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Abstract. We introduce a strict version of the concept of a load/store
instruction set architecture in the setting of Maurer machines. We take
the view that transformations on the states of a Maurer machine are
achieved by applying threads as considered in thread algebra to the
Maurer machine. We study how the transformations on the states of
the main memory of a strict load/store instruction set architecture that
can be achieved by applying threads depend on the operating unit size,
the cardinality of the instruction set, and the maximal number of states
of the threads.
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1 Introduction

In [4], we introduced Maurer machines, which are based on the model for com-
puters proposed by Maurer in [11], and extended basic thread algebra, which
is introduced in [3] under the name basic polarized process algebra, with op-
erators for applying threads to Maurer machines. Threads can be looked upon
as the behaviours of deterministic sequential programs as run on a machine.
By applying threads to a Maurer machine, transformations on the states of the
Maurer machine are achieved. In [5], we proposed a strict version of the con-
cept of a load/store instruction set architecture for theoretical work relevant to
micro-architecture design. We described the concept in the setting of Maurer
machines. The idea underlying it is that there is a main memory of which the
elements contain data, an operating unit with a small internal memory by which
data can be manipulated, and an interface between the main memory and the
operating unit for data transfer between them.

? This research was partly carried out in the framework of the GLANCE-project
MICROGRIDS, which is funded by the Netherlands Organisation for Scientific Re-
search (NWO).



In this paper, we study how the transformations on the states of the main
memory of a strict load/store instruction set architecture that can be achieved
by applying threads to it depend on the operating unit size, the cardinality of
the instruction set, and the maximal number of states of the threads. In order to
present certain results in a conveniently arranged way, we introduce the concept
of a thread powered function class. The idea underlying this concept is that
the transformations on the main memory of strict load/store instruction set
architectures that can be achieved by applying threads to them are primarily
determined by the address width, the word length, the operating unit size, and
the cardinality of the instruction set of the instruction set architectures and the
number of states of the threads that can be applied to them.
Why did we choose to use Maurer machines and basic thread algebra to

study issues relevant to the design of instruction set architectures? Maurer ma-
chines are based on the view that a computer has a memory, the contents of all
memory elements make up the state of the computer, the computer processes
instructions, and the processing of an instruction amounts to performing an op-
eration on the state of the computer which results in changes of the contents of
certain memory elements. The design of instruction set architectures must deal
with these aspects of real computers. Turing machines and the other kinds of
machines known from theoretical computer science (see e.g. [10]) abstract from
these aspects of real computers. Basic thread algebra is a form of process algebra.
Well-known process algebras, such as ACP [1], CCS [12], and CSP [9], are too
general for our purpose. Basic thread algebra has been designed as an algebra of
deterministic sequential processes that interact with a machine. In [7], we show
that the processes considered in basic thread algebra can be viewed as processes
that are definable over an extension of ACP with conditions introduced in [6].
However, it is quite awkward to describe and analyse processes of this kind using
such a general process algebra.
The structure of this paper is as follows. First, we review basic thread al-

gebra (Section 2), Maurer machines (Section 3) and the operators for apply-
ing threads to Maurer machines (Section 4). Next, we introduce the concept
of a strict load/store Maurer instruction set architecture (Section 5). Then, we
study the consequences of reducing the operating unit size of a strict load/store
Maurer instruction set architecture (Section 6). After that, we give conditions
under which all possible transformations on the states of the main memory of
a strict load/store Maurer ISA with a certain address width and word length
can be achieved by applying a thread to such a strict load/store Maurer ISA
(Section 7). Following this, we give a condition under which not all possible
transformations can be achieved (Section 8). Finally, we make some concluding
remarks (Section 9).

2 Basic Thread Algebra

In this section, we review BTA (Basic Thread Algebra), a form of process algebra
which was first presented in [3] under the name BPPA (Basic Polarized Process
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Table 1. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X= tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V (E) RSP

Algebra). It is a form of process algebra which is tailored to the description of the
behaviour of deterministic sequential programs under execution. The behaviours
concerned are called threads.
In BTA, it is assumed that there is a fixed but arbitrary set of basic actions

A. BTA has the following constants and operators:

– the deadlock constant D;
– the termination constant S;
– for each a ∈ A, a binary postconditional composition operator E aD .

We use infix notation for postconditional composition. We introduce action pre-
fixing as an abbreviation: a ◦ p, where p is a term of BTA, abbreviates pE aD p.
The intuition is that each basic action performed by a thread is taken as

a command to be processed by the execution environment of the thread. The
processing of a command may involve a change of state of the execution envi-
ronment. At completion of the processing of the command, the execution envi-
ronment produces a reply value. This reply is either T or F and is returned to
the thread concerned. Let p and q be closed terms of BTA. Then pE aD q will
perform action a, and after that proceed as p if the processing of a leads to the
reply T (called a positive reply) and proceed as q if the processing of a leads to
the reply F (called a negative reply).
Each closed term of BTA denotes a finite thread, i.e. a thread of which the

length of the sequences of actions that it can perform is bounded. Guarded
recursive specifications give rise to infinite threads.
A guarded recursive specification over BTA is a set of recursion equations

E = {X = tX | X ∈ V }, where V is a set of variables and each tX is a term of
the form D, S or tE aD t′ with t and t′ terms of BTA that contain only variables
from V . We write V (E) for the set of all variables that occur on the left-hand
side of an equation in E. We are only interested in models of BTA in which
guarded recursive specifications have unique solutions, such as the projective
limit model of BTA presented in [2].
We extend BTA with guarded recursion by adding constants for solutions

of guarded recursive specifications and axioms concerning these additional con-
stants. For each guarded recursive specification E and each X ∈ V (E), we add
a constant standing for the unique solution of E for X to the constants of BTA.
The constant standing for the unique solution of E for X is denoted by 〈X|E〉.
Moreover, we add the axioms for guarded recursion given in Table 1 to BTA,
where we write 〈tX |E〉 for tX with, for all Y ∈ V (E), all occurrences of Y in tX
replaced by 〈Y |E〉. In this table, X, tX and E stand for an arbitrary variable,
an arbitrary term of BTA and an arbitrary guarded recursive specification, re-
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Table 2. Approximation induction principle

∧

n≥0 πn(x) = πn(y) ⇒ x = y AIP

Table 3. Axioms for projection operators

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(xE aD y) = πn(x)E aD πn(y) P3

spectively. Side conditions are added to restrict the variables, terms and guarded
recursive specifications for which X, tX and E stand.
We will write BTA+REC for BTA extended with the constants for solutions

of guarded recursive specifications and axioms RDP and RSP. We will often
write X for 〈X|E〉 if E is clear from the context. It should be borne in mind
that, in such cases, we use X as a constant.
Closed terms of BTA+REC that denote the same infinite thread cannot

always be proved equal by means of the axioms of BTA+REC. We introduce the
approximation induction principle to remedy this. The approximation induction
principle, AIP in short, is based on the view that two threads are identical if
their approximations up to any finite depth are identical. The approximation up
to depth n of a thread is obtained by cutting it off after performing a sequence
of actions of length n.
AIP is the infinitary conditional equation given in Table 2. Here, following [2],

approximation of depth n is phrased in terms of a unary projection operator
πn( ). The axioms for the projection operators are given in Table 3. In this
table, a stands for an arbitrary member of A.
Henceforth, we write Efin(A), where A ⊆ A, for the set of all finite guarded

recursive specifications over BTA that contain only postconditional operators
E aD for which a ∈ A. Moreover, we write Tfinrec(A), where A ⊆ A, for the
set of all closed terms of BTA+REC that contain only postconditional operators
E aD for which a ∈ A and only constants 〈X|E〉 for which E ∈ Efin(A).
A linear recursive specification over BTA is a guarded recursive specification

E = {X = tX | X ∈ V }, where each tX is a term of the form D, S or Y E aD Z
with Y,Z ∈ V . For each closed term p ∈ Tfinrec(A), there exist a linear recursive
specification E ∈ Efin(A) and a variable X ∈ V (E) such that p = 〈X|E〉 is
derivable from the axioms of BTA+REC.
Henceforth, we write E linfin(A), where A ⊆ A, for the set of all linear recursive

specifications from Efin(A).
Below, the interpretations of the constants and operators of BTA+REC in

models of BTA+REC are denoted by the constants and operators themselves.
Let A be some model of BTA+REC, and let p be an element from the domain of
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A. Then the set of states or residual threads of p, written Res(p), is inductively
defined as follows:

– p ∈ Res(p);
– if q E aD r ∈ Res(p), then q ∈ Res(p) and r ∈ Res(p).

We are only interested in models of BTA+REC in which card(Res(〈X|E〉)) ≤
card(E) for all finite linear recursive specifications E, such as the projective limit
model of BTA presented in [2].

3 Maurer Machines

In this section, we introduce the concept of a Maurer machine. This concept was
first introduced in [4].
A Maurer machine H consists of the following components:

– a non-empty set M ;
– a set B with card(B) ≥ 2;
– a set S of functions S :M → B;
– a set O of functions O : S → S;
– a set A ⊆ A;
– a function [[ ]] :A→ (O ×M);

and satisfies the following conditions:

– if S1, S2 ∈ S,M
′ ⊆M , and S3 :M → B is such that S3(x) = S1(x) if x ∈M ′

and S3(x) = S2(x) if x 6∈M ′, then S3 ∈ S;
– if S1, S2 ∈ S, then the set {x ∈M | S1(x) 6= S2(x)} is finite;
– if S ∈ S, a ∈ A, and [[a]] = (O,m), then S(m) ∈ {T,F}.

M is called the memory of H, B is called the base set of H, the members of
S are called the states of H, the members of O are called the operations of H,
the members of A are called the basic actions of H, and [[ ]] is called the basic
action interpretation function of H.
We write MH , BH , SH , OH , AH and [[ ]]H , where H = (M,B,S,O, A, [[ ]])

is a Maurer machine, for M , B, S, O, A and [[ ]], respectively.
A Maurer machine has much in common with a real computer. The memory

of a Maurer machine consists of memory elements which have as content an el-
ement from its base set. The contents of all memory elements together make up
a state of the Maurer machine. State changes are accomplished by performing
its operations. Every state change amounts to changes of the contents of cer-
tain memory elements. The Maurer machine processes each of its basic actions
by performing the operation associated with the basic action by its basic ac-
tion interpretation function. At completion of the processing, the content of the
memory element associated with the basic action by the basic action interpre-
tation function is the reply produced by the Maurer machine. The term basic
action originates from BTA. Where real computers are concerned, basic actions
are usually called instructions.
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In [11], Maurer proposed a model for computers. In [4], we introduced the
term Maurer computer for what is a computer according to Maurer’s definition.
Leaving out the set of basic actions and the basic action interpretation function
from a Maurer machine yields a Maurer computer. The set of basic actions
and the basic action interpretation function constitute the interface of a Maurer
machine with its environment.
The notions of input region of an operation and output region of an operation,

which originate from [11], are used in subsequent sections.
Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine, and let O : S → S. Then

the input region of O, written IR(O), and the output region of O, written OR(O),
are the subsets of M defined as follows:

IR(O) =
{

x ∈M
∣

∣ ∃S1, S2 ∈ S • (∀z ∈M \ {x} • S1(z) = S2(z) ∧

∃y ∈ OR(O) •O(S1)(y) 6= O(S2)(y))
}

,

OR(O) =
{

x ∈M
∣

∣ ∃S ∈ S • S(x) 6= O(S)(x)
}

.3

OR(O) is the set of all memory elements that are possibly affected by O; and
IR(O) is the set of all memory elements that possibly affect elements of OR(O)
under O.
Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine, let S1, S2 ∈ S, and let

O ∈ O. Then S1¹IR(O) = S2¹IR(O) implies O(S1)¹OR(O) = O(S2)¹OR(O).
4 In

other words, every operation transforms states that coincide on the input region
of the operation to states that coincide on the output region of the operation.

4 Applying Threads to Maurer Machines

In this section, we add for each Maurer machine H a binary apply operator •H

to BTA+REC and introduce a notion of computation in the resulting setting.
The apply operators associated with Maurer machines are related to the ap-

ply operators introduced in [8]. They allow for threads to transform states of the
associated Maurer machine by means of its operations. Such state transforma-
tions produce either a state of the associated Maurer machine or the undefined
state ↑. It is assumed that ↑ is not a state of any Maurer machine. We ex-
tend function restriction to ↑ by stipulating that ↑ ¹ M = ↑ for any set M .
The first operand of the apply operator •H associated with Maurer machine
H = (M,B,S,O, A, [[ ]]) must be a term from Tfinrec(A) and its second argument
must be a state from S ∪ {↑}.
Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine, let p ∈ Tfinrec(A), and

let S ∈ S. Then p •H S is the state that results if all basic actions performed

3 The following precedence conventions are used in logical formulas. Operators bind
stronger than predicate symbols, and predicate symbols bind stronger than logical
connectives and quantifiers. Moreover, ¬ binds stronger than ∧ and ∨, and ∧ and
∨ bind stronger than ⇒ and ⇔ . Quantifiers are given the smallest possible scope.

4 We use the notation f ¹D, where f is a function and D ⊆ dom(f), for the function
g with dom(g) = D such that for all d ∈ dom(g), g(d) = f(d).
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Table 4. Defining equations for apply operator

x •H ↑ = ↑

S •H S = S

D •H S = ↑

(xE aD y) •H S = x •H Oa(S) if Oa(S)(ma) = T

(xE aD y) •H S = y •H Oa(S) if Oa(S)(ma) = F

Table 5. Rule for divergence

∧

n≥0 πn(x) •H S = ↑ ⇒ x •H S = ↑

by thread p are processed by the Maurer machine H from initial state S. The
processing of a basic action a by H amounts to a state change according to the
operation associated with a by [[ ]]. In the resulting state, the reply produced by
H is contained in memory element associated with a by [[ ]]. If p is S, then there
will be no state change. If p is D, then the result is ↑.
Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine, and let (Oa,ma) = [[a]]

for all a ∈ A. Then the apply operator •H is defined by the equations given in
Table 4 and the rule given in Table 5. In these tables, a stands for an arbitrary
member of A and S stands for an arbitrary member of S.
Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine, let p ∈ Tfinrec(A), and

let S ∈ S. Then p converges from S on H if there exists an n ∈ N such that
πn(p) •H S 6= ↑. The rule from Table 5 can be read as follows: if x does not
converge from S on H, then x •H S equals ↑.
Below, we introduce a notion of computation in the current setting. First,

we introduce some auxiliary notions.
Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine, and let (Oa,ma) = [[a]]

for all a ∈ A. Then the step relation `H ⊆ (Tfinrec(A)× S)× (Tfinrec(A)× S)
is inductively defined as follows:

– if Oa(S)(ma) = T and p = p′ E aD p′′, then (p, S) `H (p
′, Oa(S));

– if Oa(S)(ma) = F and p = p′ E aD p′′, then (p, S) `H (p
′′, Oa(S)).

Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine. Then a full path in `H

is one of the following:

– a finite path 〈(p0, S0), . . . , (pn, Sn)〉 in `H such that there exists no
(pn+1, Sn+1) ∈ Tfinrec(A)× S with (pn, Sn) `H (pn+1, Sn+1);

– an infinite path 〈(p0, S0), (p1, S1), . . .〉 in `H .

Moreover, let p ∈ Tfinrec(A), and let S ∈ S. Then the full path of (p, S) on H is
the unique full path in `H from (p, S). If p converges from S on H, then the
full path of (p, S) on H is called the computation of (p, S) on H and we write
||(p, S)||H for the length of the computation of (p, S) on H.
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It is easy to see that (p0, S0) `H (p1, S1) only if p0 •H S0 = p1 •H S1 and
that 〈(p0, S0), . . . , (pn, Sn)〉 is the computation of (p0, S0) on H only if pn = S

and Sn = p0 •H S0. It is also easy to see that, if p0 converges from S0 on H,
||(p0, S0)||H is the least n ∈ N such that πn(p0) •H S0 6= ↑.

5 Instruction Set Architectures

In this section, we introduce the concept of a strict load/store Maurer instruction
set architecture. This concept, which was first introduced in [5], takes its name
from the following: it is described in the setting of Maurer machines, it concerns
only load/store architectures, and the load/store architectures concerned are
strict in some respects that will be explained after its formalization.
The concept of a strict load/store Maurer instruction set architecture, or

shortly a strict load/store Maurer ISA, is an approximation of the concept of
a load/store instruction set architecture. It is focussed on instructions for data
manipulation and data transfer. Instructions for transfer of program control are
considered to be treated in a uniform way over different strict load/store Maurer
ISAs.
Each Maurer machine has a number of basic actions with which an operation

is associated. Henceforth, when speaking about Maurer machines that are strict
load/store Maurer ISAs, such basic actions are loosely called basic instructions.
The term basic action is uncommon where we are concerned with ISAs.
The idea underlying the concept of a strict load/store Maurer ISA is that

there is a main memory of which the elements contain data, an operating unit
with a small internal memory by which data can be manipulated, and an inter-
face between the main memory and the operating unit for data transfer between
them. For the sake of simplicity, data is restricted to the natural numbers be-
tween 0 and some upper bound. Other types of data that could be supported
can always be represented by the natural numbers provided. Moreover, the data
manipulation instructions offered by a strict load/store Maurer ISA are not
restricted and may include ones that are tailored to manipulation of representa-
tions of other types of data. Therefore, we believe that nothing essential is lost
by the restriction to natural numbers.
The concept of a strict load/store Maurer ISA is parametrized by:

– an address width aw ;
– a word length wl ;
– an operating unit size ous;
– a number nrpl of pairs of address and data registers for load instructions;
– a number nrps of pairs of address and data registers for store instructions;
– a set Adm of basic instructions for data manipulation;

where aw , ous ≥ 0, wl ,nrpl ,nrps > 0 and Adm ⊆ A.
The address width aw can be regarded as the number of bits used for the

binary representation of addresses of data memory elements. The word length
wl can be regarded as the number of bits used to represent data in data memory
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elements. The operating unit size ous can be regarded as the number of bits that
the internal memory of the operating unit contains.
It is assumed that, for each n ∈ N, a fixed but arbitrary countably infinite

set Mn
data and a fixed but arbitrary bijection mn

data : N → Mn
data have been given.

The members of Mn
data are called data memory elements. The contents of data

memory elements are taken as data. The data memory elements from Mn
data can

contain natural numbers in the interval [0, 2n − 1].
It is assumed that a fixed but arbitrary countably infinite set Mou and a fixed

but arbitrary bijection mou :N → Mou have been given. The members of Mou are
called operating unit memory elements. They can contain natural numbers in the
set {0, 1}, i.e. bits. Usually, a part of the operating unit memory is partitioned
into groups to which data manipulation instructions can refer.
It is assumed that, for each n ∈ N, fixed but arbitrary countably infinite

sets Mn
ld, Mn

sd, Mn
la and Mn

sa and fixed but arbitrary bijections mn
ld : N → Mn

ld,
mn
sd : N → Mn

sd, m
n
la : N → Mn

la and mn
sa : N → Mn

sa have been given. The members
of Mn

ld, M
n
sd, M

n
la and Mn

sa are called load data registers, store data registers, load
address registers and store address registers, respectively. The contents of load
data registers and store data registers are taken as data, whereas the contents
of load address registers and store address registers are taken as addresses. The
load data registers from Mn

ld, the store data registers from Mn
sd, the load address

registers from Mn
la and the store address registers from Mn

sa can contain natural
numbers in the interval [0, 2n−1]. The load and store registers are special memory
elements designated for transferring data between the data memory and the
operating unit memory.
It is assumed that, for each n, n′ ∈ N, Mn

data, Mou, Mn
ld, Mn

sd, Mn′

la , Mn′

sa and
{rr} are pairwise disjoint sets.
If M ⊆ Mn

data and mn
data(i) ∈M , then we write M [i] for mn

data(i). If M ⊆ Mn
ld

and mn
ld(i) ∈ M , then we write M [i] for mn

ld(i). If M ⊆ Mn
sd and mn

sd(i) ∈ M ,
then we write M [i] for mn

sd(i). If M ⊆ Mn
la and mn

la(i) ∈ M , then we write M [i]
for mn

la(i). If M ⊆ Mn
sa and mn

sa(i) ∈M , then we write M [i] for mn
sa(i).

Let aw , ous ≥ 0, wl ,nrpl ,nrps > 0 and Adm ⊆ A. Then a strict load/store
Maurer instruction set architecture with parameters aw , wl , ous, nrpl , nrps and
Adm is a Maurer machine H = (M,B,S,O, A, [[ ]]) with

M = Mdata ∪Mou ∪Mld ∪Msd ∪Mla ∪Msa ∪ {rr} ,

B = [0, 2wl − 1] ∪ [0, 2aw − 1] ∪ B ,

S = {S :M → B |

∀m ∈ Mdata ∪Mld ∪Msd • S(m) ∈ [0, 2wl − 1] ∧

∀m ∈ Mla ∪Msa • S(m) ∈ [0, 2aw − 1] ∧

∀m ∈ Mou • S(m) ∈ {0, 1} ∧ S(rr) ∈ B} ,

O = {Oa | a ∈ A} ,

A = {load:n | n ∈ [0,nrpl − 1]} ∪ {store:n | n ∈ [0,nrps − 1]} ∪Adm ,

[[a]] = (Oa, rr) for all a ∈ A ,

9



where

Mdata = {m
wl
data(i) | i ∈ [0, 2

aw − 1]} ,

Mou = {mou(i) | i ∈ [0, ous − 1]} ,

Mld = {mwl
ld (i) | i ∈ [0,nrpl − 1]} ,

Msd = {mwl
sd (i) | i ∈ [0,nrps − 1]} ,

Mla = {maw
la (i) | i ∈ [0,nrpl − 1]} ,

Msa = {maw
sa (i) | i ∈ [0,nrps − 1]} ,

and, for all n ∈ [0,nrpl −1], Oload:n is the unique function from S to S such that
for all S ∈ S:

Oload:n(S) ¹ (M \ {Mld [n], rr}) = S ¹ (M \ {Mld [n], rr}) ,

Oload:n(S)(Mld [n]) = S(Mdata [S(Mla [n])]) ,

Oload:n(S)(rr) = T ,

and, for all n ∈ [0,nrps − 1], Ostore:n is the unique function from S to S such
that for all S ∈ S:

Ostore:n(S) ¹ (M \ {Mdata [S(Msa [n])], rr}) =

S ¹ (M \ {Mdata [S(Msa [n])], rr}) ,

Ostore:n(S)(Mdata [S(Msa [n])]) = S(Msd [n]) ,

Ostore:n(S)(rr) = T ,

and, for all a ∈ Adm , Oa is a function from S to S such that:

IR(Oa) ⊆ Mou ∪Mld ,

OR(Oa) ⊆ Mou ∪Msd ∪Mla ∪Msa ∪ {rr} .

We will write MISAsls(aw ,wl , ous,nrpl ,nrps,Adm) for the set of all strict
load/store Maurer ISAs with parameters aw , wl , ous, nrpl , nrps and Adm .
In our opinion, load/store architectures give rise to a relatively simple inter-

face between the data memory and the operating unit.
A strict load/store Maurer ISA is strict in the following respects:

– with data transfer between the data memory and the operating unit, a strict
separation is made between memory elements used for loading data, loading
addresses, storing data, and storing addresses;

– from these memory elements, only the memory elements used for loading
data are allowed in the input regions of data manipulation operations;

– a data memory of which the size is less than the number of addresses deter-
mined by the address width is not allowed.
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The first two ways in which a strict load/store Maurer ISA is strict concern
the interface between the data memory and the operating unit. We believe that
they yield the most conveniently arranged interface for theoretical work relevant
to the design of instruction set architectures. The third way in which a strict
load/store Maurer ISA is strict saves the need to deal with addresses that do not
address a memory element. Such addresses can be dealt with in many different
ways, each of which complicates the architecture considerably. We consider their
exclusion desirable in much theoretical work relevant to the design of instruction
set architectures.
A strict separation between memory elements used for loading data, loading

addresses, storing data, and storing addresses is also made in Cray and Thorn-
ton’s design of the CDC 6600 computer [13], which is arguably the first imple-
mented load/store architecture. However, in their design, the memory elements
used for storing data are also allowed in the input regions of data manipulation
operations.

6 Reducing the Operating Unit Size

In a strict load/store Maurer ISA, data manipulation takes place in the operating
unit. This raises questions concerning the consequences of changing the operating
unit size. One of the questions is whether, if the operating unit size is reduced
by one, it is possible with new instructions for data manipulation to transform
each thread that can be applied to the original ISA into one or more threads
that can each be applied to the ISA with the reduced operating unit size and
together yield the same state changes on the data memory. This question can
be answered in the affirmative.

Theorem 1. Let aw ≥ 0, wl , ous,nrpl ,nrps > 0 and Adm ⊆ A, let H =
(M,B,S,O, A, [[ ]]) ∈ MISAsls(aw ,wl , ous ,nrpl ,nrps,Adm), and let Mdata =
{mwl

data(i) | i ∈ [0, 2
aw −1]} and bc = mou(ous−1). Then there exist an A′dm ⊆ A

and an H ′ = (M ′, B,S ′,O′, A′, [[ ]]
′
) ∈MISAsls(aw ,wl , ous−1,nrpl ,nrps ,A

′
dm)

such that for all p ∈ Tfinrec(A) there exist p
′
0, p

′
1 ∈ Tfinrec(A

′) such that

{(S ¹Mdata , (p •H S) ¹Mdata) | S ∈ S ∧ S(bc) = 0}

= {(S′ ¹Mdata , (p
′
0 •H′ S′) ¹Mdata) | S

′ ∈ S ′}

and

{(S ¹Mdata , (p •H S) ¹Mdata) | S ∈ S ∧ S(bc) = 1}

= {(S′ ¹Mdata , (p
′
1 •H′ S′) ¹Mdata) | S

′ ∈ S ′} .

In the proof of Theorem 1 given below, we take A′dm such that, for each in-
struction a in Adm , there are four instructions a(0), a(1), a(0) and a(1) in A

′
dm .

Oa(0) and Oa(1) affect the memory elements of H
′ like Oa would affect them if

the content of the missing operating unit memory element would be 0 and 1, re-
spectively. The effect that Oa would have on the missing operating unit memory
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element is made available by Oa(0) and Oa(1), respectively. They do nothing but
replying F if the content of the missing operating unit memory element would
become 0 and T if the content of the missing operating unit memory element
would become 1.

Proof (of Theorem 1). Instead of the result to be proved, we prove that there
exist an A′dm ⊆ A and an H ′ = (M ′, B,S ′,O′, A′, [[ ]]

′
) ∈ MISAsls(aw ,wl ,

ous − 1,nrpl ,nrps,A′dm) such that for all p ∈ Tfinrec(A) there exist p
′
0, p

′
1 ∈

Tfinrec(A
′) such that

{(S ¹ (M ′ \ {rr}), (p •H S) ¹ (M ′ \ {rr})) | S ∈ S ∧ S(bc) = 0}

= {(S′ ¹ (M ′ \ {rr}), (p′0 •H′ S′) ¹ (M ′ \ {rr})) | S′ ∈ S ′}

and

{(S ¹ (M ′ \ {rr}), (p •H S) ¹ (M ′ \ {rr})) | S ∈ S ∧ S(bc) = 1}

= {(S′ ¹ (M ′ \ {rr}), (p′1 •H′ S′) ¹ (M ′ \ {rr})) | S′ ∈ S ′} .

This is sufficient because Mdata ⊆M ′ \ {rr}.
We take A′dm = {a(k), a(k) | a ∈ Adm ∧ k ∈ {0, 1}}, and we take H ′ =

(M ′, B,S ′,O′, A′, [[ ]]
′
) such that, for each a ∈ Adm and k ∈ {0, 1}, Oa(k) and

Oa(k) are the unique functions from S
′ to S ′ such that for all S′ ∈ S ′:

Oa(k)(S
′) = Oa(ρk(S

′)) ¹M ′ ,

Oa(k)(S
′) ¹ (M ′ \ {rr}) = S′ ¹ (M ′ \ {rr}) ,

Oa(k)(S
′)(rr) = γ(Oa(ρk(S

′))(bc)) ,

where, for each k ∈ {0, 1}, ρk is the unique function from S
′ to S such that

ρk(S
′) ¹M ′ = S′ ,

ρk(S
′)(bc) = k

and γ : {0, 1} → B is defined by

γ(0) = F ,

γ(1) = T .

We restrict ourselves to p ∈ {〈X|E〉 | E ∈ E linfin(A) ∧ X ∈ V (E)}, because
each term from Tfinrec(A) can be proved equal to some constant from this set by
means of the axioms of BTA+REC.
We define transformation functions φk :{〈X|E〉 | E ∈ E

lin
fin(A)∧X ∈ V (E)} →

{〈X|E〉 | E ∈ E linfin(A
′) ∧X ∈ V (E)}, for k ∈ {0, 1}, as follows:

φk(〈X|E〉) = 〈Xk|φ
′
k(E)〉 ,

12



where φ′k : E
lin
fin(A)→ E linfin(A

′), for k ∈ {0, 1} is defined as follows:

φ′k({X = S}) = {Xk = S} ,

φ′k({X = D}) = {Xk = D} ,

φ′k({X = Y E aD Z}) = {Xk = Yk E aD Zk} if a 6∈ Adm ,

φ′k({X = Y E aD Z}) = {Xk = X ′k E a(k)DX ′′k ,

X ′k = Y1 E a(k)D Z1,

X ′′k = Y0 E a(k)D Z0} if a ∈ Adm ,

φ′k(E
′ ∪ E′′) = φ′k(E

′) ∪ φ′k(E
′′) .

Here, for each variable X, the new variables X0, X
′
0, X

′′
0 , X1, X

′
1 and X

′′
1 are

taken such that: (i) they are pairwise different variables; (ii) for each variable
Y different from X, {X0, X

′
0, X

′′
0 , X1, X

′
1, X

′′
1 } and {Y0, Y

′
0 , Y

′′
0 , Y1, Y

′
1 , Y

′′
1 } are

disjoint sets.
Let p ∈ {〈X|E〉 | E ∈ E linfin(A) ∧X ∈ V (E)}, let S ∈ S and S′ ∈ S ′ be such

that S ¹M ′ = S′, let (pi, Si) be the (i+1)st element in the full path of (p, S) on
H, and let (p′i, S

′
i) be the (i+ 1)st element in the full path of (φS(bc)(p), S

′) on
H ′ of which the first component does not equal pE a(k)D q for any p, q ∈ Tfinrec,
a ∈ Adm and k ∈ {0, 1}. Moreover, let ai be the unique a ∈ A such that
pi = pE aD q for some p, q ∈ Tfinrec. Then, it is easy to prove by induction on i
that if ai ∈ Adm :

Oai
(Si)(bc) = γ−1(Oai(Si(bc))(S

′
i)(rr)) , (1)

Oai
(Si)(rr) = Oai(Si(bc))(Oai(Si(bc))(S

′
i))(rr) (2)

(if i+ 1 < ||(p, S)||H in case p converges from S on H). Now, using (1) and (2),
it is easy to prove by induction on i that:

φSi(bc)(pi) = p′i ,

Si ¹ (M \ {rr}) = ρSi(bc)(S
′
i) ¹ (M \ {rr})

(if i < ||(p, S)||H in case p converges from S on H). From this, the result follows
immediately. ut

The proof of Theorem 1 gives us some upper bounds:

– for each thread that can be applied to the original ISA, the number of threads
that can together produce the same state changes on the data memory of
the ISA with the reduced operating unit does not have to be more than 2;

– the number of states of the new threads does not have to be more than 6
times the number of states of the original thread;

– the number of steps that the new threads take to produce some state change
does not have to be more than 2 times the number of steps that the original
thread takes to produce that state change;

– the number of instructions of the ISA with the reduced operating unit does
not have to be more than 4 times the number of instructions of the original
ISA.
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Moreover, the proof indicates that more efficient new threads are possible: equa-
tions X = Y E aD Z with a ∈ Adm can be treated as if a 6∈ Adm in the case
where the missing operating unit memory element is not in IR(Oa).
As a corollary of the proof of Theorem 1, we have that only one transformed

thread is needed if the input region of the operation associated with the first
instruction performed by the original thread does not include the operating unit
memory element that is missing in the ISA with the reduced operating unit size.

Corollary 1. Let aw ≥ 0, wl , ous,nrpl ,nrps > 0 and Adm ⊆ A, let H =
(M,B,S,O, A, [[ ]]) ∈ MISAsls(aw ,wl , ous ,nrpl ,nrps,Adm), and let Mdata =
{mwl

data(i) | i ∈ [0, 2
aw−1]} and bc = mou(ous−1). Moreover, let T ′ = {qE aDr |

q, r ∈ Tfinrec(A) ∧ a ∈ A ∧ bc ∈ IR(Oa)}. Then there exist an A′dm ⊆ A and an
H ′ = (M ′, B,S ′,O′, A′, [[ ]]

′
) ∈ MISAsls(aw ,wl , ous − 1,nrpl ,nrps,A

′
dm) such

that for all p ∈ Tfinrec(A) \ T
′ there exists a p′ ∈ Tfinrec(A

′) such that

{(S ¹Mdata , (p •H S) ¹Mdata) | S ∈ S}

= {(S′ ¹Mdata , (p
′ •H′ S′) ¹Mdata) | S

′ ∈ S ′} .

As another corollary of the proof of Theorem 1, we have that if the operating
unit size is reduced to zero, it is still possible to transform each thread that can
be applied to the original ISA into a number of threads that can each be applied
to the ISA of which the operating unit size is reduced to zero and together yield
the same state changes on the data memory.

Corollary 2. Let aw ≥ 0, wl , ous,nrpl ,nrps > 0 and Adm ⊆ A, let H =
(M,B,S,O, A, [[ ]]) ∈ MISAsls(aw ,wl , ous ,nrpl ,nrps,Adm), and let Mdata =
{mwl

data(i) | i ∈ [0, 2
aw−1]} and Mou = {mou(i) | i ∈ [0, ous−1]}. Then there exist

an A′dm ⊆ A and an H ′ = (M ′, B,S ′,O′, A′, [[ ]]
′
) ∈ MISAsls(aw ,wl , 0,nrpl ,

nrps,A′dm) such that for all p ∈ Tfinrec(A) and Sou ∈ {S ¹ Mou | S ∈ S} there
exists a p′ ∈ Tfinrec(A

′) such that

{(S ¹Mdata , (p •H S) ¹Mdata) | S ∈ S ∧ S ¹Mou = Sou}

= {(S′ ¹Mdata , (p
′ •H′ S′) ¹Mdata) | S

′ ∈ S ′} .

The cardinality of {S ¹Mou | S ∈ S} is 2
ous . Therefore, for each thread that can

be applied to the original ISA, the number of threads that can together produce
the same state changes on the data memory of the ISA of which the operating
unit size is reduced to zero does not have to be more than 2ous . Corollary 2 does
not go through if the number of states of the new threads is bounded.

7 Thread Powered Function Classes

A simple calculation shows that, for a strict load/store Maurer ISA with address
width aw and word length wl , the number of possible transformations on the

states of the data memory is 2(2
(2aw ·wl+aw)·wl). This raises questions concerning

the possibility to achieve all these state transformation by applying a thread to
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a strict load/store Maurer ISA with this address width and word length. One
of the questions is how this possibility depends on the operating unit size of
the ISAs, the size of the instruction set of the ISAs, and the maximal number
of states of the threads. This brings us to introduce the concept of a thread
powered function class.
The concept of a thread powered function class is parametrized by:

– an address width aw ;
– a word length wl ;
– an operating unit size ous;
– an instruction set size iss;
– a state space bound ssb;
– a working area flag waf ;

where aw , ous ≥ 0, wl , iss, ssb > 0 and waf ∈ B.
The instruction set size iss is the number of basic instructions, excluding load

and store instructions. To simplify the setting, we consider only the case where
there is one load instruction and one store instruction. The state space bound
ssb is a bound on the number of states of the threads that can be applied. The
working area flag waf indicates whether a part of the data memory is taken as
a working area. A part of the data memory is taken as a working area if we are
not interested in the state transformations with respect to that part. To simplify
the setting, we always set aside half of the data memory for working area if a
working area is in order.
Intuitively, the thread powered function class with parameters aw , wl , ous,

iss, ssb and waf are the transformations on the states of the data memory or
the first half of the data memory, depending on waf , that can be achieved by
applying threads with not more than ssb states to a strict load/store Maurer ISA
of which the address width is aw , the word length is wl , the operating unit size is
ous, the number of register pairs for load instructions is 1, the number of register
pairs for store instructions is 1, and the cardinality of the set of instructions for
data manipulation is iss. Henceforth, we will use the term external memory for
the data memory if waf = F and for the first half of the data memory if waf = T.
Moreover, if waf = T, we will use the term internal memory for the second half
of the data memory.
For aw ≥ 0 and wl > 0, we define M

aw ,wl
data , Bwl

data, and S
aw ,wl
data as follows:

M
aw ,wl
data = {mwl

data(i) | i ∈ [0, 2
aw − 1]} ,

Bwl
data = [0, 2wl − 1] ,

S
aw ,wl
data = {S | S :Maw ,wl

data → Bwl
data} ,

T
aw ,wl
data = {T | T : Saw ,wl

data → S
aw ,wl
data } .

Let aw , ous ≥ 0 and wl ,nrpl ,nrps > 0. Then, for all H = (M,B,S,O, A, [[ ]]) ∈
⋃

Adm⊆A
MISAsls(aw ,wl , ous,nrpl ,nrps ,Adm), we have M

aw ,wl
data ⊆M , Baw ,wl

data ⊆

B, and S
aw ,wl
data = {S ¹ M

aw ,wl
data | S ∈ S}.
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Let aw , ous ≥ 0 and wl , iss , ssb > 0, and let waf ∈ B be such that waf = F

if aw = 0. Then the thread powered function class with parameters aw , wl , ous,
iss, ssb and waf , written T PFC(aw ,wl , ous, iss, ssb,waf ), is the subset of Taw ,wl

data

that is defined as follows:

T ∈ T PFC(aw ,wl , ous, iss , ssb,waf )

⇔ ∃Adm ⊆ A •

∃H ∈MISAsls(aw ,wl , ous, 1, 1,Adm) •

∃p ∈ Tfinrec(AH) •
(

card(Adm) = iss ∧ card(Res(p)) ≤ ssb ∧

∀S ∈ SH •

((

waf = F ⇒ T (S ¹ M
aw ,wl
data ) = (p •H S) ¹ M

aw ,wl
data

)

∧
(

waf = T ⇒

T (S ¹ M
aw ,wl
data ) ¹ M

aw−1,wl
data = (p •H S) ¹ M

aw−1,wl
data

)))

.

We say that T PFC(aw ,wl , ous, iss , ssb,waf ) is complete if T PFC(aw ,wl , ous ,

iss, ssb,waf ) = T
aw ,wl
data .

The following theorem states that T PFC(aw ,wl , ous , iss, ssb,waf ) is com-
plete if ous = 2aw · wl + aw + 1, iss = 5 and ssb = 8. Because 2aw · wl is the
data memory size, i.e. the number of bits that the data memory contains, this
means that completeness can be obtained with 5 data manipulation instructions
and threads of which the number of states is less than or equal to 8 by taking
the operating unit size slightly greater than the data memory size.

Theorem 2. Let aw ≥ 0, wl > 0 and waf ∈ B, and let dms = 2aw · wl. Then
T PFC(aw ,wl , dms + aw + 1, 5, 8,waf ) is complete.

The idea behind the proof of Theorem 2 given below is that first the content
of the whole data memory is copied data memory element by data memory
element via the load data register to the operating unit, after that the intended
state transformation is applied to the copy in the operating unit, and finally
the result is copied back data memory element by data memory element via
the store data register to the data memory. The data manipulation instructions
used to accomplish this are an initialization instruction, a pre-load instruction, a
post-load instruction, a pre-store instruction, and a transformation instruction.
The pre-load instruction is used to update the load address register before a data
memory element is loaded, the post-load instruction is used to store the content
of the load data register to the operating unit after a data memory element has
been loaded, and the pre-store instruction is used to update the store address
register and to load the content of the store data register from the operating unit
before a data memory element is stored. The transformation instruction is used
to apply the intended state transformation to the copy in the operating unit.
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Proof (of Theorem 2). For convenience, we define

Mdata = {mwl
data(i) | i ∈ [0, 2

aw − 1]} ,

Mou = {mou(j) | j ∈ [0, dms + aw ]} ,

M d
ou = {mou(j) | j ∈ [0, dms − 1]} ,

M a
ou = {mou(j) | j ∈ [dms, dms+ aw ]} ,

M d
ou〈i〉 = {mou(j) | j ∈ [i · wl , (i+ 1) · wl − 1]} , for i ∈ [0, 2

aw − 1] ,

ldr = mwl
ld (0) ,

sdr = mwl
sd (0) ,

lar = maw
la (0) ,

sar = maw
sa (0) .

We have that M d
ou =

⋃

i∈[0,2aw−1] M
d
ou〈i〉 and Mou = M d

ou ∪M
a
ou .

We have to deal with the binary representations of natural numbers in the
operating unit. The set of possible binary representations of natural numbers in
the operating unit is

R =
⋃

n∈[0,dms+aw ],m∈[n,dms+aw ]{R | R : {mou(i) | i ∈ [n,m]} → {0, 1}} .

For each R ∈ R, the natural number of which R is a binary representation is
given by the function ν :R → N that is defined as follows:

ν(R) =
∑

i s.t. mou(i)∈dom(R) R(mou(i)) · 2
i−min{j|mou(j)∈dom(R)} .

To prove the theorem, we take a fixed but arbitrary T ∈ T
aw ,wl
data and show

that T ∈ T PFC(aw ,wl , dms + aw + 1, 5, 8,waf ).
We take Adm = {init, preload, postload, prestore, transform}, and we take H =

(M,B,S,O, A, [[ ]]) ∈MISAsls(aw ,wl , dms + aw + 1, 1, 1,Adm) such that Oinit,
Opreload, Opostload, Oprestore, and Otransform are the unique functions from S to S
such that for all S ∈ S:

Oinit(S) ¹ (M \ (M a
ou ∪ {rr})) = S ¹ (M \ (M a

ou ∪ {rr})) ,

ν(Oinit(S) ¹M
a
ou) = 0 ,

Oinit(S)(rr) = T ,

Opreload(S) ¹ (M \ (M a
ou ∪ {lar} ∪ {rr}))

= S ¹ (M \ (M a
ou ∪ {lar} ∪ {rr})) ,

ν(Opreload(S) ¹M
a
ou) = ν(S ¹M a

ou) + 1 if ν(S ¹M a
ou) < 2

aw ,

Opreload(S) ¹M
a
ou = S ¹M a

ou if ν(S ¹M a
ou) ≥ 2

aw ,

Opreload(S)(lar) = ν(S ¹M a
ou) if ν(S ¹M a

ou) < 2
aw ,

Opreload(S)(lar) = S(lar) if ν(S ¹M a
ou) ≥ 2

aw ,

Opreload(S)(rr) = T if ν(S ¹M a
ou) < 2

aw ,

Opreload(S)(rr) = F if ν(S ¹M a
ou) ≥ 2

aw ,
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Opostload(S) ¹ (M \ (M d
ou〈ν(S ¹M a

ou)〉 ∪ {rr}))

= S ¹ (M \ (M d
ou〈ν(S ¹M a

ou)〉 ∪ {rr})) ,

ν(Opostload(S) ¹M
d
ou〈ν(S ¹M a

ou)〉) = S(ldr) ,

Opostload(S)(rr) = T ,

Oprestore(S) ¹ (M \ (M a
ou ∪ {sar, sdr} ∪ {rr}))

= S ¹ (M \ (M a
ou ∪ {sar, sdr} ∪ {rr})) ,

ν(Oprestore(S) ¹M
a
ou) = ν(S ¹M a

ou) + 1 if ν(S ¹M a
ou) < 2

aw ,

Oprestore(S) ¹M
a
ou = S ¹M a

ou if ν(S ¹M a
ou) ≥ 2

aw ,

Oprestore(S)(sar) = ν(S ¹M a
ou) if ν(S ¹M a

ou) < 2
aw ,

Oprestore(S)(sar) = S(sar) if ν(S ¹M a
ou) ≥ 2

aw ,

Oprestore(S)(sdr) = ν(S ¹M d
ou〈ν(S ¹M a

ou)〉) if ν(S ¹M a
ou) < 2

aw ,

Oprestore(S)(sdr) = S(sdr) if ν(S ¹M a
ou) ≥ 2

aw ,

Oprestore(S)(rr) = T if ν(S ¹M a
ou) < 2

aw ,

Oprestore(S)(rr) = F if ν(S ¹M a
ou) ≥ 2

aw ,

Otransform(S) ¹ (M \ (Mou ∪ {rr})) = S ¹ (M \ (Mou ∪ {rr})) ,

Otransform(S) ¹M
d
ou = T ′(S ¹M d

ou) ,

ν(Otransform(S) ¹M
a
ou) = 0 ,

Otransform(S)(rr) = T ,

where T ′ is the unique function from {S ¹M d
ou | S ∈ S} to {S ¹M d

ou | S ∈ S} such
that, for all Sd

ou ∈ {S ¹M d
ou | S ∈ S}, there exists an Sdata ∈ {S ¹Mdata | S ∈ S}

such that:

∀i ∈ [0, 2aw − 1] •

(ν(Sd
ou ¹M d

ou〈i〉) = Sdata(Mdata [i]) ∧

ν(T ′(Sd
ou) ¹M

d
ou〈i〉) = T (Sdata)(Mdata [i])) .

Moreover, we take p ∈ Tfinrec(A) such that p = 〈X|E〉 with E consisting of
the following equations:

X = init ◦ Y ,

Y = (load:0 ◦ postload ◦ Y )E preloadD (transform ◦ Z) ,

Z = (store:0 ◦ Z)E prestoreD S .

Let S ∈ S and let (pi, Si) be the (i+1)st element in the full path of (〈X|E〉, S)
on H of which the first component equals 〈X|E〉, 〈Y |E〉, 〈Z|E〉 or S. Then it is
easy to prove by induction on i that
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i = 1 ⇒ pi = 〈Y |E〉 ∧ ν(Si ¹M
a
ou) = 0 ,

i ∈ [2, 2aw + 2] ⇒

pi = 〈Y |E〉 ∧

∀j ∈ [0, i− 2] • ν(Si ¹M
d
ou〈j〉) = S(Mdata [j]) ∧

ν(Si ¹M
a
ou) = i− 1 ,

i = 2aw + 3 ⇒

pi = 〈Z|E〉 ∧

∀j ∈ [0, 2aw − 1] • ν(Si ¹M
d
ou〈j〉) = T (S ¹Mdata)(Mdata [j]) ∧

ν(Si ¹M
a
ou) = 0 ,

i ∈ [2aw + 4, 2aw+1 + 4] ⇒

pi = 〈Z|E〉 ∧

∀j ∈ [0, i− (2aw + 4)] • Si(Mdata [j]) = T (S ¹Mdata)(Mdata [j]) ∧

ν(Si ¹M
a
ou) = i− (2aw + 3) ,

i = 2aw+1 + 5 ⇒ pi = S ∧ Si ¹Mdata = T (S ¹Mdata) .

Hence, (〈X|E〉 •H S) ¹ Mdata = T (S ¹ Mdata). That is, T can be achieved by
applying 〈X|E〉 to H. ut

As a corollary of the proof of Theorem 2, we have that in the case where
waf = T completeness can also be obtained if we take about half the external
memory size as the operating unit size.

Corollary 3. Let aw > 0 and wl > 0, and let ems = 2aw−1 · wl. Then
T PFC(aw ,wl , ems + aw , 5, 8,T) is complete.

As a corollary of the proofs of Theorems 1 and 2, we have that completeness
can even be obtained if we take zero as the operating unit size. However, this
may require quite a large number of data manipulation instructions and threads
with quite a large number of states.

Corollary 4. Let aw ≥ 0 and wl > 0, let waf ∈ B be such that waf = F if aw =
0, and let dms = 2aw ·wl. Then T PFC(aw ,wl , 0, 5·4dms+aw+1, 8·6dms+aw+1,waf )
is complete.

8 On Incomplete Thread Powered Function Classes

From Corollary 4, we know that it is possible to achieve all transformations on
the states of the external memory of a strict load/store Maurer ISA with given
address width and word length even if the operating unit size is zero. However,
this may require quite a large number of data manipulation instructions and
threads with quite a large number of states. This raises the question whether
the operating unit size of the ISAs, the size of the instructions set of the ISAs
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and the maximal number of states of the threads can be taken such that it is
impossible to achieve all transformations on the states of the external memory.
Below, we will give a theorem concerning this question, but first we give a

lemma that will be used in the proof of that theorem.

Lemma 1. Let aw > 1 and wl , ous, iss , ssb > 0, and let ems = 2aw−1 · wl.
Then T PFC(aw ,wl , ous, iss , ssb,T) is not complete if ous ≤ ems/2 and iss ≤
2ems/2 and there are no more than 2ems threads that can be applied to the mem-
bers of

⋃

Adm⊆A
MISAsls(aw ,wl , ous, 1, 1,Adm).

Proof. We have that, if the operating unit size is no more than ems/2, no more
than

(2ems/2)
(2ems/2)

transformations on the states of the operating unit can be associated with one
data manipulation instruction. It follows that, if there are no more than 2ems/2

data manipulation instructions, no more than

(

(2ems/2)
(2ems/2)

)(2ems/2)

transformations on the states of the external memory can be achieved with one
thread. Hence, if no more than 2ems threads can be applied, no more than

(

(2ems/2)
(2ems/2)

)(2ems/2)

· 2ems

transformations on the states of the external memory can be achieved. Using
elementary arithmetic, we easily establish that

(

(2ems/2)
(2ems/2)

)(2ems/2)

· 2ems < (2ems)
(2ems)

.

It follows that T PFC(aw ,wl , ous, iss , ssb,T) is not complete because (2ems)
(2ems)

is the number of transformations that are possible on the states of the external
memory. ut

In Lemma 1, the bound on the number of threads that can be applied does
not appear out of the blue. It is the number of threads that can at most be
represented in the internal memory: with the most efficient representations we
cannot have more than one thread per state of the internal memory.
The following theorem states that T PFC(aw ,wl , ous, iss , ssb,T) is not com-

plete if the operating unit size is not greater than half the external memory size,
the instruction set size is not greater than 2wl − 4, and the maximal number of
states of the threads is not greater than 2aw−2. Notice that 2wl is the number of
instructions that can be represented in memory elements with word length wl .

Theorem 3. Let aw ,wl > 1 and ous, iss, ssb > 0, and let ems = 2aw−1 · wl.
Then T PFC(aw ,wl , ous, iss , ssb,T) is not complete if ous ≤ ems/2 and iss ≤
2wl − 4 and ssb ≤ 2aw−2.
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Proof. A transformation on the states of the external memory cannot be achieved
by a thread with at most ssb states if it cannot be achieved by a thread with
exactly ssb states using one additional instruction. This is easy to see considering
that the identity transformation on the states of the entire memory can be
associated with the additional instruction. It follows that it is sufficient to show
that T PFC(aw ,wl , ous, iss + 1, ssb,T) is not complete if only the threads with
ssb states can be applied.
If there is one additional instruction, the number of threads with ssb states

is
(

(iss + 3) · ssb2 + 2
)ssb

(recall that there is also one load instruction and one store instruction). Because
ssb > 0,

(

(iss + 3) · ssb2 + 2
)ssb

<
(

(iss + 4) · ssb2
)ssb

.

Using elementary arithmetic, we easily establish that

(

(iss + 4) · ssb2
)ssb

< 2ems .

Consequently, the number of threads with ssb states is less than 2ems . From this,
and the facts that ous ≤ ems/2 and iss < 2ems/2, it follows by Lemma 1 that
T PFC(aw ,wl , ous, iss + 1, ssb,T) is not complete if only the threads with ssb
states can be applied. ut

9 Conclusions

In [4, 5], we have worked at a formal approach to micro-architecture design based
on Maurer machines and basic thread algebra. In those papers, we made hardly
any assumption about the instruction set architectures for which new micro-
architectures are designed, but we put forward strict load/store Maurer instruc-
tion set architectures as preferable instruction set architectures. In the current
paper, we have established general properties of strict load/store Maurer in-
struction set architectures. Some of these properties are presumably non-trivial
insights among practitioners involved in the design of instruction set architec-
tures. At the least, they clarify in some degree existing trends in the design of
load/store instruction set architectures, such as the ever increasing operating
unit size. We believe that the work presented in this paper may grow into a
theoretical basis for the design of instruction set architectures.
One of the options for future work is to improve upon the results given in

this paper. For example, we know from Theorem 2 that, in order to obtain
completeness with 5 data manipulation instructions and threads of which the
number of states is less than or equal to 8, it is sufficient to take the operating
unit size slightly greater than the data memory size. However, we do not yet know
what the smallest operating unit size is that will do. Another option for future
work is to establish results that bear upon the use of half the data memory
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as internal memory. No such results are given in this paper. In Lemma 1, it
is assumed that half the data memory is used as internal memory because it
provides a good case for the number taken as the maximal number of threads
that can be applied. However, Lemma 1, as well as Theorem 3, goes through
without internal memory.
The speed with which transformations on the states of the external mem-

ory are achieved depends largely upon the way in which the strict load/store
Maurer instruction set architecture in question is implemented. This hampers
establishing general results about it. However, the speed with which transfor-
mations on the states of the external memory are achieved depends also on the
volume of data transfer needed between the external memory and the operat-
ing unit. Establishing a connection between this volume and the parameters of
thread powered function classes is still another option for future work.
In this paper, we have taken the view that transformations on the states of

the external memory are achieved by applying threads. We could have taken the
less abstract view that transformations on the states of the external memory are
achieved by running stored programs. This would have led to needless compli-
cations: only the threads that are represented by those programs are relevant to
the transformations on the states of the external memory that are achieved.
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