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Abstract

We propose a process algebra which is concerned with processes that have an implicit
computational capital. This process algebra goes along with the development that
the behaviour of computer-based systems, persons and organizations is increasingly
more related to money handling. It is intended to be helpful when designing systems
of which the behaviour is related to money handling.
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1 Introduction

The objective of the work reported upon in this paper is to develop new
ways to use formal methods from computer science as tools for understanding
money handling in a computerized setting.

Money can take different forms in practice. However, there are indications
that money will become a computational phenomenon altogether: (i) the use
of cash money is declining whereas different forms of electronic money are in-
creasingly more used; (ii) in several domains, the use of cash money is already
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phased out in favour of forms of electronic money. An important consequence
of this development is the following: it will become a matter of computational
correctness that unwanted effects, such as creation of money from nowhere
and leakage of money, do not take place.

It is not an easy matter to determine what are the basics of money han-
dling. Money is what is considered and used as money by a group of people.
This implies that economics, sociology and ethnography are involved in de-
ciding what is money and what is not. For that reason, we do not aim at
covering all aspects of money handling.

We propose to use the term computational money for quantities that are
treated in a computerized setting as if they are money, ignoring the question
whether from the perspective of the philosophy of economics these quantities
represent money. On the one hand, thinking in terms of computational money
instead of ‘real money’ is a drastic simplification. On the other hand, it does
not preclude the possibility that computational money is at the same time
considered a form of real money.

In this paper, we take up the challenge to formalize an elementary the-
ory of computational money that is helpful when designing systems of which
the behaviour is related to money handling. Rather than developing a new
formalism from scratch, we will extend an existing formalism. We will add a
form of computational money to ACP [3,2] to obtain a process algebra which
is concerned with processes that have an implicit computational capital. This
process algebra, which is called ACPj.., goes along with the development that
the behaviour of computer-based systems, persons and organizations is in-
creasingly more related to money handling. We show how bisimulation models
of ACP can be expanded to models of ACP;..

We also extend ACPj.. with abstraction from internal actions. It happens
that restrictions must be imposed on the actions from which abstraction is
allowed in order to preclude unexpected effects of this kind of abstraction on
the implicit computational capital of processes. The approach to abstraction
from internal actions followed in this paper is based on the notion of branching
bisimulation [13].

Although a subtly different approach to abstraction from internal actions is
followed in CCS [9,10], the work presented in this paper can easily be adapted
to CCS.

It is imaginable that, when money has become a computational phe-
nomenon altogether, the very concept of money will be gradually superseded
by new concepts that are connected with the different ways in which money
handling is related to the behaviour of computer-based systems, persons and
organizations. Speculating about this is interesting, but beyond the scope of
computer science research.

The structure of this paper is as follows. First, we review ACP (Section 2)
and guarded recursion in the setting of ACP (Section 3). Next, we introduce a
simple theory about computational money values called CMV (Section 4) and
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extend ACP, using CMV, to a theory about processes that have an implicit
computational capital (Section 5). After that, we introduce some notions
concerning transition systems which will be used later on (Section 6). Then, we
show how bisimulation models of ACP can be expanded to models of ACP;..
(Section 7) and discuss the notion of preservation of computational money
(Section 8). Thereupon, we extend ACP;.. with abstraction from internal
actions (Section 9). Following this, we give examples of the use of ACPj..
(Section 10). Finally, we make some concluding remarks and mention some
options for future work (Section 11).

2 Algebra of Communicating Processes

In this section, we shortly review ACP (Algebra of Communicating Processes),
introduced in [3]. For a comprehensive overview of ACP, the reader is referred
to [2]. Although ACP is one-sorted, we make this sort explicit. The reason
for this is that we will extend ACP with a second sort in Section 5.

In ACP, it is assumed that a fixed but arbitrary finite set of actions A, with
d ¢ A has been given. We write As for AU {6}. It is further assumed that
a fixed but arbitrary commutative and associative communication function
| : As x A — A, such that 6 |a = 6 for all @ € As, has been given. The
function | is regarded to give the result of synchronously performing any two
actions for which this is possible, and to be § otherwise.

The algebraic theory ACP has one sort: the sort P of processes. The
algebraic theory ACP has the following constants and operators:

* the deadlock constant ¢ : P;

 for each a € A, the action constant a: P;

* the binary alternative composition operator +: P x P — P;
* the binary sequential composition operator - : P x P — P;

* the binary parallel composition operator ||: P x P — P;

* the binary left merge operator || : P x P — P;

* the binary communication merge operator |: P x P — P;

e for each H C A, the unary encapsulation operator 0y : P — P.

Terms of sorts P are built as usual for a one-sorted signature (see e.g. [14,11]).
Throughout the paper, we assume that there are infinitely many variables of
sort P, including z, v, 2.

We use infix notation for the binary operators. The following precedence
conventions are used to reduce the need for parentheses. The operator +
binds weaker than all other binary operators to build terms of sort P and the
operator - binds stronger than all other binary operators to build terms of
sort P.

Let p and ¢ be closed terms of sort P, a € A, and H C A. Intuitively, the
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Table 1
Axioms of ACP
r+y=y+zx Al zlly=z|ly+yllz+z|y CMI1
(z+y)+z=2+(y+2) A2 allr=a =z CM2
r+r==z A3 a-zlly=a-(z|y) CM3
(z+y)-z=xz-2+y-2 A4 (z+y)lz=z|z+y| 2z CM4
(z-y)-z=z-(y-2) A5 a-z|b=(al|b) -z CM5
r+d=zx A6 alb-z=1(a|b) = CM6
§-x=46 AT a-zfb-y=(alb)-(z]y) CMT

(x+y)|z=z]z+y|= CM8
z|ly+z)=z|ly+z|z CM9

Ou(a) =a ifag H D1

Ou(a) =46 ifae H D2 alb="bla C1
On(s +y) = 0n(@) +On(y) D3 (a|b)|c=a|(b] ) c2
Ou(z -y) = Ou(z) - Ou(y) D4 dla=4 C3

constants and operators to build terms of sort P can be explained as follows:

* ) can neither perform an action nor terminate successfully;

a first performs action a and then terminates successfully;

p + g behaves either as p or as ¢, but not both;

p - q first behaves as p, but when p terminates successfully it continues by
behaving as ¢;

p || ¢ behaves as the process that proceeds with p and ¢ in parallel;

p || ¢ behaves the same as p || ¢, except that it starts with performing an
action of p;

p | ¢ behaves the same as p || g, except that it starts with performing an
action of p and an action of ¢ synchronously;

On (p) behaves the same as p, except that actions from H are blocked.

We write ), ; pi, where Z = {i1,...,4,} and p;, ..., p;, are terms of sort
P, for p;, + ...+ pi,. The convention is that ), ; p; stands for § if Z = 0.
The axioms of ACP are the axioms given in Table 1. CM2-CM3, CM5—
CM7, C1-C3 and D1-D4 are actually axiom schemas in which a, b and ¢ stand
for arbitrary constants of sort P (keep in mind that also the deadlock constant
belongs to the constants of sort P) and H stands for an arbitrary subset of A.
For the main models of ACP, the reader is referred to [2].

3 Guarded Recursion

In this section, we shortly review guarded recursion in the setting of ACP.
Not all processes in a model of ACP have to be the interpretation of some
closed term of sort P. Those processes may be definable over ACP.

4
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Table 2
Axioms for recursion
(X|E)=(t{E) fX=tecE RDP
E = X =(X|E) if XeV(E) RSP

A process in some model of ACP is definable over ACP if there exists a
guarded recursive specification over ACP of which that process is the unique
solution.

A recursive specification over ACP is a set of equations F = {X = tx |
X € V} where V is a set of variables and each tx is a term of sort P from
the language of ACP that only contains variables from V. We write V(E)
for the set of all variables that occur on the left-hand side of an equation in
E. A solution of a recursive specification E is a set of processes (in some
model of ACP) {Px | X € V(E)} such that the equations of E hold if, for all
X € V(E), X stands for Py.

Let ¢ be a term of sort P from the language of ACP containing a variable
X. Then an occurrence of X in t is guarded if ¢ has a subterm of the form
a -t where a € A and t' is a term containing this occurrence of X. Let F be a
recursive specification over ACP. Then FE is a guarded recursive specification
if, in each equation X =1t € E all occurrences of variables in ¢ are guarded or
t can be rewritten to such a term using the axioms of ACP in either direction
and/or the equations in E except the equation X = ¢ from left to right. We
are only interested in models of ACP in which guarded recursive specifications
have unique solutions.

For each guarded recursive specification E' and each variable X € V(E),
we introduce a constant of sort P standing for the unique solution of E for
X. This constant is denoted by (X|E). We often write X for (X|FE) if E is
clear from the context. In such cases, it should also be clear from the context
that we use X as a constant.

The additional axioms for recursion are given in Table 2. In this table, we
write (t|E) for ¢ with, for all X € V(FE), all occurrences of X in ¢ replaced by
(X|E). Both RDP and RSP are axiom schemas. Side conditions are added
to restrict the variables, terms and guarded recursive specifications for which
X, t and F stand.

We will write ACP+REC for ACP extended with the constants standing
for the unique solutions of guarded recursive specifications and the axioms
RDP and RSP.

Each closed term of sort P from the language of ACP denotes a finite
process, i.e. a process of which the length of the sequences of actions that it
can perform is bounded. However, not each closed term over the signature of
ACP+REC denotes a finite process: recursion gives rise to infinite processes.
Closed terms over the signature of ACP+REC that denote the same infinite
process cannot always be proved equal by means of the axioms of ACP+REC.
To remedy this, we introduce the approximation induction principle.
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Table 3
Approximation induction principle

/\nzoﬂn(‘”) =mn(y) = x=y AIP

Table 4
Axioms for projection operators
mo(a) =6 PR1
Tnt1(a) = a PR2
mo(a-z) =46 PR3
Tnt1(a-z) = a-m,(x) PR4

mn(z +y) = m(z) + 7(y) PRS

The approximation induction principle, AIP in short, is based on the view
that two processes are identical if their approximations up to any finite depth
are identical. The approximation up to depth n of a process behaves the
same as that process, except that it cannot perform any further action after
n actions have been performed.

AIP is the infinitary conditional equation given in Table 3. Here, approx-
imation up to depth n is phrased in terms of a unary projection operator m,.
The axioms for the projection operators are given in Table 4. Axioms PR1-
PR5 are actually axiom schemas in which a stands for an arbitrary constants
of sort P and n stands for an arbitrary natural number.

Let T stand for either ACP or ACP+REC. Then we will write T4+PR for
T extended with the projections operators m, and the axioms PR1-PRb5.

AIP is consistent with ACP+PR and ACP4+REC+PR, but it does not
hold in all models for ACP and ACP+REC. RSP is derivable from the axioms
of ACP, RDP and AIP.

4 Computational Money Values

In this section, we present an algebraic theory about computational money
values. The presented theory is called CMV.

The algebraic theory CMV has one sort: the sort M of computational
money values. The algebraic theory CMV has the following constants and
operators:

* the constant 0: M;

* the constant 1: M;

* the binary addition operator + : M x M — M;

e the unary additive inverse operator — : M — M;

* the binary multiplication operator - : M x M — M,
e the binary mazimum operator max : M x M — M.

Terms of sort M are built as usual for a one-sorted signature. Throughout the
6
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Table 5
Axioms for computational money values
(i+j)+k=i+(G+k) CMV1
i+j=j+i CMV2
i+0=1 CMV3
1+ —1=0 CMV4
(t-5)-k=1i-(j-k) CMV5
ij=j-i CMV6
i-1=4 CMV7
i-(J+k)=i-j+i-k CMV8
max(,j) = max(j,1) CMV9
max(i + k,j + k) = max(i, j) + k CMV10

max(0,i2 + 72 + k2 +1?) =2+ 42+ k2 +12 CMV1l

paper, we assume that there are infinitely many variables of sort M, including
1,5, k, L.

As usual, we use prefix notation for the unary operator — and infix notation
for the binary operators + and .. The following additional precedence
convention is used to reduce the need for parentheses. The binary operator
+ binds weaker than all other operators to build terms of sort M and the
unary operator — binds stronger than all other operators to build terms of
sort M. We introduce the following abbreviation: m?, where m is term of sort
M, abbreviates m - m.

The constants and operators of CMV are adopted from integer arithmetic
and need no further explanation.

The axioms of CMV are the axioms given in Tables 5. Axioms CMV1-
CMVS8 are the axioms of a commutative ring with unit. Axioms CMV9-
CMV11 are the defining axioms of max. In axiom CMV11, use is made of
Lagrange’s theorem that every natural number can be represented as the sum
of four squares.

The initial model of CMYV is considered the standard model of CMV.

5 Parallel Processes with Computational Capital

In this section, we take up the extension of ACP to a theory about processes
that have an implicit computational capital. The result is called ACP;j..

First of all, we give a picture of the ideas that underlie the design of this
extension. There are three kinds of actions: actions with which an amount of
computational money is spent, actions with which an amount of computational
money is acquired and actions with which no computational money is spent
or acquired. As for spending or acquiring computational money, the effect
of performing two actions synchronously is the joint effect of the two actions
concerned.

The implicit computational capital of a process is the amount of compu-

7
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tational money that the process has available to spend by performing actions,
measured as a natural number. As the name suggests, the implicit compu-
tational capital of a process is looked upon as an implicit property of the
process. It is the least amount of computational money that is needed to
account for the behaviour of the process.* Neither what a process is capable
of using exceeds its implicit computational capital nor the other way round.
The fact that the implicit computational capital of a process does not exceed
what the process is capable of using corresponds to the liquidity assumption
that the whole capital can potentially be used. The monetary effects of per-
forming actions do not affect the behaviour of a process that has an implicit
computational capital.

Now for the presentation of the extension of ACP;.. It has the sorts,
constants and operators of both ACP and CMV, the projection operators 7,
and in addition the following constants and operators to build terms of sort
M:

» for each a € A, the computational money transfer constant q(a) : M;

e the unary implicit computational capital operator QQ : P — M.

The projection operators are included because they are needed in the axioms
concerning the implicit computational capital of infinite processes.

Let p be a closed term of sort P. Intuitively, the computational money
transfer constants and the implicit computational capital operator can be
explained as follows:

¢ if q(a) > 0, then q(a) is the amount of computational money spent by a
process on performing action «;

* if q(a) < 0, then —q(a) is the amount of computational money acquired by
a process on performing action a;

* if q(a) = 0, then nothing is spent or acquired by a process on performing
action a;

* Q(p) is the amount of computational money that process p has available to
spend by performing actions.

If q(a) = 0, then action a is called CM-neutral.

It is assumed that for each a € A, a fixed but arbitrary equation q(a) = m,
where m is a closed term of sort M from the language of CMV has been given.
We write CMT for the set of all those equations. It is further assumed that,
for all a, b, ¢ € A for which a|b = ¢, the equation q(c) = q(a)+q(b) is derivable
from CMT and the axioms of CMV.

The axioms of ACP;.. are the axioms of ACP, the axioms of CMV, axioms
PR1-PR5 from Table 4, the equations from CMT, and the axioms given in

4 In ACP-like process algebras, it is usual to consider the terms process and behaviour
synonyms. This is not the case in ACPj.., where a process is made up of behaviour and
implicit computational capital.
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Table 6
Axioms for computational money transfer

q(c) =q(a) +q) ifalb=c CMTC

Table 7
Axioms for implicit computational capital
Q) =0 ICC1
Q(a) = max (q(a),0) ICC2
max(Q(z ) 0) = Q(z) = Q(a-z) =max(q(a) + Q(z),0) ICC3
max(Q(z),0) = Q(z) A max(Q(y),0) = Q(y) = Q(z +y) =max(Q(z),Q(y)) I1CC4
Ao max(Q(mm (2)), Q(mr () = Q(mn(2)) = Q(z) = Q(mn(2)) ICC5
NnsoVimso max(Q(mm (2)), Q(mn(2) + 1) = Q(mm(z)) = Q(z) = -1 ICC6

Tables 6 and 7. CMTC and ICC2-1ICC3 are actually axiom schemas in which
a, b and ¢ stand for arbitrary constants of sort P different from 4.

The equations from CMT and axiom CMTC concern spending and acquir-
ing computational money on performing actions. The equations from CMT
are the defining equations of the computational money transfer constants.
CMTC expresses that, as for spending or acquiring computational money, the
effect of performing two actions synchronously is the joint effect of the two
actions concerned.

The implicit computational capital of a process is the amount of compu-
tational money that the process is capable of using. This amount cannot
be negative. However, it can be undefined if the process is infinite. In or-
der to circumvent the use of algebras with partial operations, which is not
considered in elementary algebraic specifications (see e.g. [7]), —1 is used to
represent the undefinedness of the implicit computational capital of a process.
Axioms ICC1-ICC4 cover the case where the process is finite. Axioms ICC5
and ICCG6 cover the case where the process is infinite. Axiom ICC5 states that
the implicit computational capital of a process is the greatest capital among
the implicit computational capitals of all finite approximations of the process
if it exists. Otherwise, axiom ICC6 applies. ICC5 and ICC6 are infinitary
formulas, but ICC5 is still a conditional equation.

Proposition 5.1 For all closed terms p; and py of sort P from the language
of ACP, the following is derivable from the axioms of ACPjc.:

Q(p1 - p2) < Qp1) + Qp2) , Q(p1 || p2) = Qp1) + Q(p2) ,
Q(p1+p2) < Q(p1) + Q(p2) , Q(p1 L p2) < Q(p1) + Q(p2) ,
Qr(p)) < Q(p1) , Q(p1 [ p2) < Q(p1) +Q(p2) -

Proof. Straightforward, by induction on the structure p; and p,. O

Guarded recursion can be added to ACP;. as it is added to ACP in Sec-
tion 3. We will write ACP;..+REC for the resulting theory.
The following example goes into the implicit computational capital of an

9
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infinite process. In case q(a) > 0, the process (X |{X = a- X }) repeats forever
a step on which the amount q(a) is spent. Because no capital is large enough
for that, the implicit computational capital of (X[{X = a - X}) is undefined
if q(a) > 0. Assuming q(a) > 0, we derive from axioms RDP, PR3, PR4 and
ICC6, using an inductive argument, that Q((X|{X =a- X})) = —1. In case
q(a) < 0, the process (X|{X = a - X}) repeats forever a step on which the
amount —q(a) is acquired. In case q(a) = 0, the process (X|{X = a- X})
repeats forever a step on which nothing is spent or acquired. Because in both
cases no capital is needed, the implicit computational capital of (X [{X = a -
X}) is zero if q(a) < 0. Assuming q(a) < 0, we derive from axioms RDP, PR3,
PR4 and ICC5, using an inductive argument, that Q((X[{X =a-X})) = 0.

Let p be a closed term of sort P. Then p denotes a “money source” iff
Q(p) = —1. It is not that easy to characterize “money sinks”, i.e. processes
that accumulate computational money, in terms of Q. Exclusion of money
sources by taking the infinitary formula

V A\ max(Q(mn()), Q(ma(2))) = Q(ma(2))
n>0 m>0
as additional axiom is possible only if we drop RDP: it is inconsistent with
RDP.
The set of formulas represented by the schema

q(a) #0 = \/ (a|a' #6 A q(a) +q(a') = 0),
a’'eA

where a stands for an arbitrary constant of sort P different from §, can be
added to the axioms of ACP;... These formulas express that, for each action
with which an amount of computational money is spent, there exists another
action with which it can be performed synchronously and the same amount
is acquired, and similarly, for each action with which an amount of compu-
tational money is acquired, there exists another action with which it can be
performed synchronously and the same amount is spent. In other words, they
say that the monetary effect of performing an action can always be neutralized
by performing it synchronously with some other action. It can be useful to
hypothesize this neutralization property in derivations concerning a system
that is not supposed to interact with its environment, but not otherwise.

In ACPj., amounts of computational money are not used for book-keeping
of debts. The reason for this is that implicitly abstracting from the process
to which a debt is owed is far from obvious.

The models of ACP;.. of which the restriction to the signature of CMV is
the initial model of CMV are considered the standard models of ACP;j..

6 Transition Systems Induced by Models of ACP

In this section, we introduce the notions of transition system induced by a
model of ACP, paths in a transition system and bisimilarity of transition

10
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systems. Those notions will be used in Section 7 to show how bisimulation
models of ACP can be expanded to models of ACPj... Prior to all that, we
make precise what we understand by a transition system.

A transition system consists of the following:

a set S of states;

« aset = C S xS, for each a € A;

s aset =/ C S, for each a € A;

e an initial state s € S.

We write s = s’ instead of (s,s') € < and s % / instead of s € /.
Furthermore, we write — for the family of sets (-),ca and —+/ for the
family of sets (= /)aca-

Let T1 = (S1,—1, =/, 8Y) and To = (S2,—2, —+/5, 59) be transition
systems. Then a bisimulation B between T7 and T, is a binary relation B C
S x Sy such that B(s?,s9) and for all sy, s, such that B(sy, s2):

* 51 i)\/l iff S92 l>\/2;

e if 51 = s, then there is a state s}, such that s; -, s, and B(s!, s5);

o if 59 =9 55, then there is a state s} such that s; = s} and B(s!, s}).

Two transition systems 77 and 75, are bisimilar, written T < T;, if there
exists a bisimulation B between 717 and T5.

Let T = (S,—,—+/, s°) be a transition system. Then the set of paths in
T, written P(T), is the smallest subset of {m ~ (s) | 7 € (S x A)* A s € S}
such that:?®
* (s°) € P(T),

o if T~ (s) € P(T) and s % &', then m~ (s,a,s’) € P(T).

A transition system may have states that are not reachable from its initial
state by a path in the transition system. We exclude transition systems with
unreachable states as follows.

Let T = (S, —, —+/, s°) be a transition system. The connected part of T,
written I'(7'), is defined as follows:

D(T) = (5, =", =),
where
S'={seS|Ine(SxA) e (s) e P(T)},
and for every a € A:
S =5Nn(S x5,
SV =5yNS .

5 We write () for the empty sequence, {(e) for the sequence having e as sole element and
o ~ ¢’ for the concatenation of sequences ¢ and ¢'; and we use {e1,...,e,) as a shorthand
for {e1) ~ ...~ {en).

11
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Let A be a model of ACP, let P be the domain of 2, and let p € P. Then
the transition system of p induced by A, written TS(, p), is the transition
system I'(P, —, —+/,p) where, for every a € A:

a

= ={(pup) | A=z =21+0a- 22 [p1,02]}

4y ={p|AEr=atalp}.

7 Expanding Models of ACP to Models of ACP;..

In ACP;, the implicit computational capital of a process is the least amount
of computational money that is needed to account for the behaviour of the
process. This amount is implicit in the behaviour of the process. In this
section, we show that each bisimulation model of ACP can be expanded to a
model of ACP;.., provided that it can be expanded to a model of ACP+PR.

Let A be a model of ACP. Then 2 is a bisimulation model of ACP if for
all p and p' from the domain of 2, TS(2A, p) & TS(2, p') implies p = p'.

In [6], the full bisimulation models of ACP®  a first-order extension of
ACP, are introduced. The full bisimulation models of ACP are the restrictions
of those models to the signature of ACP. The full bisimulation models of ACP
are the main models of ACP. We gather from [6]:

e the full bisimulation models of ACP are bisimulation models;

* each bisimulation model of ACP can be isomorphically embedded in one of
the full bisimulation models of ACP;

e in each full bisimulation model of ACP, all finite and countably infinite
guarded recursive specifications over ACP have a unique solution;

e all full bisimulation models of ACP can be expanded to models of ACP+PR,;

e the full bisimulation model of ACP with the smallest domain can be ex-
panded to a model of ACP+PR in which AIP holds.

Below, we will write ACP,, for ACP;.. without the implicit computational
capital operator Q and consequently without the axioms ICC1-ICC6. More-
over, we write CMV+CMT for CMV extended with the computational money
transfer constants q(a) and the equations from CMT.

Lemma 7.1 For each bisimulation model A of ACP that can be expanded to
a model of ACP+PR and each model B of CMV, there exists a model € of
ACP.n such that the restriction of € to the signature of ACP is A and the
restriction of € to the signature of CMV is ‘B.

Proof. Let 2 be a bisimulation model of ACP that can be expanded to a
model of ACP+PR, and let 2’ be an expansion of 2 to a model of ACP+PR.
Let B be a model of CMV, and let B’ be the unique expansion of B to a
model of CMV+CMT. This unique expansion exists because CMV+CMT is
a definitional extension of CMV. Moreover, the instances of axiom schema
CMTC hold in B’ because they are derivable from CMT and the axioms of
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CMYV. From this and the fact that the signatures of 2’ and B’ are disjoint,
it follows, by the amalgamation result about expansions presented as Theo-
rem 6.1.1 in [8] (adapted to the many-sorted case), that there exists a model €
of ACP.y, such that the restriction to the signature of ACP+PR is 2’ and the
restriction to the signature of CMV+CMT is 98’. Because 2’ is an expansion
of 2 and B’ is an expansion of B, the restriction of € to the signature of ACP
is % and the restriction of € to the signature of CMV is ‘B. O

Theorem 7.2 For each bisimulation model A of ACP that can be expanded
to a model of ACP+PR, there exists a model A" of ACPi.. such that the
restriction of A to the signature of ACP is 2.

Proof. Let 2 be a bisimulation model of ACP that can be expanded to a
model of ACP+PR. Let 8 be a model of CMV, and let < be the ordering
on the domain of B such that, for all 7 and j from the domain of B, i < j
iff max(i,j) = j. It is easy to see that the subset of the domain of B that
consists of all elements that are the interpretation of some closed term of sort
M is totally ordered by <. By Lemma 7.1, there exists a model € of ACP,,,
of which the restriction to the signature of ACP is 2 and the restriction to
the signature of CMV is ®B. Let ' be € expanded with the function @Q from
the domain of 2 to the domain of B such that, for all p from the domain of
2
* Q(p) is the greatest element of {Q'(7) | m € P(TS(2, p))} with respect to
<, where Q' is defined inductively by Q'((p')) = 0 and Q'({p',a) ~7) =
max(q(a) + Q'(m),0), if it exists;
* Q(p) is —1 otherwise.

Because € is an expansion of 2, the restriction of A’ to the signature of ACP
is 2. It remains to be proved that 2’ is a model of ACP;... Because 2 is an
expansion of €, it is sufficient to prove that ICC1-ICC6 hold in 2'. Moreover,
because each bisimulation model of ACP can be isomorphically embedded
in one of the full bisimulation models of ACP, it may be assumed that 2
is a full bisimulation model of ACP. Then 2 can be expanded to a model
of ACP+PR in a similar way as graph models of ACP are expanded with
projection operations in [2]. Without loss of generality, it may be assumed
that the restriction of € to the signature of ACP+PR is the expansion of 2
to a model of ACP+PR obtained in that way. Let 2" be this expansion of 2.
Then for all p from the domain of 2, P(TS(A", m,(p))) = {m € P(TS(A",p)) |
len(w) < n}, where len(w) is the length of the sequence from A* obtained
by leaving out all states in 7. From this and the construction of the full
bisimulation models of ACP given in [6], it follows easily that ICC1-ICC6
hold in 2A'. O

13
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8 Preservation of Computational Money

In this section, we discuss the notion of preservation of computational money.

Let A be a model of ACPj, let P be the domain associated with P in £,
let p € P, and let T = (P',—,—+/,p) be the transition system of p induced
by 2. Then p is CM-preserving if

* Q(p') = q(a) for all p’ € P’ and a € A such that p’ =./;
e Q(p) =q(a) + Q(p") for all p',p" € P’ and a € A such that p’ = p";
* Q(p') = Q(p") for all p',p" € P\ {6} such that p’ + p" € P'.

Using the terminology of [6], CM-preserving belongs to the external properties
of processes in models of ACP;... It is an open problem whether a first-order
axiomatization of this property is possible.

The next proposition states that the implicit computational capital of a
CM-preserving process remains constant if it evolves through a number of CM-
neutral steps. To make precise what it means to evolve through a number of
CM-neutral steps, we introduce the notion of CM-neutral paths.

Let T = (S,—,—+/,s%) be a transition system. Then the set of CM-
neutral paths in T, written NP(T'), is the smallest subset of P(T") such that:

* (s") € NP(T);
s if m~ (s) € NP(T), s = s and q(a) = 0, then 7 ~ (s,a,s’) € NP(T).

Proposition 8.1 Let 2 be a model of ACPj, let P be the domain associated
with P in A, let p € P, let P' C P be the set of states of TS(2A,p), and let
p' € P'. Then, for all m € (P'x A)*, p is CM-preserving and © ~ (p') €
NP(TS(%, p)) implies Q(p) = Q(p")-

Proof. Straightforward, by induction on the length of . O

It is plausible that an electronic device, such as an electronic wallet, is
modelled in ACP;.. as a process that deadlocks if the device crashes because
of a technical failure. In such cases, it is likely that the process is not CM-
preserving. This indicates that preservation of computational money is not a
fact of life, but a constraint on how to model. Modelling with CM-preserving
processes may enforce the introduction of a hypothetical process to which
computational money is transferred just before the crash takes place. The
problem with that process is that, unless it is able to dispose of its computa-
tional money, it accumulates computational money and by doing so it is not
CM-preserving.

In general, in order to make a process that accumulates computational
money CM-preserving, it must be made capable of sending that computational
money via a ghost channel that is only used for sending.

As an example, we consider the process (X|{X = a-X}) where q(a) = —1.
This process is clearly accumulating computational money and therefore not
CM-preserving. We assume that for all closed terms m and m' of sort M from
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the language of CMV with max(m, 1) = m and max(m',1) = m’, respectively:
Sghost(m) € A; Sghost(m) ‘ Sghost(m,) = Sghost(m + m,) and q(sghost(m)) = m.
The process (X|{X = a- (X || sgnost(1))}) behaves as (X |{X = a- X}), except
that it can send its computational money in arbitrary amounts at once when
needed.

9 Abstraction from Internal Actions

In this section, we extend ACP;.. with abstraction from internal actions. The
result is called ACPj],.. In [4], abstraction from internal actions was first
introduced in ACP. The approach to abstraction from internal actions followed
in that paper is based on the notion of observation equivalence which originates
from [9]. In this paper, a subtly different approach is followed. It is based on
the notion of branching bisimulation equivalence which originates from [12].
The sorts, constants and operators of ACP] . are those of ACP;., and in

1CC
addition:

* the silent step constant 7 : P;
o for each I C {a € A | q(a) = 0}, the unary abstraction operator 7;: P — P.

Let p be a closed term of sort P, and I C {a € A | q(a) = 0}. Intuitively,
the silent step constant and the abstraction operators can be explained as
follows:

* 7 performs an action that is unobservable and then terminates successfully;

» 77(p) behaves the same as as p, except that actions from I are turned into
silent steps.

It is assumed that 7 & As. We write Ag, for A; U {7}. The communication
function | : As x A; — A; is extended to a function |: Az X As; — As by
stipulating that a |7 =7 |a = § for all a € Ay, .

The axioms of ACP] . are the axioms of ACP;. and the axioms given in
Table 8. Axioms TI1-TI4 and C4 are actually axiom schemas in which a
stands for an arbitrary constant of sort P and I stands for an arbitrary subset
of {a € A| q(a) = 0}.

Axioms Bl and B2 reflect the intuition that the presence of a non-initial
silent step cannot be inferred from the observable behaviour of a process if the
process can perform that silent step without discarding any of the alternatives
that it had before. Axioms TT1-T14 says that abstraction from certain actions
turns those actions into silent steps. Axioms PRT1 and PRT2 express that
the silent step does not count in projections. Abstraction from actions that
are not CM-neutral is excluded because it is considered counter-intuitive to
take actions that are not CM-neutral for internal. In agreement with that,
axiom CMTT states that the silent step is CM-neutral. Notice that by this
axiom abstraction from actions that are not CM-neutral could lead to change
of implicit computational capital as side-effect.
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Table 8
Axioms for abstraction

r-T=2x B1
z-(T-(y+2)+y)=z-(y+z) B2

Tr(a) =a ifag I TI1
Tr(a) =71 ifael TI2
1(z +y) = 11(z) + 71(Yy) TI3
Ti(z - y) = 11(2) - T1(y) TI4
alT=94 C4

T (T) =T PRT1
(T - 2) =7 -7 () PRT2
q(r) =0 CMTT

Guarded recursion can be added to ACPj,. as it is added to ACP in Sec-
tion 3. The definition of guardedness of an occurrence of a variable in a
term must be taken strictly. For example, the rightmost occurrence of X in
a-X +7-X is not guarded.

ACP extended with the silent step constant 7, the abstraction operator
77 for each I € A, and the axioms B1, B2 and TI1-TI4, is known as ACP”.
Notice that, different from ACP], ., ACP" has an abstraction operator for each
I C A. For a comprehensive overview of ACP”, the reader is referred to [2].

10 Some Examples

In this section, we illustrate the use of ACP;.. by means of some examples
concerning simple vending machines. We have aimed at examples that make
an aid in understanding of the notion of implicit computational capital of a
process.

If it is possible to perform two actions synchronously, then it is usual that
the nature of one of them is active and the nature of the other is passive. In
such cases, we use the convention that the constant for the active action with
the prefix ~ is taken as the constant for the passive action. Moreover, the
constant of the active action with overlining is taken as the constant for the
action that is the result of synchronously performing the active action and the
passive action. We take the |: As x A; — A, such that for all a € A for which
~a € A:

s al~a=1
calb=23dforallbe A\ {~a};
e b|l~a=46forallbe A\ {a}.
For all a € A for which ~a € A, we will always take q(a) and q(~a) such that
q(a) + q(~a) = 0.
16
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10.1 Ezample 1

The first example concerns a very simple vending machine. A cup of coffee is
the only product that can be bought. Two additives can be ordered, namely
milk and sugar. The price of a cup of coffee is €0.50. Payments can be made
by means of coins with value € 0.50 only. The coins are collected in a cash-box
with a capacity of 400 coins. The cash-box can be emptied at any time. This
simple vending machine, with kg coins in the cash-box (ko € {0,...,400}), can
be defined by the guarded recursive specification over ACP;.. that consists of
the following equations:

VM1, = VMly,

VM1, = ~push_button(milk) - VM1 rminy

+ ~push button(sugar) - VM1 st sugary
+ ~insert_coin - deliver_coffee(as) - VM1y,
+ ~empty_cash_box (k) - VM1,

(for every as C {milk, sugar} and k € {0,...,399}) ,

VM1 400 = ~empty_cash_box (400) - VM1y,, .

Using €0.01 as the unit of payment, we take:

q(~push_button(milk)) =0 ,

q(~push_button(sugar)) =0 ,

q(~insert_coin) = —50 ,

q(deliver_coffee(as)) =0,

q(~empty_cash_boz(k)) = 50 - k .
We can prove by means of axioms ICC1-ICC5 that

Q(VM1y,) =50k .
This equation indicates that 50 - k¢ is the least amount of money that is
needed to account for the behaviour of VM1,. This is in agreement with our
intuition: no money is needed for button pushing, coin insertion and coffee
delivery, 50 - ky units of money are needed for emptying the cash-box for the
first time before the first coin insertion, 50 - ky units of money are also needed
for emptying the cash-box for the first time after a number of coin insertions
because the additional units of money spent on emptying the cash-box have
been acquired by the coin insertions, and no money is needed for emptying the
cash-box for a subsequent time because all units of money spent on emptying
the cash-box have first been acquired by coin insertions.
We consider a user User! buying one cup of coffee without additives and
one cup of coffee with milk and without sugar:
Userl = insert_coin - ~deliver_coffee(0) -

push_button(milk) - insert_coin - ~deliver_coffee({milk}) .
17
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Using €0.01 as the unit of payment, we take:

a(push_button(milk)) =0,
q(push_button(sugar)) =0,
q(insert_coin) = 50 ,
q(~deliver_coffee(as)) = 0 .
We can prove by means of axioms ICC1-ICC5 that
Q(User1) = 100 .

This equation indicates that 100 is the least amount of money that is needed
to account for the behaviour of User!. This is in agreement with our intuition:
no money is needed for button pushing and coffee delivery, and 100 units of
money are needed for the two coin insertions because no money is acquired

beforehand.
We look at the process described by 0 (VM1y, || Userl), where
H1 = {push_button(a), ~push_button(a) | a € {milk, sugar}}
U {insert_coin, ~insert_coin}
U {deliver_coffee(as), ~deliver_coffee(as) | as C {milk, sugar}} .
We can easily derive that in the case where ky < 398:
O (VM1y, || Usert) =

insert_coin - deliver _coffee(() -

push_button(milk) - insert_coin - deliver _coffee({milk}) -
aHj ( VM1 k0+2) .

From this, it follows easily that
Q(&HI(VMI ko || US@TI)) =50- (k() + 2)

in the case where ky < 398. This equation indicates that 50 - (ko + 2) is
the least amount of money that is needed to account for the behaviour of
Oui1 (VM1 y, || User?). This is in agreement with our intuition: the interactions
between VM1, and Userl are all CM-neutral, and after those interactions

On1 (VM1y,) behaves as Oy (VM1 gy 1 2).

10.2 Ezample 2

The second example concerns a vending machine like the one from Section 10.1.
The main difference is that payments can be made by means of coins with value
€0.50 and coins with value €1.00. These two kinds of coins are collected in
separate cash-boxes. Coins with value €1.00 are accepted only if the cash-box
for coins with value €0.50 is not empty. This vending machine, with kq coins
in the cash-box for coins with value €0.50 and [y coins in the cash-box for
coins with value €1.00 (ko,ly € {0,...,400}), can be defined by the guarded
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recursive specification over ACP; . that consists of the following equations:
VM?’CQ,ZO - VMga,ko,lo

VM2, 0, = ~push_button(milk) - VM2, (min}.0,
+ ~push_button(sugar) - VM2 s {sugary 0.
+ ~insert_coin(50) - deliver _coffee(as) - VM2y
+ ~empty_cash_boz(50,0) - VM2,
+ ~empty_cash_boz(100,1) - VM2,
(for every as C {milk, sugar} and [ € {0,...,400}),

+ ~push_button(sugar) - VM2t sugary
+ ~insert_coin(50) - deliver coffee(as) - VM2 1
+ ~insert_coin(100) - return_coin(50)
- deliver coffee(as) - VM2§ ;1 ;1
+ ~empty_cash_box (50, k) - VM2,
+ ~empty_cash_box(100,1) - VM2, ,
(for every as C {milk, sugar}, k € {1,...,399} and [ € {0,...,399}),

VM2 5 400y = ~push-button(milk) - VM2, min} 400,
+ ~push_button(sugar) - VM2t suear} 400,
+ ~insert_coin(100) - return_coin(50)
- deliver _coffee(as) - VM2 399111
+ ~empty_cash_box(50,400) - VM2,
+ ~empty_cash_box(100,1) - VM2 40 ¢
(for every as C {milk, sugar} and [ € {0,...,399}),

VM24 400 400 = ~empty_cash_box(50,400) - VM2, 499
+ ~empty_cash_box (100, 400) - VMQ'MOO’O .
Using €0.01 as the unit of payment, we take:
q(~push_button(milk)) = 0 ,
q(~push_button(sugar)) =0 ,

q(return_coin(m)) = m ,

(
q(~insert_coin(m)) = —m |
(
q(deliver_coffee(as)) =0,
q(~empty_cash_box(m,k)) =m -k .
We can prove by means of axioms ICC1-ICC5 that
Q(VM2y, 1) = 50 - ko + 100 - Iy .
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That this equation agrees with our intuition can be seen like in the case of
the equation Q(VM1,) = 50 - ky. One additional remark is in order here: no
money is needed for a coin return because sufficient units of money have been
acquired by the preceding coin insertion.

We consider a user User2 buying one cup of coffee without additives and
one cup of coffee with milk and without sugar using a coin with value €1.00 for
the first cup of coffee and the coin with value €0.50 returned by the vending
machine for the second cup of coffee:

User2 =
insert_coin(100) - ~return_coin(50) - ~deliver_coffee(() -
push_button(milk) - insert_coin(50) - ~deliver_coffee({milk}) .
Using €0.01 as the unit of payment, we take:
q(push_button(milk)) =0 ,
q(push_button(sugar)) =0,
q(insert_coin(m)) = m ,
q(~return_coin(m)) = —m ,
q(~deliver _coffee(as)) =0 .
We can prove by means of axioms ICC1-ICC5 that
Q(User2) = 100 .
That this equation agrees with our intuition can be seen like in the case of the
equation Q(Userl) = 100. One additional remark is in order here: 100 units
of money are needed for the two coin insertions because 50 units of money is
acquired by the coin return following the first coin insertion.
We look at the process described by Ops (VM2 4, || User2), where
H2 = {push_button(a), ~push_button(a) | a € {milk, sugar}}
U {insert_coin(m), ~insert_coin(m) | m € {50,100} }
U {return_coin(50), ~return_coin(50)}
U {deliver_coffee(as), ~deliver_coffee(as) | as C {milk, sugar}} .
We can easily derive that in the case where ky > 1 and [y < 399:
Oz (VM2 10 || User2) =
insert_coin(100) - return_coin(50) - deliver _coffee(() -
push_button(milk) - insert_coin(50) - deliver_coffee({milk}) -
Onz (VM2yq 1o+1) -
From this, it follows easily that
Q(Oma (VM2 14 || User2)) =50 - ko + 100 - (I + 1)

in the case where ky > 1 and [y < 399. That this equation agrees with our
intuition can be seen like in the case of the equation Q(On; (VM1y,|| Userl)) =
50 - (ko + 2).
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We also consider a user User2’ buying one cup of coffee without additives
and one cup of coffee with milk and without sugar using a coin with value
€0.50 for the first cup of coffee and a coin with value €1.00 for the second
cup of coffee:

User2' =
insert_coin(50) - ~deliver_coffee(() -
push_button(milk) -
insert_coin(100) - ~return_coin(50) - ~deliver_coffee({milk}) .

We can prove by means of axioms ICC1-ICC5 that
Q(User2') =150 .

This shows that, although User2' does not pay more for two cups of coffee
than User?2, more money is needed for the behaviour of User2’ than for the
behaviour of User2. We can derive that

Q(aHQ(VMQko,IO || USQ’/‘QI)) = Q(@HQ(VM,Q,COJO || USETQ))

in the case where 1 < kg < 399 and [y < 399. This can be seen as follows: after
the interactions between VM2y ,, and User2', as well as after the interactions
between VM2y, ;. and User2, Ops(VM2y, ,,) behaves as Opa (VM2 15+1)-

10.3 Ezample 3

The third example concerns a vending machine like the one from Sec-
tion 10.1. The main difference is that this vending machine accepts tokens
instead of coins. This vending machine, with £k, tokens in the token-box
(ko € {0,...,400}), can be defined by the guarded recursive specification over
ACP;. that consists of the following equations:

VM3, = VM3,

VM8, = ~push_ button(milk) - VM3 iy k

+ ~push_button(sugar) - VM3 suoar) k
+ ~insert_token - deliver _coffee(as) - VM3 ..,
+ ~empty_token_box (k) - VM3,

(for every as C {milk, sugar} and k € {0,...,399}),

VM%,ALOO = ~empty_token_box(400) - VM%,O )

We might take the view that tokens are a form of money. In that case, there
would be no essential difference between the example from Section 10.1 and
this one. Here, we take the view that tokens are not a form of money. This
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means that, using €0.01 as the unit of payment, we take:

a(~push_button(milk)) =
q(~push_button sugar)) ;

( (

(
q(~insert_token) =
q(deliver_ coﬁee(as)) =0,

(~

q(~empty_token_bozx(k)) =0 .

We can prove by means of axioms ICC1-ICC5 that
Q(VMS8y,) =0.

This equation indicates that 0 is the least amount of money that is needed to
account for the behaviour of VM3,. This is in agreement with our intuition:
like in the case of VM1y,, no money is needed for button pushing, token
insertion and coffee delivery, and moreover no money is needed for emptying
the token-box because tokens are not considered as money.

The tokens are obtained from a token-issuing machine. This is a machine
by which tokens can be bought. The price of a token is €0.50. Payments can
be made by means of coins with value €0.50 only. The coins are collected in
a cash-box with a capacity of 400 coins that can be emptied at any time. The
token-issuing machine, with ly coins in the cash-box (ly € {0,...,400}), can
be defined by the guarded recursive specification over ACP;.. that consists of
the following equations:

™, =TM ;0
TM; = ~insert_coin - deliver_token - TM; 4

+ ~empty_cash_box(l) - TM,
(for every [ € {0,...,399}),

TM 400 = ~empty_cash_box(400) - TM, .
Using €0.01 as the unit of payment, we take:

q(~insert_coin) = =50 ,
q(deliver_token) =0 ,
q(~empty_cash_boz(l)) =50 -1 .

We can prove by means of axioms ICC1-ICC5 that
Q(TM[O) =50- l() .

That this equation agrees with our intuition can be seen like in the case of the
equation Q(VM1y,) = 50 - ko because TM,, is essentially the same as VM1,,,
but tokens are sold instead of cups of coffee.

We consider a user User3 buying one cup of coffee without additives and
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one cup of coffee with milk and without sugar:

User3 =
insert_coin - ~deliver_token - insert_coin - ~deliver_token -
insert_token - ~deliver_coffee(() -
push_button(milk) - insert_token - ~deliver _coffee({milk}) .
Using €0.01 as the unit of payment, we take:
q(insert_coin) = 50 ,
q(~deliver _token) =0,
q(push_button(milk)) =0,
q(push_button(sugar)) =0,
q(insert_token) =0 ,
q(~deliver coffee(as)) =0 .
We can prove by means of axioms ICC1-ICC5 that
Q(User3) =100 .

That this equation agrees with our intuition can be seen like in the case of
the equation Q(User!) = 100 because User3 is essentially the same as Userl,
but tokens are bought instead of cups of coffee and then exchanged for cups
of coffee.

We look at the process described by Ops(VM3y, || TM,, || User3), where
H3 = {insert_coin, ~insert_coin}
U {deliver_token, ~deliver _token}
U {push_button(a), ~push_button(a) | a € {milk, sugar}}
U {insert_token, ~insert_token}
U {deliver_coffee(as), ~deliver_coffee(as) | as C {milk, sugar}} .
We can easily derive that in the case where ky < 398 and [y < 398:
Ous(VM3y, || TM,, || User3) =

insert_coin - deliver_token - insert_coin - deliver_token -

insert_token - deliver _coffee(() -
push_button(milk) - insert_token - deliver_coffee({milk}) -
Ous (VM3 otz || TM1y42)
From this, it follows easily that
QOus(VM3y, || TMy, || User8)) =50 - (lo + 2)

in the case where ky < 398 and [y < 398. That this equation agrees with our
intuition can be seen like in the case of the equation Q(0n; (VM1y,|| Userl)) =
50- (ko +2). One additional remark is in order here: there are no interactions
between VM3, and TM;,.
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10.4 FEzample 4

Chipcards with an electronic wallet appear to provide an electronic pendant
of tokens. The fourth example concerns a vending machine like the one from
Section 10.3. The main difference is that it accepts this electronic pendant of
tokens instead of tokens.

We take the view that, unlike tokens, the electronic pendant of tokens
provided by a chipcard with an electronic wallet constitutes a form of money.
The reason for this is that it is considered and used as money by a large
group of people. The electronic payments are collected in an electronic cash-
box. The value of the electronic money in the electronic cash-box is at most
€1000. Assuming that the value of the electronic money in the electronic
wallet on a chipcard is at most €100, the vending machine, with the amount
my of electronic money in the electronic cash-box (mg € {0,...,100000}), can
be defined by the guarded recursive specification over ACP;.. that consists of
the following equations:

VM4 = VM 6,m0 )

mo

VMY 'y = ~push_button(milk) - VM4 o miny m
+ ~push_button(sugar) - VM4 s sugar}m
+ Z ~insert_chipcard(m') - return_chipcard(m' — 50)
e - deliver _coffee(as) - VM4 150
+ ~empty_ecash_box(m) - VM4,

(for every as C {milk, sugar} and m € {0,...,99950}) ,

VM4 I@,IOOOOO = ~empty_ecash_box(100000) - VM/ /@,0 ,

In this specification and forthcoming specifications, we write M for {m € M |
0 <m < 10000}. Using €0.01 as the unit of payment, M is the set of possible
values of the electronic money in the electronic wallet on a chipcard. Using
€0.01 as the unit of payment, we take:

q(~push_button(milk)) =0 ,
q(~push_button(sugar)) = 0 ,
q(~insert_chipcard(m)) = —m
q(return_chipcard(m)) = m ,
q(deliver_coffee(as)) =0,
q(~empty_ecash_box(m)) = m .

We can prove by means of axioms ICC1-ICC5 that

Q(VM4 mo) =my .
That this equation agrees with our intuition can be seen like in the case of

the equation Q(VM1y,) = 50 - ky. One additional remark is in order here: no
money is needed for returning the chipcard because sufficient units of money
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have been acquired by the preceding chipcard insertion.

Electronic money is loaded into a chipcard by means of an electronic cash
dispenser. The value of the electronic money that can be loaded at a time
is €10. Moreover, no electronic money can be loaded if the balance of the
bank account associated with the chipcard is less than €10 or the value of the
electronic money in the electronic wallet would exceed €100 after loading.

Seeing that the behaviour of an electronic cash dispenser depends upon the
balance of the bank accounts for which chipcards with an electronic wallet have
been issued, the balance of all those accounts together make up a parameter
of the electronic cash dispenser. We formalize this parameter using account
numbers. We assume that a finite set N of account numbers has been given.
N is considered to be the set of all account numbers of bank accounts for
which chipcards with an electronic wallet have been issued. The parameter
is formalized by a function ba : N — M. This function is considered to map
each account number to the balance of the bank account with that account
number. We write BA for the set of all functions ba : N — M.

The electronic cash dispenser, parametrized by bay € BA, can be defined
by the guarded recursive specification over ACP;.. that consists of the following
equations: 8

ECDy,y = ECDyy,, ,

ECD,, = Z Z ~insert_chipcard(n, m)

ba() 21000 mA1000€ M
- return_chipcard(m 4 1000) - ECD'yy e 0. s ba(n)—1000]

+ Z Z ~insert_chipcard(n, m)

ba(n)<1000 mAT000EM - return_chipcard(m) - ECD},
+ Z Z ~insert_chipcard(n, m)
neN oo - return_chipcard(m) - ECD),

Using €0.01 as the unit of payment, we take:
q(~insert_chipcard(n,m)) = —m ,
q(return_chipcard(m)) = m .
We can prove by means of axioms ICC1-ICC5 that
Q(ECDpa,) = 1000 - >~ .y max{k | 1000 - k£ < bao(n)} .

This equation indicates that 1000 - ) ., max{k | 1000 - k& < bag(n)} is the
least amount of money that is needed to account for the behaviour of ECDy,,.

6 We use the following notation for functions: [] for the empty function; [d — r] for
the function f with dom(f) = {d} such that f(d) = r; f & g for the function h with
dom(h) = dom(f) U dom(g) such that for all d € dom(h), h(d) = f(d) if d ¢ dom(g) and
h(d) = g(d) otherwise.
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This is in agreement with our intuition: money is needed only for returning
a chipcard with more electronic money in the electronic wallet than on the
preceding insertion of the chipcard, 1000 units of money are needed for that,
and it can take place for every chipcard with an electronic wallet issued as
many times as allowed by the balance of the associated bank account.

We consider a user Users,, (ng € N), with an empty electronic wallet on
his or her chipcard, buying one cup of coffee without additives and one cup of
coffee with milk and without sugar:

Userd,, =
insert_chipcard(ng, 0) - ~return_chipcard(1000) -
insert_chipcard(1000) - ~return_chipcard (950) - ~deliver _coffee(()) -
push_button (milk) -
insert_chipcard(950) - ~return_chipcard (900) - ~deliver_coffee({milk}) .

Using €0.01 as the unit of payment, we take:

q(insert_chipcard(n,m)) = m ,
q(~return_chipcard(m)) = —m ,
a(push_button(milk)) =0,
a(push_button(sugar)) =0,
q(insert_chipcard(m)) = m ,

(

q(~deliver_coffee(as)) =0 .
We can prove by means of axioms ICC1-ICC5 that
Q(User4,,) =0.

This equation indicates that 0 is the least amount of money that is needed to
account for the behaviour of User4,, . This is in agreement with our intuition:
no money is needed for the first chipcard insertion because it concerns an
empty electronic wallet, and no money is needed for the second and third
chipcard insertion because enough money has been acquired by the preceding
chipcard return. Notice that User/, would have an implicit computational
capital greater than zero if he or she would start with a non-empty electronic
wallet.

We look at the process described by O0p; (VM4 ,,, || ECDy, || Userd,,),
where

Hy = {insert_chipcard(n, m), ~insert_chipcard(n,m) |n € N AN m € M}
U {return_chipcard(m), ~return_chipcard(m) | m € M}
U {push_button(a), ~push_button(a) | a € {milk, sugar}}
U {insert_chipcard(m), ~insert_chipcard(m) | m € M}
U {deliver_coffee(as), ~deliver_coffee(as) | as C {milk, sugar}} .
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We can easily derive that in the case where bag(ny) > 1000:
Oy (VM4 || ECDy, || Users,,,) =

insert_chipcard(ng, 0) - return_chipcard(1000) -

insert_chipcard(1000) - return_chipcard(950) - deliver _coffee(() -

push_button(milk) -

insert_chipcard(950) - return_chipcard(900) - deliver _coffee({milk}) -

6H4 ( VM4 mo+100 || ECDbao@[no'—)bao(no)—IOOO]) .
From this, it follows easily that

Q(8H4(VM4mo ” ECDbao || U36r4n0)) =
mo + 100 + 1000 - Y, v max{k | 1000 - k < bag(n)} ,

where bay = bag @ [ng — bag(ng) — 1000], in the case where bag(ng) > 1000.
That this equation agrees with our intuition can be seen like in the case of the

equation Q(0g; (VM1y, || User1)) = 50- (ko + 2). One additional remark is in
order here: there are no interactions between VM, —and ECD .

10.5 Closing Remark on the Examples

Vending machines that are more realistic than the ones treated in the examples
given above can easily be devised, e.g.:

* vending machines where several products can be bought, and different prod-
ucts may have different prices;

* vending machines where payments can be made by means of more than two
kinds of coins;

* vending machines where the products do not have to be paid one at a time;

* vending machines where payments can be made using coins as well as elec-
tronic forms of money;

* vending machines with a bounded stock of the products that can be bought;

* vending machines with a proper user interface.

We believe that additional examples concerning more realistic vending ma-
chines do not add to a better understanding of the notion of implicit com-
putational capital of a process. A realistic vending machines might be the
subject of a first case-study to assess the degree of usefulness of ACPj. in
practical applications, but such a case study is considered outside the scope
of this paper.

11 Conclusions

In this paper, we build on earlier work on ACP. The algebraic theory ACP
was first presented in [3], abstraction from internal actions was added in [4],
and RDP, RSP and AIP were first formulated in [5]. Transition systems as
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defined in this paper are basically the process graphs from early work on ACP,
which are most extensively described in [1]. The notion of transition system
induced by a model of ACP was recently introduced in [6].

To the best of our knowledge, there is no related work. Many options for
future work remain. We mention:

* investigations into plausible mechanisms to model preferences in spending
and acquiring computational money;

* investigations into plausible mechanisms to reveal the implicit computa-
tional capital of a process to other processes;

* investigations into plausible mechanisms to transform some of the actions of
infinite processes that can perform CM-neutral actions only into non-CM-
neutral actions in a way that prevents the resulting processes from becoming
money Sources;

* investigations into decidability and computability issues concerning Q.

The work presented in this paper was carried out in the framework of a
project investigating IT sourcing. In that project, we look at I'T sourcing from
the perspective of formal methods. IT sourcing is mainly actuated by financial
issues. We believe that the idea of processes with an implicit computational
capital may be helpful to understand those financial issues.
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