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Software (Re-)Engineering with PSF II:
from architecture to implementation

Bob Diertens

Programming Research Group, Faculty of Science, University of Amsterdam

ABSTRACT

This paper presents ongoing research on the application of PSF in the field of software
engineering and reengineering. We build a new implementation for the simulator of the
PSF Toolkit starting from the specification in PSF of the architecture of a simple
simulator and extend it with features to obtain the architecture of a full simulator. We
apply refining and constraining techniques on the specification of the architecture to
obtain a specification low enough to build an implementation from.

Ke ywords: process algebra, software engineering, software architecture, horizontal
implementation, vertical implementation, action refinement, parallel composition

1. Introduction

In this article, as part of ongoing research of the application of PSF (Process Specification Formalism) in
the field of software engineering and reengineering, we describe the development of a new implementation
of the simulator in the PSF Toolkit. PSF is based on ACP (Algebra of Communicating Processes) [4] and
ASF (Algebraic Specification Formalism) [5]. A description of PSF can be found in [21], [22], [11], and
[12]. The PSF Toolkit contains among other components a compiler and a simulator that can be coupled to
an animation [13]. Animations can either be made by hand or be automatically generated from a PSF
specification [14]. Our work is motivated by a range of previous examples of the use of process algebra [3]
in the area of architectural description languages (ADL’s). We mention Wright [2] (based on CSP [18]),
Darwin [20] (based on the π -calculus [24]), and PADL [7], which is inspired by Wright and Darwin and
focuses on architectural styles.

As case study in previously work we reengineered the compiler from the PSF Toolkit [15]. We dev eloped a
PSF specification for the compiler from which we derived a specification of the compiler as a ToolBus
application. The ToolBus [6] is a coordination architecture for software applications developed at the CWI
(Amsterdam) and the University of Amsterdam. It utilizes a scripting language based on process algebra to
describe the communication between software tools. A ToolBus script describes a number of processes that
can communicate with each other and with various tools existing outside the ToolBus. The role of the
ToolBus when executing the script is to coordinate the various tools in order to perform some complex task.
A PSF library of ToolBus internals was developed which was used for the specification of the compiler as
ToolBus application. We used this specification to implement the compiler as a real ToolBus application.
From the specification we extracted a specification of the architecture of the (reengineered) compiler. By
using this architectural specification we built a parallel version of the compiler while reusing specifications
and implementations for components of the compiler as it already was configured as a ToolBus application.
It was concluded that PSF is useful as aid in software engineering and reengineering, but that also
experience should be acquired with starting at the software architecture level and working towards an
implementation.

For the development of a new implementation of the simulator in the PSF Toolkit we evaluated the old
implementation, which led to the requirements for our new implementation. From these requirements we
design an architecture of a simple simulator which we specify in PSF. We extend this with some features
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for a more complete simulator. For the specification of the architecture we make use of a PSF library
especially developed for describing software architectures. This library is really an abstraction of the PSF
ToolBus library. We take this architecture specification as a base for the specification of the system design
with the use of the PSF ToolBus library, and implement this system. Furthermore we add an history
mechanism to the simulator and show the adaptations to be made at the different levels of design. Finally
we add animation to the new simulator as was previously done with the old simulator.

2. Software Architecture with PSF

A software design consist of several levels, each lower one refining the design on the higher level. The
highest level is often referred to as the architecture, the organization of the system as a collection of
interacting components. In conventional software engineering processes, the architecture is usually
described rather informal by means of a boxes-and-lines diagram. Following a lot of research going on in
this area architectural descriptions are becoming more formal, especially due to the introduction of
architectural description languages (ADL’s). A specification in an ADL can be refined (in several steps) to
a design from which an implementation of the system can be built.

In this section we present a PSF library for specifying software architectures or to formalize the boxes-and-
lines diagram. With the use of the PSF Toolkit it is possible to generate an animation from the specification
which can be brought to live with the simulator of the Toolkit. We also give an example of how to use it.

2.1 Specification of the PSF Architecture library

First we define the types for the id’s of the components, connections between components, and the data.

data module ArchitectureTypes
begin

exports
begin

sorts
ID,
CONNECTION,
DATA

functions
_>>_ : ID # ID → CONNECTION

end
end ArchitectureTypes

We could do without the function >> and use just the two id’s but now the connection clearly stands out
from other terms and therefor makes the specifications easier to read.

We define the primitives for the communication between the components and an quitting action that
communicates with the architecture environment.

process module ArchitecturePrimitives
begin

exports
begin

atoms
snd : CONNECTION # DATA
rec : CONNECTION # DATA
comm : CONNECTION # DATA

snd-quit
end
imports

ArchitectureTypes
communications

snd(c, s) | rec(c, s) = comm(c, s) for c in CONNECTION, s in DATA
end ArchitecturePrimitives

Note that we do not specify a particular kind of connection. In our belief the choice of the kind of
connection should not be made on the architecture level, but on a lower level.
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We now specify the architecture environment parameterized with the architecture specification.

process module Architecture
begin

parameters
System
begin

processes
System

end System
exports
begin

processes
Architecture

end
imports

ArchitecturePrimitives
atoms

rec-quit
quit
snd-shutdown
rec-shutdown
shutdown

processes
ArchitectureControl
ArchitectureShutdown

sets
of atoms

H = {
snd(c, s), rec(c, s) | c in CONNECTION, s in DATA

}
ArchitectureH = {

snd-quit, rec-quit,
snd-shutdown, rec-shutdown

}
communications

snd-quit | rec-quit = quit
snd-shutdown | rec-shutdown = shutdown

definitions
Architecture =

encaps(ArchitectureH,
disrupt(

encaps(H, System),
ArchitectureShutdown

)
|| ArchitectureControl
)

ArchitectureControl =
rec-quit .
snd-shutdown

ArchitectureShutdown = rec-shutdown
end Architecture

PSF does not have an action to end all processes. Such an action is really a communication with the
environment in which the processes run and this environment has to end all processes. We hav e specified
this behavior with the processes ArchitectureControl as the environment, ArchitectureShutdown to disrupt
the running of the processes, and splitting up the actions quit and shutdown in a send and receive part.

2.2 Example

As an example of the use of the PSF Architecture library, we specify the architecture of an application in
which one component can either send a ’message’ to another component and wait for an acknowledgement
from that component, or it can send a ’quit’ after which the application will be shutdown by the architecture
environment.

We first specify a module for the data and id’s we use.

data module Data
begin
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exports
begin

functions
message : → DATA
ack : → DATA
quit : → DATA

c1 : → ID
c2 : → ID

end
imports

ArchitectureTypes
end Data

We then specify the system of our application.

process module ApplicationSystem
begin

exports
begin

processes
ApplicationSystem

end
imports

Data,
ArchitecturePrimitives

atoms
send-message
stop

processes
Component1
Component2

definitions
Component1 =

send-message .
snd(c1 >> c2, message) .
rec(c2 >> c1, ack) .
Component1

+ stop .
snd-quit

Component2 =
rec(c1 >> c2, message) .
snd(c2 >> c1, ack) .
Component2

ApplicationSystem = Component1 || Component2
end ApplicationSystem

And we put it in the architecture environment by means of binding the main process to the System
parameter of the environment.

process module Application
begin

imports
Architecture {

System bound by [
System → ApplicationSystem

] to ApplicationSystem
renamed by [

Architecture → Application
]

}
end Application

The generated animation of the architecture is shown in figure 1. Here, Component1 has just sent a
message to Component2, which is ready to send an acknowledgement back.
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Component1

Component2

ArchitectureShutdown

ArchitectureControl

comm(c1 >> c2, message)

Figure 1. Animation of an example architecture

Each box represents an encapsulation of the processes inside the box, and a darker ellipse is a process
which is enabled to perform an action in the given state.

The module mechanism of PSF can be used for more complex components to hide the internal actions and
sub-processes of a component. With the use of parameterization it is even possible to make sev eral
instances of a component.

3. Requirements for the Simulator

Although our old simulator from the PSF Toolkit is most satisfactory, we think its implementation can
improve a lot. Its interface is outdated and the internal complexity can be lifted from the kernel of the
simulator and pushed to separate components and their interaction. We giv e in this section the
requirements for the new simulator without going into much detail. They merely serve to giv e an idea of
what the simulator should be capable of and what we expect from the new design.

3.1 Functional Requirements

The functional requirements we list here stem from the functionality of the old simulator. Some features
have been left out because they are very seldom used and can be established in a different way, such as
reloading of specifications and argument selection of start processes.

Apart from that the simulator should be able to simulate PSF specifications (or rather a compiled form)
according to the semantics, it must at least fulfill the following requirements.

• Simple interaction with the user for choosing an action to be executed from a list of possible
executable actions at a certain moment. Simple in the way that the actions are presented in a single
unordered list.

• Show on request the status of processes currently being simulated in a way that their correlation is
visible and how the list of possible actions is determined from them.

• Make it possible to trace certain actions as they are executed. These actions must be selected from all
actions in an easy manner.

• Be able to run randomly and stop this whenever one or more breakpoints are encountered. That can
be on execution of an action on which a breakpoint is set, when one or more actions with breakpoints
on them appear in the list of possible action, or when all actions in the list have breakpoints on them
(synchronization). Selection of breakpoints should be made easy, preferably in a similar way of
selecting actions to be traced.

• A history mechanism that not only makes it possible to undo or redo a step, but also to go to a
previously marked state.
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3.2 Non-functional Requirements

The non-functional requirements we list here represent our wishes as opposed to the implementation of the
old simulator.

• A modular design with easy to replace components. Especially, the simulator should have a separate
kernel which can be used in other applications.

• Can be used as a framework for simulating other languages similar to PSF, or variants of PSF.

• The user interface should be less dependent on the X Window System as is the case with the old
simulator, and should be easy to adapt to changes in environment, application, user demands.

• Easy coupling of the simulator with animation.

4. Architecture Specification of the Simulator

We specify the architecture in several steps, starting with the architecture of a simple simulator to which we
add the features. The architecture specification as presented here is the result of normal software
development processes1 incorporated with an architecture phase. In these processes there is feedback from
following phases, and so also the architecture phase gets this feedback.

4.1 A Simple Simulator

Our simple simulator consists of four system components.

kernel does the actual simulation.

startprocess takes care of choosing a process to start the simulating with.

actionchooser takes care of choosing an action from a list of possible actions it receives from the
kernel.

display displays the information the other components wish to communicate to the user.

We first specify the id’s for the four components and the data, in an abstract form, that are used in the
communication between them in a separate module.

data module SimulatorData
begin

exports
begin

functions
kernel : → ID
startprocess : → ID
actionchooser : → ID
display : → ID

start-process : → DATA
action-choose-list : → DATA
action : → DATA
halt : → DATA
reset : → DATA

end
imports

ArchitectureTypes
end SimulatorData

The kernel can be in two states. One in which it actually simulates, and one in which it is waiting for
communication with other components. This is specified by way of a boolean variable wait.

process module Kernel
begin

1. See [34] for an overview.
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exports
begin

processes
Kernel

end
imports

SimulatorData,
ArchitecturePrimitives,
Booleans

atoms
compute-choose-list
compute-halt

processes
Kernel : BOOLEAN

variables
wait : → BOOLEAN

definitions
Kernel = Kernel(true)
Kernel(wait) =

(
[wait = false] → (

compute-choose-list .
snd(kernel >> actionchooser, action-choose-list)

+ compute-halt .
snd(kernel >> display, halt)

) .
Kernel(true)

+ [wait = true] → (
rec(actionchooser >> kernel, action) .
Kernel(false)

+ rec(startprocess >> kernel, start-process) .
snd(kernel >> display, start-process) .
snd(kernel >> actionchooser, reset) .
Kernel(false)

)
)

end Kernel

If the kernel is not in the wait state, there is a choice between two internal actions. The action compute-
choose-list, resembling the computing of a list of possible actions that can occur. This list is sent to
the actionchooser. And the other action compute-halt, indicating the kernel could not compute a list of
possible action, either because simulation ended, or a deadlock occurred. In the wait state it can receive a
start-process from the startprocess component, or it can receive an action from the actionchooser.

The startprocess component is very simple, it can only send a start-process to the kernel.

process module StartProcess
begin

exports
begin

processes
StartProcess

end
imports

ArchitecturePrimitives,
SimulatorData

atoms
select-start-process

definitions
StartProcess =

(
select-start-process .
snd(startprocess >> kernel, start-process)

) * delta
end StartProcess

The actionchooser can receive an action-choose-list or a reset from the kernel. When it receives
an action-choose-list it can send an action to the kernel.

process module ActionChooser
begin
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exports
begin

processes
ActionChooser

end
imports

ArchitecturePrimitives,
SimulatorData,
Booleans

atoms
choose-action

processes
Choose : BOOLEAN
Reset

variables
choose : → BOOLEAN

definitions
ActionChooser = Choose(false)
Choose(choose) =

rec(kernel >> actionchooser, action-choose-list) .
Choose(true)

+ [choose = true] → (
choose-action .
(

snd(actionchooser >> kernel, action) .
Choose(false)

+ Reset
)

)
+ Reset

Reset = rec(kernel >> actionchooser, reset) .
Choose(false)

end ActionChooser

The possibility for a reset after an action has been chosen is necessary, otherwise a deadlock can occur
when the kernel sends a reset caused by the receiving of a start-process.

The display can only receive from other components. At the moment it receives only from the kernel.

process module Display
begin

exports
begin

processes
Display

end
imports

ArchitecturePrimitives,
SimulatorData

definitions
Display =

(
rec(kernel >> display, halt)

+ rec(kernel >> display, start-process)
) * delta

end Display

We combine the components to a system by merging the processes of the components.

process module SimulatorSystem
begin

exports
begin

processes
SimulatorSystem

end
imports

Kernel,
StartProcess,
ActionChooser,
Display

definitions
SimulatorSystem =
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Kernel
|| StartProcess
|| ActionChooser
|| Display

end SimulatorSystem

We complete the architecture of the simple simulator by putting the system in the architecture environment.

process module Simulator
begin

imports
Architecture {

System bound by [
System → SimulatorSystem

] to SimulatorSystem
renamed by [

Architecture → Simulator
]

}
end Simulator

An animation of the architecture is shown in figure 2.

DisplayActionChooser

KernelArchitectureShutdown

ArchitectureControl StartProcess

Figure 2. Architecture of a simple simulator

4.2 Functions

We extend the simple simulator with functions that can be invoked by the user, quit and process-
status.

To module SimulatorData we add the id function and data terms for the functions. And we add a
module Function.

process module Function
begin

exports
begin

processes
Function

end
imports

ArchitecturePrimitives,
SimulatorData

atoms
push-quit
push-process-status

definitions
Function =

(
push-quit .
snd(function >> kernel, quit)

+ push-process-status .
snd(function >> kernel, process-status)

) * delta
end Function

To module Kernel we add the following alternatives to the wait state.
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+ rec(function >> kernel, quit) .
snd-quit

+ rec(function >> kernel, process-status) .
snd(kernel >> display, process-status) .
Kernel(wait)

After the kernel receives a quit it communicates with the architecture environment by means of a snd-
quit on which the environment acts with a shutdown. And on receiving process-status it send the
process status to the display (we use the same abstract data term here).

To the module Display we add an alternative for receiving a process-status message and in the
module SimulatorSystem we merge the process Function with the other processes. The animation of the
resulting architecture is shown in figure 3.

ActionChooser

StartProcess

ArchitectureControl

ArchitectureShutdown

Function

Display

Kernel

Figure 3. Architecture with functions

4.3 Tracing

We now add a component tracectrl that takes care of the tracing of actions (make them visible to the
user) the moment they are executed. Whenever an action is chosen by the actionchooser it is send to
tracectrl which decides, on indication by the user, whether it has to be traced, in which case a message is
send to display. So it acts as a filter.

To module SimulatorData we add the id tracectrl and as data terms trace-action and done.

process module TraceCtrl
begin

exports
begin

processes
TraceCtrl

end
imports

SimulatorData,
ArchitecturePrimitives

atoms
trace
no-trace

definitions
TraceCtrl =

(
rec(actionchooser >> tracectrl, action) .
(

trace .
snd(tracectrl >> display, trace-action)

+ no-trace
) .
snd(tracectrl >> actionchooser, done)

) * delta
end TraceCtrl
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The confirmation to the actionchooser is necessary, otherwise it is possible the actionchooser continues and
another message to the display is sent before a trace message is sent, and so a mix-up of the order of the
messages on the display can occur.

We add the communication with tracectrl in the actionchooser directly after action is send to the kernel,
as shown below with existing code in grey.

+ [choose = true] → (
snd(actionchooser >> kernel, action) .
snd(actionchooser >> tracectrl, action) .
rec(tracectrl >> actionchooser, done) .
Choose(false)

)

To module Display we add an alternative for receiving a trace-action message and we add TraceCtrl
to SimulatorSystem. The resulting architecture is shown in figure 4.

Kernel

ActionChooser

Function

ArchitectureShutdown

StartProcess

Display

TraceCtrl

ArchitectureControl

Figure 4. Architecture with tracing

4.4 Random

At this moment it is of no concern whether the user wants to let the actionchooser choose actions randomly,
so this can be kept implicit with the actionchooser. But when we introduce breakpoints in order to stop the
simulator from running randomly at certain moments, we need to know whether the simulator is running
randomly explicitly. So we add a control state to the Choose process of the actionchooser and the
possibility to switch random on and off.

process module ActionChooser
begin

exports
begin

processes
ActionChooser

end
imports

ArchitecturePrimitives,
SimulatorData,
Booleans

atoms
choose-action
random-on
random-off

processes
Choose : BOOLEAN # BOOLEAN
Reset : BOOLEAN
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variables
random : → BOOLEAN
choose : → BOOLEAN

definitions
ActionChooser = Choose(false, false)
Choose(random, choose) =

rec(kernel >> actionchooser, action-choose-list) .
Choose(random, true)

+ [choose = true] → (
choose-action .
(

snd(actionchooser >> kernel, action) .
snd(actionchooser >> tracectrl, action) .
rec(tracectrl >> actionchooser, done) .
Choose(random, false)

+ Reset(random)
)

)
+ Reset(random)
+ [random = true] → (

random-off .
Choose(false, choose)

)
+ [random = false] → (

random-on .
Choose(true, choose)

)
Reset(random) =

rec(kernel >> actionchooser, reset) .
Choose(random, false)

end ActionChooser

4.5 Breakpoints

In order to stop the simulator from running randomly at certain moments we add breakpoints. There are
two type of breakpoints. One is when an action (indicated by the user) gets executed, and the other is when
the list of possible actions contains one or more actions on which the user has set a breakpoint.

To module SimulatorData we add the id breakctrl and as data terms break-action, break end
no-break.

process module BreakCtrl
begin

exports
begin

processes
BreakCtrl

end
imports

SimulatorData,
ArchitecturePrimitives

atoms
break
no-break
break-list
no-break-list

definitions
BreakCtrl =

(
rec(actionchooser >> breakctrl, action) .
(

break .
snd(breakctrl >> display, break-action) .
snd(breakctrl >> actionchooser, break)

+ no-break .
snd(breakctrl >> actionchooser, no-break)

)
+ rec(actionchooser >> breakctrl, action-choose-list) .

(
no-break-list .
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snd(breakctrl >> actionchooser, action-choose-list)
+ break-list .

snd(breakctrl >> display, break) .
snd(breakctrl >> actionchooser, break)

)
) * delta

end BreakCtrl

In module ActionChooser we replace

rec(kernel >> actionchooser, action-choose-list) .
Choose(random, true)

with

rec(kernel >> actionchooser, action-choose-list) .
(

[random = true] → (
snd(actionchooser >> breakctrl, action-choose-list) .
(

rec(breakctrl >> actionchooser, break) .
force-random-off .
present-list .
Choose(false, true)

+ rec(breakctrl >> actionchooser, action-choose-list) .
present-list .
Choose(true, true)

)
)

+ [random = false] → (
present-list .
Choose(false, true)

)
)

and

snd(actionchooser >> tracectrl, action) .
rec(tracectrl >> actionchooser, done) .
Choose(random, false)

with

(
[random = true] → (

snd(actionchooser >> breakctrl, action) .
(

rec(breakctrl >> actionchooser, break) .
force-random-off .
Choose(false, false)

+ rec(breakctrl >> actionchooser, no-break) .
snd(actionchooser >> tracectrl, action) .
rec(tracectrl >> actionchooser, done) .
Choose(true, false)

)
)

+ [random = false] → (
snd(actionchooser >> tracectrl, action) .
rec(tracectrl >> actionchooser, done) .
Choose(false, false)

)
)

We also add the introduced actions forced-random-off and present-list to the atoms section of
the module ActionChooser. The action force-random-off is necessary because it clearly differs from
random-off which is invoked by the user. The action present-list has a more complex
explanation. In the old situation this action could be combined with the receiving of the action-
choose-list, we now hav e to do later in the process. This becomes more clear when we are going to
refine the actions in a later stage (see section 7.1).

To module Display we add alternatives for receiving a break-action and a break message and we add
BreakCtrl to SimulatorSystem. The resulting architecture is shown in figure 5.
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Kernel

ArchitectureShutdownTraceCtrl

Display

Function StartProcess

ArchitectureControlActionChooser

BreakCtrl

Figure 5. Architecture with breakpoints

5. ToolBus Application Design with PSF

We giv e in this section the specification of the PSF ToolBus library which appeared earlier in [15] followed
by a specification of our toy example as ToolBus application for which we specified the architecture in
section 2.2.

5.1 Specification of the PSF ToolBus library

This section presents a specification of a library of interfaces for PSF which can be used as a basis for the
specification of ToolBus applications. This specification does not cover all the facilities of the ToolBus, but
just what is necessary for the project at hand.

5.1.1 Data

First, a sort is defined for the data terms used in the tools. An abstraction is made from the actual data used
by the tools.

data module ToolTypes
begin

exports
begin

sorts
Tterm

end
end ToolTypes

Next, the sorts are introduced for the data terms and identifiers which will be used inside the ToolBus as
well as for communication with the ToolBus.

data module ToolBusTypes
begin

exports
begin

sorts
TBterm,
TBid

end
end ToolBusTypes

The module ToolFunctions provides names for conversions between data terms used outside and inside the
ToolBus.
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data module ToolFunctions
begin

exports
begin

functions
tbterm : Tterm → TBterm
tterm : TBterm → Tterm

end
imports

ToolTypes,
ToolBusTypes

variables
t : → Tterm

equations
[’] tterm(tbterm(t)) = t

end ToolFunctions

The ToolBus has access to several functions operating on different types. Here only the operators for tests
on equality and inequality of terms, will be needed. These are introduced in the module ToolBusFunctions.

data module ToolBusFunctions
begin

exports
begin

functions
equal : TBterm # TBterm → BOOLEAN

end
imports

ToolBusTypes,
Booleans

variables
tb1 : → TBterm
tb2 : → TBterm

equations
[’] equal(tb1, tb1) = true
[’] not(equal(tb1, tb2)) = true

end ToolBusFunctions

5.1.2 Connecting tools to the ToolBus

In figure 6 two possible ways of connecting tools to the ToolBus are displayed. One way is to use a
separate adapter and the other to have a builtin adapter. Tool1 communicates with its adapter over
pipelines.2

ToolBus

P1

Adapter

Tool 1

P2

Tool 2

Adapter

Figure 6. Model of tool and ToolBus interconnection

2. In Unix systems, a pipeline is a means of communication between two processes.
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Next we define the primitives for communication between a tool and its adapter.

process module ToolAdapterPrimitives
begin

exports
begin

atoms
tooladapter-rec : Tterm
tooladapter-snd : Tterm

end
imports

ToolTypes
end ToolAdapterPrimitives

The primitives for communication between a tool and the ToolBus are fixed by the ToolBus design. At this
stage these need to be formally defined in PSF, howev er. These primitives can be used for communication
between an adapter and the ToolBus as well, since the adapter logically takes the place of the tool it is
supposed to connect to the ToolBus.

process module ToolToolBusPrimitives
begin

exports
begin

atoms
tooltb-snd : TBterm
tooltb-rec : TBterm

tooltb-snd-event : TBterm
tooltb-rec-ack-event : TBterm

end
imports

ToolBusTypes
end ToolToolBusPrimitives

Inside a ToolBus script a number of primitives may be used consisting of the actions for communication
between ToolBus processes and their synchronous communication action, the actions used to communicate
with the tools, and the action required to shutdown the ToolBus.

process module ToolBusPrimitives
begin

exports
begin

atoms
tb-snd-msg : TBterm # TBterm
tb-rec-msg : TBterm # TBterm
tb-comm-msg : TBterm # TBterm
tb-snd-msg : TBterm # TBterm # TBterm
tb-rec-msg : TBterm # TBterm # TBterm
tb-comm-msg : TBterm # TBterm # TBterm

tb-snd-eval : TBid # TBterm
tb-rec-value : TBid # TBterm
tb-snd-do : TBid # TBterm
tb-rec-event : TBid # TBterm
tb-snd-ack-event : TBid # TBterm

tb-shutdown
end
imports

ToolBusTypes
communications

tb-snd-msg(tb1, tb2) | tb-rec-msg(tb1, tb2) = tb-comm-msg(tb1, tb2)
for tb1 in TBterm, tb2 in TBterm

tb-snd-msg(tb1, tb2, tb3) | tb-rec-msg(tb1, tb2, tb3) =
tb-comm-msg(tb1, tb2, tb3)
for tb1 in TBterm, tb2 in TBterm, tb3 in TBterm

end ToolBusPrimitives

The ToolBus provides primitives allowing an arbitrary number of terms as parameters for communication
between processes in the ToolBus. Here, the specification only covers the case of two and three term
arguments for the primitives, because versions with more are usually not needed. In order to do better lists
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of terms have to be introduced, which is entirely possible in PSF but an unnecessary complication at this
stage. The two-term version can be used with the first term as a ’to’ or ’from’ identifier and the second as a
data argument. The three-term version can be used with the first term as ’from’, the second as ’to’, and the
third as the actual data argument. If more arguments have to be passed, they can always be grouped into a
single argument.

The module NewTool is a generic module with parameter Tool for connecting a tool to the ToolBus.

process module NewTool
begin

parameters
Tool
begin

processes
Tool

end Tool
exports
begin

atoms
tooltb-snd-value : TBid # TBterm
tooltb-rec-eval : TBid # TBterm
tooltb-rec-do : TBid # TBterm
tooltb-snd-event : TBid # TBterm
tooltb-rec-ack-event : TBid # TBterm

processes
TBProcess

sets
of atoms

TBProcess = {
tb-rec-value(tid, tb), tooltb-snd(tb),
tb-snd-eval(tid, tb), tb-snd-do(tid, tb),
tooltb-rec(tb), tb-rec-event(tid, tb),
tooltb-snd-event(tb), tb-snd-ack-event(tid, tb),
tooltb-rec-ack-event(tb)
| tid in TBid, tb in TBterm

}
end
imports

ToolToolBusPrimitives,
ToolBusPrimitives

communications
tooltb-snd(tb) | tb-rec-value(tid, tb) = tooltb-snd-value(tid, tb)

for t in TBterm, tid in TBid
tooltb-rec(tb) | tb-snd-eval(tid, tb) = tooltb-rec-eval(tid, tb)

for t in TBterm, tid in TBid
tooltb-rec(tb) | tb-snd-do(tid, tb) = tooltb-rec-do(tid, tb)

for t in TBterm, tid in TBid
tooltb-snd-event(tb) | tb-rec-event(tid, tb) = tooltb-snd-event(tid, tb)

for t in TBterm, tid in TBid
tooltb-rec-ack-event(tb) | tb-snd-ack-event(tid, tb) =

tooltb-rec-ack-event(tid, tb) for tb in TBterm, tid in TBid
definitions

TBProcess = encaps(TBProcess, Tool)
end NewTool

The process Tool accomplishes the connection between a process inside the ToolBus and a tool outside the
ToolBus. The process TBProcess encapsulates the process Tool in order to enforce communications and
thereby to prevent communications with other tools or processes. Note that TBProcess is used as the name
of the main process and as the name of the encapsulation set. By doing so, they can both be renamed with a
single renaming. This renaming is necessary if more than one tool is connected to the ToolBus (which is of
course the whole point of the ToolBus).

The module NewToolAdapter is a generic module with parameters Tool and Adapter for connecting a tool
and its adapter.

process module NewToolAdapter
begin

parameters
Tool
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begin
atoms

tool-snd : Tterm
tool-rec : Tterm

processes
Tool

end Tool,
Adapter
begin

processes
Adapter

end Adapter
exports
begin

atoms
tooladapter-comm : Tterm
adaptertool-comm : Tterm

processes
ToolAdapter

sets
of atoms

ToolAdapter = {
tool-snd(t), tooladapter-rec(t),
tool-rec(t), tooladapter-snd(t)
| t in Tterm

}
end
imports

ToolAdapterPrimitives,
ToolBusTypes

communications
tool-snd(t) | tooladapter-rec(t) = tooladapter-comm(t) for t in Tterm
tool-rec(t) | tooladapter-snd(t) = adaptertool-comm(t) for t in Tterm

definitions
ToolAdapter = encaps(ToolAdapter, Adapter || Tool)

end NewToolAdapter

The process ToolAdapter puts an Adapter and a Tool in parallel and enforces communication between them
by an encapsulation. In this case the main process and the encapsulation set have the same name once
more, so that only one renaming is needed.

5.1.3 ToolBus instantiation

The module NewToolBus is a generic module with parameter Application for instantiation of the ToolBus
with an application.

process module NewToolBus
begin

parameters
Application
begin

processes
Application

end Application
exports
begin

processes
ToolBus

end
imports

ToolBusPrimitives
atoms

application-shutdown
tbc-shutdown
tbc-app-shutdown
TB-shutdown
TB-app-shutdown

processes
ToolBus-Control
Shutdown
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sets
of atoms

H = {
tb-snd-msg(tb1, tb2), tb-rec-msg(tb1, tb2),
tb-snd-msg(tb1, tb2, tb3), tb-rec-msg(tb1, tb2, tb3)
| tb1 in TBterm, tb2 in TBterm, tb3 in TBterm

}
TB-H = {

tb-shutdown, tbc-shutdown,
tbc-app-shutdown, application-shutdown

}
P = { TB-shutdown, TB-app-shutdown }

communications
tb-shutdown | tbc-shutdown = TB-shutdown
tbc-app-shutdown | application-shutdown = TB-app-shutdown

definitions
ToolBus =

encaps(TB-H,
prio(P > atoms,

ToolBus-Control
|| disrupt(

encaps(H, Application),
Shutdown

)
)

)
ToolBus-Control = tbc-shutdown . tbc-app-shutdown
Shutdown = application-shutdown

end NewToolBus

A toolbus application can be described more clearly with ToolBus = encaps(H, Application).
The remaining code is needed to force a shutdown of all processes that otherwise would be left either
running or in a state of deadlock after a ToolBus shutdown by the application. When an application needs
to shutdown it performs an action tb-shutdown which will communicate with the action tbc-
shutdown of the ToolBus-Control process, which then performs a tbc-app-shutdown that will
communicate with application-shutdown of the Shutdown process enforcing a disrupt of the
Application process.

In figure 7 an overview is giv en of the import relations of the modules in the PSF ToolBus library. The
module Booleans stems from a standard library of PSF.

psflib

Booleans

ToolFunctions

ToolTypesToolBusTypes

ToolBusFunctions ToolAdapterPrimitivesToolToolBusPrimitivesToolBusPrimitives

NewTool NewToolAdapterNewToolBus

Figure 7. Import graph of the ToolBus library

5.2 Example

As an example of the use of the PSF ToolBus library, the specification is given of an application of which
we specified the architecture in section 2.2, carried out in the form as shown in figure 6. In this example,
Tool1 can either send a ’message’ to Tool2 and then wait for an acknowledgement from Tool2, or it can
send a ’quit’ after which the application will shutdown.

5.2.1 Specification of the tools

The first module defines the data that will be used.
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data module Data
begin

exports
begin

functions
message : → Tterm
ack : → Tterm
quit : → Tterm

end
imports

ToolTypes
end Data

A specification of Tool1 and its adapter is then obtained.

process module Tool1
begin

exports
begin

atoms
snd : Tterm
rec : Tterm

processes
Tool1

end
imports

Data
definitions

Tool1 =
snd(message) .
rec(ack) .
Tool1

+ snd(quit)
end Tool1

process module AdapterTool1
begin

exports
begin

processes
AdapterTool1

end
imports

Data,
ToolFunctions,
ToolAdapterPrimitives,
ToolToolBusPrimitives

definitions
AdapterTool1 =

tooladapter-rec(message) .
tooltb-snd-event(tbterm(message)) .
tooltb-rec-ack-event(tbterm(message)) .
tooladapter-snd(ack) .
AdapterTool1

+ tooladapter-rec(quit) .
tooltb-snd-event(tbterm(quit))

end AdapterTool1

Tool1 and its adapter are combined by importing NewToolAdapter and binding the parameters.

process module Tool1Adapter
begin

imports
NewToolAdapter {

Tool bound by [
tool-snd → snd,
tool-rec → rec,
Tool → Tool1

] to Tool1
Adapter bound by [

Adapter → AdapterTool1
] to AdapterTool1
renamed by [
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ToolAdapter → Tool1Adapter
]

}
end Tool1Adapter

We specify Tool2

process module Tool2
begin

exports
begin

processes
Tool2

end
imports

Data,
ToolFunctions,
ToolToolBusPrimitives

definitions
Tool2 =

tooltb-rec(tbterm(message)) .
tooltb-snd(tbterm(ack)) .
Tool2

end Tool2

5.2.2 Specification of the ToolBus processes

Some identifiers are defined in order to distinguish the messages sent between ToolBus processes
themselves and between ToolBus processes and their accompanying tools. The lowercase identifiers (of
type TBterm) are used with the actions tb-snd-msg and tb-rec-msg. The first argument of a
message will always be the origin of the message, and the second argument will serve as its destination.
Uppercase identifiers (of type TBid) are used as tool identifiers. Strictly speaking these are not necessary,
since there can’t be any communication with any other tool because of encapsulation. By using them,
however, the actions for communication with a tool will have more similarity to the ones used in the
ToolBus.

data module ID
begin

exports
begin

functions
T1 : → TBid
t1 : → TBterm
T2 : → TBid
t2 : → TBterm

end
imports

ToolBusTypes
end ID

For both tools a ToolBus process is defined. The specifications for these processes describe the protocol for
communication between the tools.

process module PTool1
begin

exports
begin

processes
PTool1

end
imports

Tool1Adapter,
ID,
ToolBusPrimitives,
ToolBusFunctions

processes
PT1

definitions
PTool1 = Tool1Adapter || PT1
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PT1 =
tb-rec-event(T1, tbterm(message)) .
tb-snd-msg(t1, t2, tbterm(message)) .
tb-rec-msg(t2, t1, tbterm(ack)) .
tb-snd-ack-event(T1, tbterm(message)) .
PT1

+ tb-rec-event(T1, tbterm(quit)) .
snd-tb-shutdown

end PTool1

process module PTool2
begin

exports
begin

processes
PTool2

end
imports

Tool2,
ID,
ToolBusPrimitives

processes
PT2

definitions
PTool2 = Tool2 || PT2
PT2 =

tb-rec-msg(t1, t2, tbterm(message)) .
tb-snd-eval(T2, tbterm(message)) .
tb-rec-value(T2, tbterm(ack)) .
tb-snd-msg(t2, t1, tbterm(ack)) .
PT2

end PTool2

5.2.3 Specification of the ToolBus application

The ToolBus processes are connected with the tools and together they constitute the process System that
merges the resulting two processes.

process module Tools
begin

exports
begin

processes
System

end
imports

NewTool {
Tool bound by [

Tool → PTool1
] to PTool1
renamed by [

TBProcess → XPTool1
]

},
NewTool {

Tool bound by [
Tool → PTool2

] to PTool2
renamed by [

TBProcess → XPTool2
]

},
ID,
ToolBusFunctions

definitions
System = XPTool1 || XPTool2

end Tools

At this stage renamings are necessary to be able to distinguish the two processes TBProcess (and sets).

The process System is now transformed into a ToolBus application.



- 23 -

process module App
begin

imports
NewToolBus {

Application bound by [
Application → System

] to Tools
}

end App

The main process of this application is ToolBus. A generated animation is shown in figure 8, in which
AdapterTool1 just sent a message it had received from Tool1, to ToolBus process PT1.

PT1

ToolBusControl

Tool1

ToolBusShutdown

PT2

Tool2

AdapterTool1

tooltb−snd−event(T1, tbterm(message))

Figure 8. Animation of the ToolBus specification example

5.2.4 Example as ToolBus application

The application we have specified above has been implemented as an application consisting of three Tcl/Tk
[30] programs (Tool1, its adapter, and Tool2), and a ToolBus script. A screendump of this application at
work together with the viewer3 of the ToolBus is shown in figure 9. The ToolBus script is shown below.
The processes PT1 and PT2 closely resemble the processes PTool1 and PTool2 in our PSF
specification. The execute actions in the ToolBus script correspond to starting of the adapter for Tool1
and starting of Tool2 in parallel with the processes PT1 and PT2 respectively.

process PT1 is
let

T1: tool1adapter
in

execute(tool1adapter, T1?) .
(

rec-event(T1, message) .
snd-msg(t1, t2, message) .
rec-msg(t2, t1, ack) .
snd-ack-event(T1, message)

+ rec-event(T1, quit) .
shutdown("")

) * delta
endlet

process PT2 is
let

T2: tool2
in

execute(tool2, T2?) .
(

3. With the viewer it is possible to step through the execution of the ToolBus script and view the variables of the individual
processes inside the ToolBus.
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Figure 9. Screendump of the example as ToolBus application with viewer

rec-msg(t1, t2, message) .
snd-eval(T2, eval(message)) .
rec-value(T2, value(ack)) .
snd-msg(t2, t1, ack)

) * delta
endlet

tool tool1adapter is { command = "wish-adapter -script tool1adapter.tcl" }
tool tool2 is { command = "wish-adapter -script tool2.tcl" }

toolbus(PT1, PT2)

The actions snd-eval and rec-value differentiate from their equivalents in the PSF specification.
The term eval(message) instead of just message is needed because the interpreter of evaluation
requests that a tool receives from the ToolBus, calls a function with the name it finds as function in this
term. We could have used any name instead of eval provided that Tool2 has got a function with that
name.
Why the same scheme is needed by the ToolBus for rec-value is not known.

The processes in the ToolBus script use iteration and the processes in the PSF specification recursion. In
PSF it is also possible to use iteration in this case, since the processes have no arguments to hold the current
state. On the other hand, in PSF it is not possible to define variables for storing a global state, so when it is
necessary to hold the current state, this must be done through the arguments of a process and be formalized
via recursion.

The last line of the ToolBus script starts the processes PT1 and PT2 in parallel. Its equivalent in the PSF
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specification is the process System.

6. From Architecture to ToolBus Application Design

It is only useful to invest a lot of effort in the architecture if we can relate it to a design on a lower level. In
this section we describe the techniques we use to come from an architecture specification to a ToolBus
application specification. We demonstrate these techniques with our toy example.

6.1 Horizontal Implementation

Given two processes S and I , I is an implementation of S if I is more deterministic (or equivalent). As the
actions S and I perform belong to the same alphabet, S and I belong to the same abstraction level. Such an
implementation relation is called horizontal.

To achieve a horizontal implementation we use parallel composition, which can be used to constrain a
process. Consider process P = a . P, which can do action a at every moment. If we put P in parallel with
the process Q = x . b . Q with communication a | b = c and enforcing the communication by encapsulation,
process P can only do action a whenever process Q has first done action x. So process P is constrained by
Q and P || Q is an horizontal implementation of P, provided Q only interacts with P through b. This form
of controlling a process is also known as superimposition [9] or superposition [19] as composition.

6.2 Vertical Implementation

In [31], action refinement is used as a technique for mapping abstract actions onto concrete processes,
called vertical implementation, which is more fully described in [32]. With vertical implementation we
want to relate processes that belong to different abstraction levels, where the change of level usually comes
with a change of alphabet. For such processes we like to dev elop vertical implementation relations that,
given an abstract process S and a concrete process I , tells us if I is an implementation for the specification
S. More specifically, we want to develop a mapping of abstract actions to sequences of one or more
concrete actions so that S and I are vertical bisimular.

We giv e a rationale of vertical implementation. Consider the processes P = a . b with a an internal action
and Q = c . d . e with internal actions c, and d . If we refine abstract action a from process P to the
sequence of concrete actions c . d and rename action b to e we obtain process Q. We consider the
processes P and Q vertical bisimular with respect to the mapping consisting of the above refinement and
renaming.

We can explain the notion of vertical bisimular by the following. We hide the internal action a of process
P by replacing it with the silent step τ to obtain P = τ . b. Applying the algebraic law x . τ = x gives us
P = τ . τ . b. If we now replace the first τ with c and the second with d , and rename b into e we obtain the
process Q. With H as hide operator and R as renaming operator we can prove that R{b→e}(H{a}(P)) and
H{c,d}(Q) are rooted weak bisimular. So vertical bisimulation is built on rooted weak bisimulation as
horizontal implementation relation.

6.3 Example

Take the process Component1 from the architecture of our toy example.

Component1 =
send-message .
snd(c1 >> c2, message) .
rec(c2 >> c1, ack) .
Component1

+ stop .
snd-quit

We can make a virtual implementation by applying the following mapping.

send-message → tb-rec-event(T1, tbterm(message))
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snd(c1 >> c2, message)→ tb-snd-msg(t1, t2, tbterm(message))
rec(c2 >> c1, ack) → tb-rec-msg(t2, t1, tbterm(ack)) .

tb-snd-ack-event(T1, tbterm(message))
stop → tb-rec-event(T1, tbterm(quit))
snd-quit → snd-tb-shutdown

And renaming Component1 into PT1 gives the following result.

PT1 =
tb-rec-event(T1, tbterm(message)) .
tb-snd-msg(t1, t2, tbterm(message)) .
tb-rec-msg(t2, t1, tbterm(ack)) .
tb-snd-ack-event(T1, tbterm(message)) .
PT1

+ tb-rec-event(T1, tbterm(quit)) .
snd-tb-shutdown

We now make a horizontal implementation by constraining PT1 with Tool1Adapter.

PTool1 = Tool1Adapter || PT1

An implementation for Component2 can be obtained in a similar way.

7. System Specification of the Simulator

We take the specification of the architecture of the simulator and turn it into a specification of a ToolBus
application with the use of the techniques described in the previous chapter.

7.1 Refining

We show here the mapping for the virtual implementation of the architecture specification. We start with
some default mappings that only apply when there are no other mappings to apply.

snd($1 >> $2, $3) → tb-snd-msg($1, $2, tbterm($3))
rec($1 >> $2, $3) → tb-rec-msg($1, $2, tbterm($3))

The $n on the left hand side represent matched terms that have to be filled in on the right hand side. Below
the mappings per module are given.

module Kernel

compute-choose-list →
tb-snd-eval(KERNEL, tbterm(compute-choose-list))

action-choose-list → tb-rec-value(KERNEL, tbterm(action-choose-list))
halt → tb-rec-value(KERNEL, tbterm(halt))
rec(actionchooser >> kernel, action) →

tb-rec-msg(actionchooser, kernel, tbterm(action)) .
tb-snd-do(KERNEL, tbterm(action))

rec(function >> kernel, quit) →
tb-rec-msg(function, kernel, tbterm(quit)) .
tb-snd-do(KERNEL, tbterm(quit))

snd-quit → snd-tb-shutdown
rec(function >> kernel, process-status) →

tb-rec-msg(function, kernel, tbterm(process-status)) .
tb-snd-eval(KERNEL, tbterm(process-status)) .
tb-rec-value(KERNEL, tbterm(process-status))

rec(startprocess >> kernel, start-process)→
tb-rec-msg(startprocess, kernel,

tbterm(start-process)) .
tb-snd-do(KERNEL, tbterm(start-process))

module StartProcess

select-start-process →
tb-rec-event(STARTPROCESS, tbterm(start-process)) .
tb-snd-ack-event(STARTPROCESS, tbterm(start-process))

module ActionChooser

force-random-off → tb-snd-do(ACTIONCHOOSER, tbterm(random-off))
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present-list → tb-snd-do(ACTIONCHOOSER, tbterm(action-choose-list))
choose-action → tb-rec-event(ACTIONCHOOSER, tbterm(action)) .

tb-snd-ack-event(ACTIONCHOOSER, tbterm(action))
rec(kernel >> actionchooser, reset) →

tb-rec-msg(kernel, actionchooser, tbterm(reset)) .
tb-snd-do(ACTIONCHOOSER, tbterm(reset))

random-off → tb-rec-event(ACTIONCHOOSER, tbterm(random-off)) .
tb-snd-ack-event(ACTIONCHOOSER, tbterm(random-off))

random-on → tb-rec-event(ACTIONCHOOSER, tbterm(random-on)) .
tb-snd-ack-event(ACTIONCHOOSER, tbterm(random-on))

module Function

push-quit → tb-rec-event(FUNCTION, tbterm(quit)) .
tb-snd-ack-event(FUNCTION, tbterm(quit))

push-process-status →
tb-rec-event(FUNCTION, tbterm(process-status)) .
tb-snd-ack-event(FUNCTION, tbterm(process-status))

module TraceCtrl

rec(actionchooser >> tracectrl, action) →
tb-rec-msg(actionchooser, tracectrl, tbterm(action)) .
tb-snd-eval(TRACECTRL, tbterm(action))

trace → tb-rec-value(TRACECTRL, tbterm(trace))
no-trace → tb-rec-value(TRACECTRL, tbterm(no-trace))

module BreakCtrl

rec(actionchooser >> breakctrl, action) →
tb-rec-msg(actionchooser, breakctrl, tbterm(action)) .
tb-snd-eval(BREAKCTRL, tbterm(action))

break → tb-rec-value(BREAKCTRL, tbterm(break))
no-break → tb-rec-value(BREAKCTRL, tbterm(no-break))
rec(actionchooser >> breakctrl, action-choose-list)→

tb-rec-msg(actionchooser, breakctrl,
tbterm(action-choose-list)) .

tb-snd-eval(BREAKCTRL, tbterm(action-choose-list))
break-list → tb-rec-value(BREAKCTRL, tbterm(break))
no-break-list → tb-rec-value(BREAKCTRL, tbterm(action-choose-list))

module Display

rec($1 >> display, $2)→
tb-rec-msg($1, display, tbterm($2)) .
tb-snd-do(DISPLAY, tbterm($2))

We rename all component modules and their main processes by putting a P in front of the name, indicating
a Process in the ToolBus, to distinguish them from the tools for which we use a T in front of the name and
possible adapters for which we use an A.

7.2 Constraining

We constrain the ToolBus processes obtained in the previous section with the specification of the tools. We
confine ourselves to the constraining of the process PKernel, since the constraining of the other processes
is rather straightforward and later we shall refine the Kernel even further. We show the module for the
Kernel below. Here the main process PT-Kernel is the parallel composition of PKernel with the
constraining process TKernel.

process module PKernel
begin

exports
begin

processes
PT-Kernel

end
imports

SimulatorData,
ToolBusPrimitives,
ToolFunctions,
TKernel,
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Booleans
processes

PKernel
Kernel : BOOLEAN

variables
wait : → BOOLEAN

definitions
PT-Kernel = PKernel || TKernel
PKernel = Kernel(true)
Kernel(wait) =

(
[wait = false] → (

tb-snd-eval(KERNEL, tbterm(compute-choose-list)) .
(

tb-rec-value(KERNEL, tbterm(action-choose-list)) .
tb-snd-msg(kernel, actionchooser, tbterm(action-choose-list))

+ tb-rec-value(KERNEL, tbterm(halt)) .
tb-snd-msg(kernel, display, tbterm(halt))

)
) .
Kernel(true)

+ [wait = true] → (
tb-rec-msg(actionchooser, kernel, tbterm(action)) .
tb-snd-do(KERNEL, tbterm(action)) .
Kernel(false)

+ tb-rec-msg(function, kernel, tbterm(quit)) .
tb-snd-do(KERNEL, tbterm(quit)) .
snd-tb-shutdown

+ tb-rec-msg(function, kernel, tbterm(process-status)) .
tb-snd-eval(KERNEL, tbterm(process-status)) .
tb-rec-value(KERNEL, tbterm(process-status)) .
tb-snd-msg(kernel, display, tbterm(process-status)) .
Kernel(true)

+ tb-rec-msg(startprocess, kernel, tbterm(start-process)) .
tb-snd-do(KERNEL, tbterm(start-process)) .
tb-snd-msg(kernel, display, tbterm(start-process)) .
tb-snd-msg(kernel, actionchooser, tbterm(reset)) .
Kernel(false)

)
)

end PKernel

Were the tools TKernel is specified as follows.

process module TKernel
begin

exports
begin

processes
TKernel

end
imports

SimulatorData,
ToolToolBusPrimitives,
ToolFunctions

atoms
action-choose-list
halt

definitions
TKernel =

tooltb-rec(tbterm(compute-choose-list)) .
(

action-choose-list .
tooltb-snd(tbterm(action-choose-list))

+ halt .
tooltb-snd(tbterm(halt))

) . TKernel
+ tooltb-rec(tbterm(action)) .

TKernel
+ tooltb-rec(tbterm(process-status)) .

tooltb-snd(tbterm(process-status)) .
TKernel

+ tooltb-rec(tbterm(start-process)) .
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TKernel
+ tooltb-rec(tbterm(quit))

end TKernel

7.3 The ToolBus Application

We show how the processes for the tools are imported and put in parallel in the module SimulatorSystem.

process module SimulatorSystem
begin

exports
begin

processes
SimulatorSystem

end
imports

⋅
⋅
⋅

NewTool {
Tool bound by [

Tool → PT-Kernel
] to PKernel
renamed by [

TBProcess → Kernel
]

},
⋅
⋅
⋅

definitions
SimulatorSystem =

Kernel
|| StartProcess
|| ActionChooser
|| Function
|| TraceCtrl
|| BreakCtrl
|| Display

end SimulatorSystem

And finally we put this in the ToolBus environment.

process module Simulator
begin

imports
NewToolBus {

Application bound by [
Application → SimulatorSystem

] to SimulatorSystem
renamed by [

ToolBus → Simulator
]

}
end Simulator

7.4 Further Specification of the the Kernel Tool

We want to split the Kernel tool into a separate adapter and tool, so that a final implementation of the kernel
can be used in other applications. We do this again by applying the refining and constraining techniques.
We take the specification of the Kernel tool as given in section 7.2 and apply the following mapping, where
the first rule is a default mapping.

tooltb-rec(tbterm($1)) →
tooltb-rec(tbterm($1)) .
tooladapter-snd($1)

action-choose-list → tooladapter-rec(action-choose-list)
halt → tooladapter-rec(halt)
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tooltb-rec(tbterm(process-status)) →
tooltb-rec(tbterm(process-status)) .
tooladapter-snd(process-status) .
tooladapter-rec(process-status)

By renaming TKernel into AKernel we obtain the adapter of the Kernel as shown below.

process module AKernel
begin

exports
begin

processes
AKernel

end
imports

SimulatorData,
ToolAdapterPrimitives,
ToolToolBusPrimitives,
ToolFunctions

definitions
AKernel =

tooltb-rec(tbterm(compute-choose-list)) .
tooladapter-snd(compute-choose-list) .
(

tooladapter-rec(action-choose-list) .
tooltb-snd(tbterm(action-choose-list))

+ tooladapter-rec(halt) .
tooltb-snd(tbterm(halt))

) . AKernel
+ tooltb-rec(tbterm(action)) .

tooladapter-snd(action) .
AKernel

+ tooltb-rec(tbterm(process-status)) .
tooladapter-snd(process-status) .
tooladapter-rec(process-status) .
tooltb-snd(tbterm(process-status)) .
AKernel

+ tooltb-rec(tbterm(start-process)) .
tooladapter-snd(start-process) .
AKernel

+ tooltb-rec(tbterm(quit)) .
tooladapter-snd(quit)

end AKernel

Now we specify the new Kernel tool.

process module TKernel
begin

exports
begin

atoms
snd : Tterm
rec : Tterm

processes
TKernel

end
imports

SimulatorData
definitions

TKernel =
rec(compute-choose-list) .
(

snd(action-choose-list)
+ snd(halt)
) . TKernel

+ rec(action) .
TKernel

+ rec(process-status) .
snd(process-status) .
TKernel

+ rec(start-process) .
TKernel

+ rec(quit)
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end TKernel

We constrain the adapter with the tool as follows.

process module TA-Kernel
begin

imports
NewToolAdapter {

Tool bound by [
tool-snd → snd,
tool-rec → rec,
Tool → TKernel

] to TKernel
Adapter bound by [

Adapter → AKernel
] to AKernel
renamed by [

ToolAdapter → TA-Kernel
]

}
end TA-Kernel

And we change in the module PKernel the constraining by TKernel into TA-Kernel.

A generated animation of the complete specification of the simulator as ToolBus application is shown in
figure 10.

TBreakCtrl

ToolBusControl

PFunction

TStartProcess

TKernel

TDisplay

TTraceCtrl

PActionChooser

PTraceCtrl

PBreakCtrl

PStartProcess

PDisplay

PKernel

TFunction

ToolBusShutdown

AKernel

TActionChooser

Figure 10. System design of the simulator4

4. Generated with a left to right orientation instead of top to bottom
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8. Implementation of the Simulator

The specification of the tools in the ToolBus application specification of the simulator is fine enough to
proceed with the implementation of the simulator. Although the specification of the kernel is far too simple
for such a complex tool, it is satisfactory here because we use the old simulator as base for the new
implementation.

8.1 Kernel

Using the code of the old simulator as base we obtain an implementation of the kernel by doing the
following

• remove the graphical user interface

• take out the embedded state machine

• add a component interface for communication with the outside world.

Of course the above three items are strongly related. An event comes from the gui and on handling may
cause a change of state in the state machine.

In the implementation of the kernel an event comes through the component interface. This event is handled
and if necessary a reply is send back through the component interface. The component interface really is
an extension of the interface used in the coupling of the simulator with the animation. The function of the
state machine is lifted from the kernel and is now served by the ToolBus.

The adapter of the kernel is implemented in Perl [35] on top of the general Perl adapter provided with the
ToolBus. Perl is chosen because of its powerful regular expression matching and environment interaction.

8.2 Other Tools

The other tools are small and simple, and so they are easy to implement. We therefore do not give a further
description of their implementation. We hav e chosen to implement them in Tcl/Tk, mainly because of the
ease to build a gui within this language, and its widespread availability.

8.3 ToolBus Script

The ToolBus script for controlling the separate tools of the simulator can be derived from the ToolBus
processes in the specification of the simulator as ToolBus application. This transformation is done by hand
mainly because in the specification recursion is used to hold the state of a process and in a ToolBus script
this has to be done with iteration and state variables.

8.4 Aggregation of Gui’s

Except for the kernel, each tool has its own graphical user interface (gui), what looks rather shabby. So we
like to integrate them into one big gui. In Tcl/Tk it is possible to indicate that a frame window is to serve as
a container of another application and that a toplevel window is to be used as the child of such a container
window. Following this scheme, we have implemented a separate tool that does the layout of several
container windows. This layout can be resized as a whole and some windows can be resized in relation to
each other through the use of paned windows.5 A user preferring a different layout can implement another
version similar to this.

For a toplevel to act as a child of a container window, it needs the window id of the parent. So the
aggregated gui implementation has to communicate a window id to each child. The ToolBus script has
been supplied with an initialization phase that receives all the id’s of the container windows from the
aggregated gui and distributes them over the tools. Each tool now first receives its parent id before doing

5. A paned window consists of two horizontal or vertical panes separated by a movable sash, and each pane containing a window.
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anything else. The resulting gui is shown in figure 11.

Figure 11. Aggregation of gui’s

8.5 Simulator

To control the execution of the ToolBus we use a Perl script that sets up the environment in which the
ToolBus and all the tools that make up our application run. This environment is needed to distribute
arguments given on the command line to the different tools.

9. Extension with History Mechanism

In this section we describe the extension of the simulator with an history mechanism. The changes that have
to be made to all levels of the design process are dealt with. This will show the impact of a software
ev olution process iteration on our design process.

9.1 Architecture Specification

The history actions consist of undo, redo, mark, and goto mark. The logical place for keeping an history is
the kernel. We can let the kernel save the current state after every action it has done, but when running
randomly this can use up a lot of memory and usually with an undo the user wants to jump directly to the
state before random mode was started. Since the kernel does not know when the simulator is running
randomly, it has to be informed when to save the current state. The action undo, redo, and goto mark, can
all be seen as a goto to a certain state. So it suffices to add only a save and goto request to the kernel.
Below we show the changes for the kernel with existing code in grey.

Kernel = Kernel(true)
Kernel(wait) =

(
[wait = false] → (

compute-choose-list .
(

action-choose-list .
snd(kernel >> actionchooser, action-choose-list)
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+ halt .
snd(kernel >> actionchooser, halt) .
snd(kernel >> display, halt)

)
) .
Kernel(true)

+ [wait = true] → (
⋅
⋅
⋅

+ rec(actionchooser >> kernel, save) .
Kernel(true)

+ rec(actionchooser >> kernel, goto) .
Kernel(false)

)
)

Note that we also send a halt to the actionchooser now. Previously, in this case there was nothing to do for
the actionchooser, but now a history action can take place.

A history action can be seen as just another action the user can choose from the all possible actions, so the
logical place for such an action is in the actionchooser.

ActionChooser = Choose(false, false)
Choose(random, choose) =

rec(kernel >> actionchooser, action-choose-list) .
⋅
⋅
⋅

+ rec(kernel >> actionchooser, halt) .
force-random-off .
Choose(false, true)

+ [choose = true] → (
choose-action .
snd(actionchooser >> kernel, action) .

⋅
⋅
⋅

+ snd(actionchooser >> kernel, save) .
Choose(random, true)

+ [random = false] → (
snd(actionchooser >> kernel, goto) .
Choose(false, false)

)
)

+ rec(kernel >> actionchooser, reset) .
Choose(random, false)

+ [random = true] → (
random-off .
Choose(false, choose)

)
+ [random = false] → (

random-on .
Choose(true, choose)

)

We hav e to turn off the random mode on a halt so that a history action can be chosen. Note that the
actionchooser can do a save also in random mode, what makes other history saving schemes possible, for
instance every n steps.

9.2 ToolBus Application Specification

To obtain a ToolBus Application specification with added history mechanism from the architecture
specification, we extend the mapping from section 7.1 with the following rules.

module Kernel

rec(actionchooser >> kernel, save) →
tb-rec-msg(actionchooser, kernel, tbterm(save)) .
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tb-snd-do(KERNEL, tbterm(save))
rec(actionchooser >> kernel, goto) →

tb-rec-msg(actionchooser, kernel, tbterm(goto)) .
tb-snd-do(KERNEL, tbterm(goto))

module ActionChooser

save → tb-rec-event(ACTIONCHOOSER, tbterm(save)) .
tb-snd-ack-event(ACTIONCHOOSER, tbterm(save))

goto → tb-rec-event(ACTIONCHOOSER, tbterm(goto)) .
tb-snd-ack-event(ACTIONCHOOSER, tbterm(goto))

The adapter and the kernel tool can simply be extended with alternatives for handling a save and goto as
follows.

AKernel =
⋅
⋅
⋅

+ tooltb-rec(tbterm(save)) .
tooladapter-snd(save) .
AKernel

+ tooltb-rec(tbterm(goto)) .
tooladapter-snd(goto) .
AKernel

TKernel =
⋅
⋅
⋅

+ rec(save) .
TKernel

+ rec(goto) .
TKernel

The adaptation of the actionchooser tool is slightly more complicated because of the distinguishing
between the cases when there is a list of actions to choose from available and when there is not.

TActionChooser = Choose(false)
Choose(random) =

tooltb-rec(tbterm(action-choose-list)) .
(

[random = true] → (
⋅
⋅
⋅

)
+ [random = false] → (

tooltb-snd-event(tbterm(save)) .
tooltb-rec-ack-event(tbterm(save)) .
(

tooltb-snd-event(tbterm(random-on)) .
tooltb-rec-ack-event(tbterm(random-on)) .
tooltb-snd-event(tbterm(action)) .
tooltb-rec-ack-event(tbterm(action)) .
Choose(true)

+ tooltb-snd-event(tbterm(action)) .
tooltb-rec-ack-event(tbterm(action)) .
Choose(random)

+ tooltb-rec(tbterm(reset)) .
Choose(random)

+ History
)

)
)

+ [random = false] → (
⋅
⋅
⋅

)
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+ [random = true] → (
⋅
⋅
⋅

)
+ tooltb-rec(tbterm(reset)) .

Choose(random)
+ [random = false] → (

History
)

History =
tooltb-snd-event(tbterm(goto)) .
tooltb-rec-ack-event(tbterm(goto)) .
Choose(false)

The actionchooser tool only does a save when random mode is off, and so constrains the ToolBus process.

9.3 Implementation

In order to distinguish the different saves of history we need an unique id for every save. Then a goto send
by the actionchooser can be supplied with an id so that the kernel can jump to the right saved history.

The actionchooser needs to generate these id’s. We hav e implemented the id’s as natural numbers and use
ordering for easy lookups by the kernel. A mark of a saved history is done in the actionchooser by pairing
this mark with the id of that save.

The history mechanism in the kernel is based on the history mechanism of the old simulator with only a
few adaptations since some functionality is taken over by the actionchooser.

The gui of the history mechanism is implemented as a separate part of the actionchooser as shown in figure
12.

Figure 12. Aggregation of gui’s with history

10. Coupling to Animation

The implementation of the old simulator coupled to the animation was done through the ToolBus as
described in [13]. With that implementation the user could switch between choosing actions through the
animation or from a list of actions. For our new implementation we have a choice from three possibilities:

• replacement of the actionchooser with the animation,

• use of two choosers controlled by the ToolBus,

• combination of the two choosers in one tool.

We choose to combine the two choosers, because both are implemented in Tcl/Tk and therefore the
animation can be implemented as a toplevel window in the actionchooser with easy control of both
choosers, and without change in the graphical user interface. And with this choice there is no need for
adaptation of the architecture either.
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11. Features not Implemented

Here we mention the features of the old simulator that are not implemented by the new simulator because
they are seldom used. We giv e some indications on how these features can be implemented.

weighted random
Normally all actions have equal chance to be picked randomly. With weighted random the
position of an action in the process tree is taken into account. For instance, an action in parallel
with a process that spans many actions sees its chance to be chosen reduced a lot by all these
actions, but with weighted random its chance stays the same, and the actions of the parallel
process get a combined weight equal to the weight of that one action.
This can easily be implemented by letting the kernel send weights with each action in the action-
choose-list.

(re)load specification
Because of the very short start up time of the old simulator, this feature is seldom used. The start
up time of the new simulator does not differ much.
It can be implemented by letting the kernel do a clean up and start with a new specification or by
shooting off the kernel and starting a new one.

trace to standard output / from standard input
With trace to standard output every step of the simulator can be recorded and played back with
trace from standard input. This can be used for demo’s or for testing starting at a certain point
ev ery time, which also can be done with a mark on a saved history. Although these features are
seldom used, they can be very convenient. Especially trace form standard input, because with
that we can build applications with a stateless kernel for not too large simulations where a
complete trace is fed to the kernel everytime together with a new action, such as a demo on the
world wide web. So this probably will be implemented some time.
Trace to standard output can be implemented by embedding a monitor in the ToolBus that record
all necessary actions, and trace from standard input can be put in place of the actionchooser.

12. Comparison of Implementations

In table 1 we compare the two implementation by lines of code. The new implementation takes
considerably less lines of code mainly because Tcl/Tk and Perl code as TB scripts are very expressive, but
it is also caused by the reduction of the complexity of the code. The left out features also play a role here
but not by a large amount.

Table 1. Lines of code of the implementations

lines of code

old new
language

C 21076 13884

Tcl/Tk 1550

Perl 179

ToolBus script 281

total 21076 15894

The new implementation should be easier to maintain because of the reduction in lines of code and
complexity, although it requires the knowledge of several more implementation languages. The
specifications of the architecture and the simulator as ToolBus application play an important role here, since
they can be used not only to get familiar with the design but also for testing changes and new features.

The graphical user interface has improved a lot, but it can also easily be altered. It should not be difficult to
make an implementation that can be customized according to the preferences of each user.
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The division in components has made reuse of parts of the implementation far more easier. It can even be
used as a framework for simulation of other languages similar to PSF or new versions of PSF by only
providing a different kernel.

The trade-off is that the new implementation is considerably slower, about a factor of thirty. This is due to
the fact that this implementation consists of many processes running at the same time and the inter-process
communications take up a lot of time. For working interactively this is not a problem, but for large random
simulations, for instance validation testing, it is too slow.

13. Related Work

In literature several architecture description languages have been proposed and some are based on a process
algebra, such as Wright [2], Darwin [20], and PADL [7]. A comparison of several ADL’s can be found in
[23]. Most of the ADL’s do not have any or very little support for refinement. SADL [25][26] however,
has been specially designed for supporting architecture refinement. In SADL, different levels of
specifications are related by refinement mappings, but the only available tool is a checker.

Formal development techniques such as B [1], VDM [16], and Z [10] provide refinement mechanisms, but
they do not have support for architecture descriptions. The π -Method [27] has been built from scratch to
support architecture-centric formal software engineering. It is based on the higher-order typed π -calculus
and mainly built around the architecture description language π -ADL [28] and the architecure refinement
language π -ARL [29]. Tool support comes in the form of a visual modeller, animator, refiner, and code
synthesiser.

LOTOS [8], a simular specification language to PSF, is used in [17] for the formal description of
architectural styles as LOTOS patterns, and in [33] it is used as an ADL for the specification of middleware
behaviour.

14. Conclusions

The development of the architecture of the simulator in the form of a specification in PSF turned out very
well. We were able to start with a simple architecture and extend it with more functionality without any
difficulties. The transition from architecture to system design in the form of a ToolBus application
specification by means of vertical and horizontal implementation proved to be succesful. The extension
with the history mechanism showed that adding functionality to a finished product did not lead to any
problems in the software development process. The PSF Toolkit played an important role. The simulation
and animation provided a good view of the behavior of the specifications. A change in a specification could
be tested on the fly because of the automatic generation of animations. These animations can be very
useful for someone who has to adapt the software product and who is not familiar with it. The animation of
the architecture can also be used for communicating the design to the stakeholders in the development
process.

The implementation of the simulator has improved a lot, especially its interface. The coupling with
animation is smoother since in the old situation there was one chooser from the simulator and one from the
animation and a switch over was needed to use the other chooser, now the two choosers are integrated in
one tool and can be used simultaneously. The maintainability of the simulator has increased caused by the
division into components and the reduction in complexity, but mostly by the specification of the
architecture and system design. Although the new implementation is much slower, it still has a good
performance when working interactively and for small random simulations.

Future work may concentrate on other system design models than the ToolBus. Here we did not do any
refining of the specification of the components, since they were not useful here. But such refinements may
make use of certain styles or patterns and be applied on different levels of the design. Although the tools
from the PSF Toolkit were sufficient for the work we have done sofar, future work may ask for more
support. We think of a tool for the automic applications of mappings. Here we used an ad hoc tool only for
checking of the mappings.
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