = dom(f) ∪ dom(g) such that for all d ∈ dom(h), h(d) = f(d)
if d 6∈ dom(g) and h(d) = g(d) otherwise; and f C− D for the function g with
dom(g) = dom(f) \D such that for all d ∈ dom(g), g(d) = f(d).

Let (σ, x) ∈ S, and let f ∈ FNm . Then f is in use if f ∈ dom(σ), and there
is a loaded executable code if x 6= M. If f is in use, then σ(f) is the bit sequence
assigned to f . If there is a loaded executable code, then x is the loaded executable
code.

Execute instructions can diverge. When an instruction diverges, a situation
arises in which no reply can be produced and no further instructions can be pro-
cessed. This is modelled by eff producing sD and yld producing D.

9.2 The Family of Execution Architecture Services

Each state of the execution architecture for code controlled machine structures can
be looked upon as a service by assuming that I ⊆M and extending the functions
eff and yld from I to M by stipulating that eff (m, s) = sD and yld(m, s) = D
for all m ∈M \ I and s ∈ S.

We de£ne, for each s ∈ S, a cumulative effect function ceff s :M∗ → S in
terms of s and eff as follows:

ceff s(〈 〉) = s

ceff s(γ y 〈m〉) = eff (m, ceff s(γ)) .

26 J.A. Bergstra, C.A. Middelburg

Table 5 Effect function for an execution architecture (u ∈ I)

eff (set:f :bs, (σ, x)) = (σ ⊕ [f 7→ bs], x)

eff (rm:f , (σ, x)) = (σ C− {f }, x)

eff (cp:f1:f2, (σ, x)) = (σ ⊕ [f2 7→ σ(f1)], x) if f1 ∈ dom(σ)

eff (cp:f1:f2, (σ, x)) = (σ, x) if f1 6∈ dom(σ)

eff (mv:f1:f2, (σ, x)) = ((σ ⊕ [f2 7→ σ(f1)]) C− {f1}, x) if f1 ∈ dom(σ)

eff (mv:f1:f2, (σ, x)) = (σ, x) if f1 6∈ dom(σ)

eff (cat:f1:f2, (σ, x)) = (σ ⊕ [f2 7→ σ(f2) y σ(f1)], x) if f1 ∈ dom(σ) ∧ f2 ∈ dom(σ)

eff (cat:f1:f2, (σ, x)) = (σ, x) if f1 6∈ dom(σ) ∨ f2 6∈ dom(σ)

eff (tsteq:f1:f2, (σ, x)) = (σ, x)

eff (tstne:f1:f2, (σ, x)) = (σ, x)

eff (tstex:f , (σ, x)) = (σ, x)

eff (load:f , (σ, x)) = (σ, σ(f)) if f ∈ dom(σ) ∧ σ(f) ∈ E

eff (load:f , (σ, x)) = (σ, x) if f 6∈ dom(σ) ∨ σ(f) 6∈ E

eff (exec:f1: . . . :fm>f
′
1 : . . . :f ′n, (σ, x)) = ((. . . (σ ⊕ σ′1) . . .⊕ σ′n), x)

where σ′i = [f ′i 7→ x ••i
M σ(f1), . . . , σ(fm)] if x ••i

M σ(f1), . . . , σ(fm) ∈ BS

σ′i = [] if x ••i
M σ(f1), . . . , σ(fm) = M

if x ∈ E ∧ f1 ∈ dom(σ) ∧ . . . ∧ fm ∈ dom(σ) ∧ x ••1
M σ(f1), . . . , σ(fm) ∈ BS

eff (exec:f1: . . . :fm>f
′
1 : . . . :f ′n, (σ, x)) = (σ, x)

if x 6∈ E ∨ f1 6∈ dom(σ) ∨ . . . ∨ fm 6∈ dom(σ) ∨ x ••1
M σ(f1), . . . , σ(fm) = M

eff (exec:f1: . . . :fm>f
′
1 : . . . :f ′n, (σ, x)) = sD

if x 6∈ E ∨ f1 6∈ dom(σ) ∨ . . . ∨ fm 6∈ dom(σ) ∨ x ••1
M σ(f1), . . . , σ(fm) = D

eff (u, sD) = sD

We de£ne, for each s ∈ S, an execution architecture serviceHs :M
+ → {T,F,D}

in terms of ceff s and yld as follows:

Hs(γ y 〈m〉) = yld(m, ceff s(γ)) .

For each s ∈ S, Hs is a service indeed: Hs(γ) = D ⇒ Hs(γ y 〈m〉) = D
for all γ ∈ M+ and m ∈ M. This follows from the following property of the
execution architecture for code controlled machine structures:

∃s ∈ S • ∀i ∈ I •

(yld(i, s) = D ∧ ∀s′ ∈ S • (yld(i, s′) = D ⇒ eff (i, s′) = s)) .

The witnessing state of this property is sD. This state is connected with the unde-
£ned service ↑ as follows: HsD

= ↑.
It is worth mentioning that Hs(〈m〉) = yld(m, s) and ∂

∂m
Hs = Heff (m,s).

We write EASM for the family of services {Hs | s ∈ S}.

Machine Structure Oriented Control Code Logic 27

Table 6 Yield function for an execution architecture (u ∈ I)

yld(set:f :bs, (σ, x)) = T

yld(rm:f , (σ, x)) = T if f ∈ dom(σ)

yld(rm:f , (σ, x)) = F if f 6∈ dom(σ)

yld(cp:f1:f2, (σ, x)) = T if f1 ∈ dom(σ)

yld(cp:f1:f2, (σ, x)) = F if f1 6∈ dom(σ)

yld(mv:f1:f2, (σ, x)) = T if f1 ∈ dom(σ)

yld(mv:f1:f2, (σ, x)) = F if f1 6∈ dom(σ)

yld(cat:f1:f2, (σ, x)) = T if f1 ∈ dom(σ) ∧ f2 ∈ dom(σ)

yld(cat:f1:f2, (σ, x)) = F if f1 6∈ dom(σ) ∨ f2 6∈ dom(σ)

yld(tsteq:f1:f2, (σ, x)) = T if f1 ∈ dom(σ) ∧ f2 ∈ dom(σ) ∧ σ(f1) = σ(f2)

yld(tsteq:f1:f2, (σ, x)) = F if f1 6∈ dom(σ) ∨ f2 6∈ dom(σ) ∨ σ(f1) 6= σ(f2)

yld(tstne:f1:f2, (σ, x)) = T if f1 ∈ dom(σ) ∧ f2 ∈ dom(σ) ∧ σ(f1) 6= σ(f2)

yld(tstne:f1:f2, (σ, x)) = F if f1 6∈ dom(σ) ∨ f2 6∈ dom(σ) ∨ σ(f1) = σ(f2)

yld(tstex:f , (σ, x)) = T if f ∈ dom(σ)

yld(tstex:f , (σ, x)) = F if f 6∈ dom(σ)

yld(load:f , (σ, x)) = T if f ∈ dom(σ) ∧ σ(f) ∈ E

yld(load:f , (σ, x)) = F if f 6∈ dom(σ) ∨ σ(f) 6∈ E

yld(exec:f1: . . . :fm>f
′
1 : . . . :f ′n, (σ, x)) = T

if x ∈ E ∧ f1 ∈ dom(σ) ∧ . . . ∧ fm ∈ dom(σ) ∧ x ••1
M σ(f1), . . . , σ(fm) ∈ BS

yld(exec:f1: . . . :fm>f
′
1 : . . . :f ′n, (σ, x)) = F

if x 6∈ E ∨ f1 6∈ dom(σ) ∨ . . . ∨ fm 6∈ dom(σ) ∨ x ••1
M σ(f1), . . . , σ(fm) = M

yld(exec:f1: . . . :fm>f
′
1 : . . . :f ′n, (σ, x)) = D

if x 6∈ E ∨ f1 6∈ dom(σ) ∨ . . . ∨ fm 6∈ dom(σ) ∨ x ••1
M σ(f1), . . . , σ(fm) = D

yld(u, sD) = D

10 Control Codes and Execution Architecture Services

In this section, we make precise what it means that a control code is installed on
an execution architecture service and what it means that a control code is portable
from one execution architecture service to another execution architecture service.

10.1 Installed Control Codes

The intuition is that a control code is installed on an execution architecture ser-
vice if some £le name has assigned an executable version of the control code or
some £le name has assigned an interpretable version of the control code and an
appropriate interpreter is installed on the execution architecture service as well.

28 J.A. Bergstra, C.A. Middelburg

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure,
let (CCN , ψ) be a control code notation for M, let c ∈ CCN , and let EAS =
H(σ,x) ∈ EAS

M. Then c is installed on EAS if there exist f0, . . . , fl ∈ FNm with
σ(f0) ∈ E such that

∀ 〈bs1, . . . , bsm〉 ∈ BS
∗
•

∧

n∈N ψ(c) ••n
M
bs1, . . . , bsm = σ(f0) ••

n
M
σ(f1), . . . , σ(fl), bs1, . . . , bsm .

A control code is pre-installed on an execution architecture service if the ex-
ecution architecture service can be expanded to one on which it is installed, us-
ing only control codes and data already assigned to £le names. Thread algebra
is brought into play to make precise what it means that an execution architecture
service can be expanded to another execution architecture service.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure,
let EAS = H(σ,x) ∈ EAS

M, and let EAS ′ = H(σ′,x′) ∈ EAS
M. Then EAS is

expansible to EAS ′ if:

– dom(σ) ⊆ dom(σ′) and σ(f) = σ′(f) for all f ∈ dom(σ);
– there exists a thread p without basic actions of the form ea.set:f :bs such that
EAS ′ = p •ea EAS .

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure, let
(CCN , ψ) be a control code notation for M, let c ∈ CCN , and let EAS ∈ EASM.
Then c is pre-installed on EAS if

– c is not installed on EAS ;
– there exists a EAS ′ ∈ EASM such that EAS is expansible to EAS ′ and c is

installed on EAS ′.

Example 3 Take an assembly code notation ACN and a source code notation
SCN . Consider an execution architecture service EAS on which £le name f1 has
assigned an executable version of an assembler forACN , £le name f2 has assigned
an ACN version of a compiler for SCN , and £le name f3 has nothing assigned.
Suppose that no £le name has assigned an executable version of the compiler.
Then the compiler is not installed on EAS . However, the compiler is pre-installed
on EAS because it is installed on the expanded execution architecture service
(ea.load:f1 ◦ ea.exec:f2>f3) •ea EAS .

10.2 Portable Control Codes

We take portability of control code to mean portability from a service de£ned by
the execution architecture for one machine structure to a service de£ned by the
execution architecture for another machine structure.

Transportability is considered a property of all bit sequences, i.e. each bit se-
quence can be transported between any two services de£ned by execution archi-
tectures for machine structures. Therefore, it is assumed that every bit sequence
assigned to a £le name on a service can be assigned to a £le name on another
service by means of an instruction of the form set:f :bs .

Machine Structure Oriented Control Code Logic 29

A prerequisite for portability of a control code from a service de£ned by the
execution architecture for one machine structure to a service de£ned by the execu-
tion architecture for another machine structure is that, for all inputs covered by the
former machine structure, the outputs produced under control of the control code
coincide for the two machine structures concerned. Moreover, it must be possible
to expand the service from which the control code originates such that the control
code is pre-installed on the other service after some bit sequences assigned to £le
names on the expanded service are assigned to £le names on the other service.

Let M = (BS , {µn | n ∈ N},E) and M′ = (BS ′, {µ′n | n ∈ N},E ′) be
code controlled machine structures, let (CCN , ψ) and (CCN , ψ′) be control code
notations for M and M′, respectively, let c ∈ CCN , and let EAS 0 = H(σ0,x0) ∈

EASM and EAS ′
0 = H ′

(σ′
0,x

′
0)
∈ EASM

′

. Then c is portable from EAS 0 to EAS ′
0

if

– ∀ 〈bs1, . . . , bsm〉 ∈ BS
∗
•

(ψ(c) ••1
M
bs1, . . . , bsm 6= D

⇒
∧

n∈N ψ(c) ••n
M
bs1, . . . , bsm = ψ′(c) ••n

M
bs1, . . . , bsm) .

– there exists a EAS 1 = H(σ1,x1) ∈ EAS
M such that

– EAS 0 is expansible to EAS 1,
– there exist f1, . . . , fl ∈ dom(σ1) \ dom(σ′0) such that c is pre-installed on

(ea.set:f1:σ1(f1) ◦ . . . ◦ ea.set:fl:σ1(fl)) •ea EAS
′
0.

Because we assume that the set FNm of £le names is countably in£nite, this
de£nition does not imply that the bit sequences to be transported have to be as-
signed to the same £le names at both sides.

Example 4 Take a source code notation SCN and an assembly code notation
ACN . Consider an execution architecture service EAS on which £le name f1
has assigned an executable version of a compiler for SCN that produces as-
sembly codes from ACN , £le name f2 has assigned a source code from SCN ,
and £le name f3 has nothing assigned. Moreover, consider another execution ar-
chitecture service EAS ′ on which £le name f1 has assigned an executable ver-
sion of an assembler for ACN , and £le name f3 has nothing assigned. Suppose
that the above-mentioned prerequisite for portability of the source code is ful-
£lled. Then the source code is portable from EAS to EAS ′ because it is pre-
installed on ea.set:f3:bs •ea EAS

′ where bs is the bit sequence assigned to f3 on
(ea.load:f1 ◦ ea.exec:f2>f3) •ea EAS .

11 Conclusions

We have presented a logical approach to explain issues concerning control codes
that are independent of the details of the behaviours that are controlled at a very ab-
stract level. We have illustrated the approach by means of examples which demon-
strate that there are non-trivial issues that can be explained at this level. In the
explanations given, we have consciously been guided by empirical viewpoints usu-
ally taken by practitioners rather than theoretical viewpoints. The issues that have

30 J.A. Bergstra, C.A. Middelburg

been considered are well understood for quite a time. Application of the approach
to issues that are not yet well understood is left for future work. We think among
other things of applications in the areas of software asset sourcing, which is an
important part of IT sourcing, and software patents.

We have based the approach on abstract machine models, called machine struc-
tures. If systems that provide execution environments for the executable codes of
machine structures are involved in the issues to be explained, then more is needed.
We have introduced an execution architecture for machine structures as a model of
such systems and have explained portability of control codes using this execution
architecture and an extension of basic thread algebra. The execution architecture
for machine structures, as well as the extension of basic thread algebra, may form
part of a setting in which the different kinds of processes that are often trans-
ferred when sourcing software assets, in particular software exploitation, can be
described and discussed.

References

1. J. Aycock. A brief history of just-in-time. ACM Computing Surveys, 35(2):97–113,
2003.

2. J. A. Bergstra. Machine function based control code algebras. In F. S. de Boer, M. M.
Bonsangue, S. Graf, and W. P. de Roever, editors, FMCO 2003, volume 3188 of Lecture
Notes in Computer Science, pages 17–41. Springer-Verlag, 2004.

3. J. A. Bergstra and I. Bethke. Polarized process algebra and program equivalence. In
J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Proceedings 30th
ICALP, volume 2719 of Lecture Notes in Computer Science, pages 1–21. Springer-
Verlag, 2003.

4. J. A. Bergstra and P. Klint. About “trivial” software patents: The IsNot case. Science
of Computer Programming, 64:264–285, 2006.

5. J. A. Bergstra and M. E. Loots. Program algebra for sequential code. Journal of Logic
and Algebraic Programming, 51(2):125–156, 2002.

6. J. A. Bergstra and C. A. Middelburg. Thread algebra with multi-level strategies. Fun-
damenta Informaticae, 71(2/3):153–182, 2006.

7. J. A. Bergstra and C. A. Middelburg. Machine structure oriented control code logic.
Computer Science Report 07-10, Department of Mathematics and Computer Science,
Eindhoven University of Technology, April 2007.

8. J. A. Bergstra and A. Ponse. Combining programs and state machines. Journal of
Logic and Algebraic Programming, 51(2):175–192, 2002.

9. J. A. Bergstra and A. Ponse. Execution architectures for program algebra. Journal of
Applied Logic, 5:170–192, 2007.

10. H. Bratman. An alternate form of the UNCOL diagram. Communications of the ACM,
4(3):142, 1961.

11. G. Delen. Decision- en Controlfactoren voor IT-Sourcing. Van Haren Publishing,
Zaltbommel, Netherlands, 2005. In Dutch.

12. J. Earley and H. Sturgis. A formalism for translator interactions. Communications of
the ACM, 13(10):607–617, 1970.

13. W. J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer Sci-
ence, An EATCS Series. Springer-Verlag, Berlin, 2000.

14. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Speci£cation.
Addison-Wesley, Reading, MA, second edition, 2000.

Machine Structure Oriented Control Code Logic 31

15. A. Hejlsberg, S. Wiltamuth, and P. Golde. C# Language Speci£cation. Addison-
Wesley, Reading, MA, 2003.

16. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, 1985.

17. T. Lindholm and F. Yellin. The Java Virtual Machine Speci£cation. Addison-Wesley,
Reading, MA, 1996.

18. L. Loh and N. Venkatraman. Diffusion of information technology outsourcing, in¤u-
ence sources and the Kodak effect. Information Systems Research, 4:334–358, 1992.

19. R. Milner. Communication and Concurrency. Prentice-Hall, Englewood Cliffs, 1989.
20. C. Verhoef. Quantitative IT portfolio management. Science of Computer Programming,

45(1):1–96, 2002.
21. D. Watkins, M. Hammond, and B. Abrams. Programming in the .NET Environment.

Addison-Wesley, Reading, MA, 2003.

Electronic Reports Series of the Programming Research Group

Within this series the following reports appeared.

[PRG0703] J.A. Bergstra and C.A. Middelburg, On the Operating Unit Size of Load/Store Arc hitectures,
Programming Research Group - University of Amsterdam, 2007.

[PRG0702] J.A. Bergstra and A. Ponse, Interface Groups and Financial Transfer Architectures, Programming
Research Group - University of Amsterdam, 2007.

[PRG0701] J.A. Bergstra, I. Bethke, and M. Burgess, A Process Algebra Based Framework for Promise Theory,
Programming Research Group - University of Amsterdam, 2007.

[PRG0610] J.A. Bergstra and C.A. Middelburg, Parallel Processes with Implicit Computational Capital,
Programming Research Group - University of Amsterdam, 2006.

[PRG0609] B. Diertens, Software (Re-)Engineering with PSF II: from architecture to implementation,
Programming Research Group - University of Amsterdam, 2006.

[PRG0608] A. Ponse and M.B. van der Zwaag, Risk Assessment for One-Counter Threads, Programming
Research Group - University of Amsterdam, 2006.

[PRG0607] J.A. Bergstra and C.A. Middelburg, Synchronous Cooperation for Explicit Multi-Threading,
Programming Research Group - University of Amsterdam, 2006.

[PRG0606] J.A. Bergstra and M. Burgess, Local and Global Trust Based on the Concept of Promises,
Programming Research Group - University of Amsterdam, 2006.

[PRG0605] J.A. Bergstra and J.V. Tucker, Division Safe Calculation in Totalised Fields, Programming Research
Group - University of Amsterdam, 2006.

[PRG0604] J.A. Bergstra and A. Ponse, Projection Semantics for Rigid Loops, Programming Research Group -
University of Amsterdam, 2006.

[PRG0603] J.A. Bergstra and I. Bethke, Predictable and Reliable Program Code: Virtual Machine-based
Projection Semantics (submitted for inclusion in the Handbook of Network and Systems
Administration), Programming Research Group - University of Amsterdam, 2006.

[PRG0602] J.A. Bergstra and A. Ponse, Program Algebra with Repeat Instruction, Programming Research Group
- University of Amsterdam, 2006.

[PRG0601] J.A. Bergstra and A. Ponse, Interface Groups for Analytic Execution Architectures, Programming
Research Group - University of Amsterdam, 2006.

[PRG0505] B. Diertens, Software (Re-)Engineering with PSF, Programming Research Group - University of
Amsterdam, 2005.

[PRG0504] P.H. Rodenburg, Piecewise Initial Algebra Semantics, Programming Research Group - University of
Amsterdam, 2005.

[PRG0503] T.D. Vu, Metric Denotational Semantics for BPPA, Programming Research Group - University of
Amsterdam, 2005.

[PRG0502] J.A. Bergstra, I. Bethke, and A. Ponse, Decision Problems for Pushdown Threads, Programming
Research Group - University of Amsterdam, 2005.

[PRG0501] J.A. Bergstra and A. Ponse, A Bypass of Cohen’s Impossibility Result, Programming Research Group -
University of Amsterdam, 2005.

[PRG0405] J.A. Bergstra and I. Bethke, An Upper Bound for the Equational Specification of Finite State Services,
Programming Research Group - University of Amsterdam, 2004.

[PRG0404] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Strategic Interleaving, Programming
Research Group - University of Amsterdam, 2004.

[PRG0403] B. Diertens, A Compiler-projection from PGLEc.MSPio to Parrot, Programming Research Group -
University of Amsterdam, 2004.

[PRG0402] J.A. Bergstra and I. Bethke, Linear Projective Program Syntax, Programming Research Group -
University of Amsterdam, 2004.

[PRG0401] B. Diertens, Molecular Scripting Primitives, Programming Research Group - University of
Amsterdam, 2004.

[PRG0302] B. Diertens, A Toolset for PGA, Programming Research Group - University of Amsterdam, 2003.

[PRG0301] J.A. Bergstra and P. Walters, Projection Semantics for Multi-File Programs, Programming Research
Group - University of Amsterdam, 2003.

[PRG0201] I. Bethke and P. Walters, Molecule-oriented Java Programs for Cyclic Sequences, Programming
Research Group - University of Amsterdam, 2002.

The above reports and more are available through the website: www.science.uva.nl/research/prog/

Electronic Report Series

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

