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Abstract

Threads as contained in a thread algebra are used for the modeling of sequential
program behavior. A thread that may use a counter to control its execution is
called a ‘one-counter thread’. In this paper the decidability of a certain form of
risk assessment for one-counter threads is proved. This follows from a general
property of the traces of one-counter threads: if a state is reachable from some
initial state, then it is also reachable along a path in which all counter values stay
below a fixed bound that depends only on the initial and final counter value. This
property is based on a result for w-one counter machines by Rosier and Yen (1987).

1 Introduction

Threads as contained in a thread algebra are used for the modeling of sequential pro-
gram behavior. Threads may make use of services such as a counter or a stack to control
their execution. A regular thread using a counter is called a ‘one-counter thread’. One-
counter threads form a proper subclass of the pushdown threads as studied in [3], i.e.
regular threads that may use a stack over a finite sort. In that paper it is shown that
equality of pushdown threads is decidable, while their inclusion is not. The latter un-
decidability result even holds for one-counter threads (of course, a counter is similar to
a stack over a one-element data type).

In this paper the decidability of a certain form of risk assessment for one-counter
threads is proved. We assume that risks are modeled by the execution of an action
risk, and the question is to forecast the execution of risk given the specification of the
thread under execution. For pushdown threads this type of forecasting is decidable:
rename the action(s) to be forecast and decide whether the thread thus obtained equals
the original one. Forecasting becomes much more complicated if a thread may contain
test actions that yield a reply according to the result of this type of forecasting. For
example, assume that a thread may contain a test action ok that yields true if its true-
branch does not execute risk, and false otherwise. Then a current test action ok in the
code to be inspected may yield true because a future one will yield false. The reply to
these ok actions can be modeled using a risk assessment service. For regular threads,
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such a service has a decidable reply function [4], while for pushdown threads this is
still an open question. In this paper we show that the associated service is decidable
for one-counter threads, thereby answering one of the open questions in [4].

Our modeling of risk assessment — that is, the existence of a test action ok and
a risk assessment service as described above — was introduced in [7]. This modeling
was inspired by Cohen’s well-known impossibility result on virus detection [8], first
described in 1984. Essentially, Cohen’s result establishes the non-existence of a test
that decides whether or not a code fragment is virus-free. This point will be elaborated
on in our conclusions.

In technical terms the decidability result of the present paper is based on a reach-
ability result for so-called w-one counter machines, proved by Rosier and Yen [12] in
1987. This result implies a general property of the traces of one-counter threads: if a
state is reachable from some initial state, then it is also reachable along a path in which
all counter values stay below a fixed bound that depends only on the initial and final
counter value.

The paper is structured as follows. In the next section we introduce the basics of
thread algebra and services, and some auxiliary definitions. Then, in Section 3, we
discuss one-counter threads and the above-mentioned reachability result. In Section 4
we recall that risk assessment for regular threads is decidable and come up with a
new short proof of this fact. Furthermore, we use our proof technique to show the
decidability of risk assessment for one-counter threads. Finally, in Section 5 we end
with some conclusions.

2 Threads and Services

In this section we introduce the basics of thread algebra and thread-service composition.
For a general introduction to these matters we refer to [11]. Finally we present some
auxiliary definitions that are used in the remainder of the paper.

2.1 Basic Thread Algebra

Basic Thread Algebra (BTA) is a form of process algebra which is tailored to the
description of sequential program behavior. Based on a set A of actions, it has the
following constants and operators:

e the termination constant S,
e the deadlock or inaction constant D,

e for each a € A, a binary postconditional composition operator <l a > _.

We use action prefizing a o P as an abbreviation for P < a > P and take o to bind
strongest. Furthermore, for n > 1 we define a” o P by a' o P =ao P and a0 P =
ao (a" o P).

The operational intuition is that each action represents a command which is to be
processed by the execution environment of the thread. The processing of a command
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may involve a change of state of this environment.! At completion of the processing
of the command, the environment produces a reply value true or false. The thread
P <al> @ proceeds as P if the processing of a yields true, and it proceeds as @ if the
processing of a yields false.

Every thread in BTA is finite in the sense that there is a finite upper bound to
the number of consecutive actions it can perform. The approzimation operator w :
N x BTA — BTA gives the behavior up to a specified depth. It is defined by

1. 7(0,P) = D,
2. 7(n+1,S) =S, n(n+1,D) =D,
3. m(n+1,P<dalQ)=mn(n,P)La>n(n,Q),

for P,@ € BTA and n € N. We further write 7, (P) instead of 7(n, P). We find that
for every P € BTA, there exists an n € N such that

Ta(P) = i1 (P) = --- = P.

Following the metric theory of [1] in the form developed as the basis of the intro-
duction of processes in [5], BTA has a completion BTA® which comprises also the
infinite threads. Standard properties of the completion technique yield that we may
take BTA® as the cpo consisting of all so-called projective sequences:?

BTA® = {(Py)nen | Vn € N (P, € BTA & m,(P,11) = P,)}.

For a detailed account of this construction see [2, 13].

Overloading notation, we now define the constants and operators of BTA on BTA*:

1. b=(D,D,...)and S=(D,S,S,...),
2. (Pn)nEN Jdal (Qn)neN = (Rn)neN with Ry = D and Ryj1=P,<dab Qn,

3. T((Pm)men) = (Poy- -y Pue1, Py Ppy Py ...

The elements of BTA are included in BTA® by a mapping following this definition. It
is not difficult to show that the projective sequence of P € BTA defined thus equals
(7 (P))nen- We further use this inclusion of finite threads in BTA® implicitly and
write P, (@, ... to denote elements of BTA.

We define the set Res(P) of residual threads of P inductively as follows:

1. P € Res(P),

2. @ <a> R € Res(P) implies Q € Res(P) and R € Res(P).

'For the definition of threads we completely abstract from the environment. In Section 2.2 we define
services which model (part of) the environment, and thread-service composition.

2The cpo is based on the partial ordering C defined by D C P, and P C P', Q C Q' implies
PLa>QEP dal Q.
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A residual thread may be reached (depending on the execution environment) by per-
forming zero or more actions. A thread P is regular if Res(P) is finite.

A finite linear recursive specification over BTA® is a set
{r =ty | x € Var}

of equations for a finite set Var of variables, where all ¢, are terms of the form S, D,
or y lal>z with y,z € Var. Finite linear recursive specifications represent continuous
operators having unique fixed points [13]. In reasoning with finite linear specifications,
we shall identify variables and their fixed points. For example, we say that = s the
thread defined by x = aox instead of stating that some thread P equals the fixed point
for = in the finite linear specification £ = a o .

Proposition 1 For all P € BTA®, P is regular if and only if P is the solution of a
finite linear recursive specification.

Proof. Easy, see e.g., [13, 11].

2.2 Services and Thread-Service Composition

Services model (part of) the execution environment of threads. In order to define the
interaction between a thread and a service, we let actions be of the form c.m where ¢
is the so-called channel or focus, and m is the co-action or method.

A service, or a state machine, is a pair H = (X, F') consisting of a set ¥ of co-actions
and a reply function F' that gives for each non-empty finite sequence of co-actions from
3 a reply true or false. These sequences represent the history of the service: on input
0 = mj...mgy1, for some k > 0, the function F' gives the reply value of the service
for method my41 if my ... my were called before. We shall write #H, for service H with
history o, and H for the service H, where € is the empty sequence, thus the service H
in initial state.

For a service H = (X, F) and a thread P, P /. H, represents P using the service
‘H, via channel c¢. The defining rules are:

S/cHs=S,

D/c U:Dv
(PDdm® Q) feHy = (PeHy) 1dm > (Q [ Hy) it d#d,
(Pdem>Q)/cHoe =P [/cHem ifmeXand F(om) = true,
(Pdeem>Q) /e Hoe =Q /e Hom ifm € X and F(om) = false,
(PLem>Q)/cHe =D ifm¢g3.

The operator /. is called the use operator and stems from [6]. An expression P /. H,
is sometimes referred to as thread-service composition.

The use operator is expanded to infinite threads P by stipulating

P [cHe = (mn(P) [c Ho)nen:
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As a consequence, P /. H = D if for every n, m,(P) /. H = D. Note that this is the
case if all actions of P are processed by the reply function of # (via channel c).

In Section 3 we give some simple examples of thread-service composition.

2.3 Auxiliary Definitions
In order to describe various notions of reachability we use certain action relations:

Definition 1 (Reachability and Alphabet) One-step action relations:
rdabysz, z<daby->y
Let — be the union of all action relations, and let —* be the reflexive transitive closure
of —.
Let furthermore 2 be defined by

o P
(md U—p

a
T >y Tz

Q
€ T —Y
T —»x,

where € is the empty sequence and o and p range over sequences of actions.

Given © y, alphabet (o) is the set of actions occurring in o.
Note that for a thread x defined by a linear specification E and a service H = (3, F'),

z/cH Sy H,

implies that in E, either y = z < a > 2’ for some z, 2’ € Var(FE) and a # c.m, or y =D
or y = S. In other words, the target state y of a relation z % 4 never issues an action
that is processed by the reply function of H. Of course, a similar remark is in order for
the case of repeated thread-service compositions.

For threads we also distinguish so-called action sets.

Definition 2 (Action sets) For finite threads we define
actions(S) = actions(D) =0,
actions(x <aly) = {a} U actions(x)U actions(y).
For potentially infinite threads we define

actions(P) = U actions(my (P)).
neN

3 One-Counter Threads

In this section we introduce one-counter threads, i.e., threads that are reminiscent of
various one-counter systems that occur in the literature (cf. [9, 12, 14, 10]). We focus
on reachability under bounded counter values and transform the result by Rosier and
Yen [12] to the setting of thread algebra.
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3.1 One-Counter Threads and their Linear Specifications

A (natural number) counter C can be defined as a service with co-actions inc and dec,
where inc increases the counter value and yields true, and dec decreases the value
with reply true if the current value is larger than 0, and yields false otherwise. It is
sufficient and more convenient to represent the state of C by its number value rather
than as a method history, so we write C(n) for a counter service C holding value n > 0.

A one-counter thread is a possibly non-regular thread that can be defined as the
composition of a regular thread with a single counter service. In the next example we
show that the use of a counter service may turn regular threads into non-regular ones.

Example 1 By the defining equations for thread-service composition it follows that for
any thread x,

(cincozx) /.C(n) =z [.C(n+ 1),
(xdedect>S) /. C(0) =S,
(xdcdec>S) /.C(n+1)=x/.C(n).

Now consider the regular thread x defined by
r=cincoxr<aly, y=boy<Jc.del>S,
where actions a and b do not use focus c. Then, for all n € N,

z/.C(n) = (cincox <aly) /.C(n)

=(@/cCn+1)dab(y/cC(n))
andy [.C(n+1)=0bo(y/.C(n)). The thread = /. C(0) can be depicted as follows:

x/.C(0): (a) where [a] ~ aoP

N |

a) S

(
N P

G) [b]
N and  (a) ~ P <dab P,
(a)  [b] VRN
P P,

It is not hard to see that x /. C(0) is an infinite thread with the property that for all n,
a trace of n+1 a-actions produced by n positive and one negative reply on a is followed
by b™oS. This yields an non-regular thread: if x /.C(0) were regular, it would be a fized
point of some finite linear recursive specification, say with k equations. But specifying a
trace b*oS already requires k+1 linear equations x1 = boxs, ..., 2} = boTpi1,Tpi1 = S,
which contradicts the assumption. So x /. C(0) is not regular.

We have found that one-counter threads are not necessarily regular, so need not be
specifiable by a finite linear specification. We first define the infinite linear specification
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of a one-counter thread. Let E be a finite linear specification. We define the infinite
specification F¢
Ec ={z(n) =ty | x € Var(E), n € N}

as the least set satisfying for all (z =t,) € F and for all n € N,
e if t, =S then (z(n) =9S) € Eg,
e if t, = D then (z(n) = D) € Eg,
o ift; =y Qal> 2z with a # c.inc, c.dec, then (z(n) = y(n) <a > z(n)) € Eg,
e if t, =y Jc.inc> z, then (x(n) = c.incoy(n+ 1)) € Eg,

o ift, = yJec.dect z, then (x(0) = c.decoz(0)) € E¢ and (x(n+1) = c.decoy(n)) €
Ee.

Observe that

z/c.C(n) =z(n) /.C(n) forall x € Var(E) and n € N. (1)

We end this section with the definition of finite approximations of an infinite linear
specification. Such approximations are used in Section 4.2 to prove the main result of
this paper.

Definition 3 (Finite Approximation of a Linear Specification) Given an infi-
nite linear recursive specification E¢ for E as defined above, we construct the approxi-
mation of Ec up to finite depth N, by redefining t, » for n > N as D, and consequently
identifying all x(n) for n > N. This yields a finite linear recursive specification, which
we shall denote by w(N, E¢).

Remark: in the above definition, we also could have chosen S or in fact any legal
term for ¢, , and n > N (e.g., z(n) = a o z(n) or z(n) = c.inc o x(n)). This is the
case because we will use these approximations only in applications in which the z(n)
for n > N play no role.

3.2 Reachability and Bounded Counter Values

For the definition of a risk assessment service for E¢ we will use a result by Rosier
and Yen [12] for w-one counter machines. In our setting this amounts to the following
lemma:

Lemma 1 (Bounded Counter Values) Let a finite linear specification E be given.
For any state z(n) of E¢, if
z(n) =" 2'(n'),

then, for some k > 0, there is a trace
z(n) = zo(ng) — z1(x1) = -+ = 28(NK) = 2’ (M)

with for all i < k, n; <3+ (4-|Var(E)|)? + max(n,n’).
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Proof. Based on Lemma 4.3 in [12] (alternatively, see Lemma 3.1 in [14]). The only
thing left to explain is how a finite linear specification can be associated with a w-one
counter machine (w-1CM for short) as defined in [12]. We introduce the specification of
w-1CMs on the fly: let @ be a set of states, ¥ an input alphabet (in our case including
c.inc and c.dec) and Z and B symbols indicating whether a counter value is zero or
positive, respectively. Then the operation of a w-1CM is defined by a transition function

§:Q X% x{Z,B} — 2@x{-1.01},
Given E, we take Q = Var(E) U {Term} with Term a fresh termination state.
The input alphabet ¥ and the transitions of the associated w-1CM follow from the

following transformation on E’s equations:

e each equation x = S yields the two transitions é(x,t, Z) = (x,t, B) = {(Term,0)},
where t is a fresh action (relative to F) that signals termination and the 0 indi-
cates that the counter value is not changed,

e cach equation x = D yields the two transitions §(z, d, Z) = §(x,d, B) = {(Term,0)}
where d is a fresh action that signals deadlock,

e each equation xz = y < c.inc B> z yields the two transitions d(zx,c.inc,Z) =
0(z,c.inc, B) = {(y,1)}, where the 1 indicates that the counter value increases,

e each equation x = y Jc.dec > 2 yields the two transitions d(z, c.dec, Z) = {(z,0)}
and d(z,c.dec, B) = {(y,—1)}, where the —1 indicates that the counter value
decreases,

e each equation x =y Ja >z for a & {d,t,c.inc,c.dec} yields the four transitions
d(z,a,2) = 6(z,a, B) = {(y,0), (2,0)}.

The result by Rosier and Yen states that if (¢,a,n) F7 (¢',b,n') where ¢ is the current
state, a the current input symbol of ¥ and n the current value of the counter and
the symbol 7 indicates that (g,a,n) has a computation that leads to (¢’,b,n’) while
reading o, then (q,a,n) F? (¢’,b,n’) where

e the set of transitions used in F7 is identical to the set of transitions used in F7,
and

e every configuration (r,c,m) in I satisfies m < 3 - s + max(n,n’), where s is the
number of transitions defined by 4.

This result and the above transformation imply the result stated in the lemma. -
Theorem 1 Let E be a finite linear specification with x,y € Var(E). If

z [ C(n) Sy /o C(m)
then )
& [ C(n) >y [c C(m)

for some p such that alphabet(o) = alphabet(p) and the counter values in L do not
exceed 3+ (4 - |Var(E)|)® + max(n,m).

Proof. Immediate by the proof of Lemma 1 and observation (1). -
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4 Risk Assessment for Regular and One-Counter Threads

In this section we discuss risk assessment services. We introduce this topic for regular
threads, although the decidability of a risk assessment service for regular threads was
recorded earlier in [7, 4]. However, the proof described here is much shorter and more
elegant. Furthermore, this proof can easily be generalized to the decidability of a risk
assessment service for one-counter threads, which establishes the main result of this

paper.

4.1 Risk Assessment for Regular Threads

Assume a finite linear recursive specification
E={zx=t; |z e Var(E)},

where Var(FE) is a finite set of variables. There are two special actions among the actions
of E. First, there is the action risk representing behaviour that poses a security risk.
Secondly, there is the action s.ok with s a channel name and ok a request to a risk
assessment service. We call a variable x € Var(E) with ¢, of the form y Js.0k> 2z a
test state with true-branch y and false-branch z. A correct risk assessment service will
reply true to the ok test, if, and only if, risk is not a possible future behavior of the
true-branch composed with the service. We start with an example (taken from [4]).

Example 2 Suppose E is defined by the eight equations below. Then, in the reqular
thread x1 the various s.ok tests are evaluated as follows:

1 = x29s.0k>xg (true)
o = x3dablxy

x3 = x5<s.0k>xg (true)
x4 = wzgds.0k>x; (false)
r5 = bouxy

rg = Triskoxy

T7 = couxg

rg = S.
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Before giving a precise definition of a risk assessment service, we define the notion
of risk states of a specification.

Definition 4 The set Risk(E) C Var(E) of risk states of E is defined inductively as
the least set satisfying, for all x € Var(E),

1. if x =y Qrisk > z, then x € Risk(E),

2. ifx =y<ablz for a # s.ok,risk, and y € Risk(E) or z € Risk(E), then
x € Risk(E),

3. ifx =y <s.0k> z, and both y € Risk(E) and z € Risk(E), then x € Risk(E).

Membership of Risk(FE) is decidable since Var(FE) is finite.

For instance, for E as defined in Example 2, Risk(E) = {xg}. The idea is that
in risk states, the possibility of a future risk execution cannot be avoided by a risk
assessment service answering to the ok tests, so that the service should try to avoid
risk states. Before we make this precise we do some preprocessing on the specification of
the thread. We assume that to define the reply function of the risk assessment service,
we can analyze the specification E. For the answer to a particular ok test, it must
then be known which part of the specification is to be assessed. This is made possible
by annotating the ok tests with variables from Var(E). Let E® be the specification
obtained from E by replacing all equations of the form

r=yds.ok>z by z=yds.okyl z.

This preprocessing allows us to define the service as a history-based service in the
format defined in Section 2.2.3 Having defined this preprocessing step, we immediately
adopt the convention to blur the distinction between E and E®; we assume that the
annotation is implicitly visible in a use application.

We now define the risk assessment service S(E) as the service with signature {ok},
or actually with signature {ok:x | x € Var(E)} when applied to threads defined by
specification F by the convention just introduced, and with reply function
true if x & Risk(E),

false otherwise,

F(o(ok:x)) = {

for all x € Var(E) (the history o is never used).

We can now state the property of risk states mentioned above: in risk states possible
future execution of risk cannot be avoided by S(E).

Lemma 2 Let E be a finite linear specification. Then

x € Risk(E) implies risk € actions(z /s S(E)).

3In [4], a general risk assessment tool SHRAT (security hazard risk assessment tool) is defined as a
more powerful kind of service that upon a request s.ok loads both the specification and the identity of
the state to be tested. A disadvantage of that approach is that SHRAT does not necessarily commute
with other thread-service applications.
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Proof. Easy, following the inductive definition of Risk(E). -

The next theorem states that this service S(F) is a correct risk assessment service for
E, in the sense that its reply to ok:x is true, if, and only if, risk & actions(x /s S(E)).

Theorem 2 Let E be a finite linear specification. Then S(E) as defined above is a
correct risk assessment service for E.

Proof. We must prove that risk € actions(z/sS(F)) if and only if x € Risk(E). The if-
part follows from Lemma 2. For the only-if-part, suppose that risk € actions(z/sS(E)).
Then there must be a trace of x leading to a state where risk can be performed,
corresponding to a sequence

Tk Th—1,---,21 € Var(E)

with zp = x, K > 1, such that 1 = y < risk > z for some vy, z, with the following
property (*): Fori=2,...,k, z; = y<alz in E for some y, z with z;_1 € {y, z}, and
a = s.ok implies z; /s S(E) = z;—1 /s S(E).

We now prove by induction on k that =y, € Risk(E).
Base case. If k = 1 then x; € Risk(F) because z1 = y < risk I> z for some y, z.

Induction step. Let k > 1 and assume that x; 1 € Risk(E). By (*): zxy =yJalz
in F with zx_1 € {y, 2}, and a = s.ok implies z, /s S(E) = zx—1 /s S(E). If a # s.ok,
then zy € Risk(FE) by definition. If a = s.ok, then zy, /s S(E) = x_1 /s S(E), and since
Zx—1 € Risk(E) we know by definition of S(F) that it must be that it answered false
to the s.ok test, and therefore that y € Risk(E) and zx_1 = z. So both y € Risk(FE)
and z € Risk(E) and therefore by definition of Risk(F) also zy € Risk(E). -

Clearly, the thread T' = ;1 /s S(E) as defined and depicted in Example 2 satisfies
T=boT dalcoS.

4.2 Risk Assessment for One-Counter Threads

We now turn to the construction of a risk assessment service for one-counter threads.
Consider a finite linear specification E and its infinite version F¢ constructed as in
Section 3.1. For the definition of a risk assessment service for F¢ we exploit Lemma 1.
First we show that we can restrict to specifications in which risk can only be performed
when the counter value is zero. To this end we modify a finite linear specification E to
E' by replacing each equation

r=ydrisk>z by x:xﬂc.decEx'andx':yglm'skgz

for some 2’ not in Var(E). It is easily seen that a risk-free trace o from a state x(n)
to a state z”(m) in which risk can be performed exists in E¢ if and only if z(n) has a
risk-free trace op in E/} from z(n) to 2" (0) in which risk can be performed and where
p consists of zero or more c.dec actions.

Thus, in the remainder of this section, we restrict without loss of generality to finite
linear specifications with the property that risk can only be performed when the counter
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value is zero. Given such a specification F, it follows from Lemma 1 that for any state
z(n) of E¢ there is a certain value

N, =3-(4-|Var(E)|)®> +n

such that any risk-free trace to a state in which risk can be performed, has an associated
trace in which the counter value does not exceed N,. So, for risk assessment it is
sufficient to construct the finite approximation 7(Ny,, E¢) of the infinite specification
E¢ (see Definition 3). For this finite linear specification membership of Risk is decidable.
From now on we abbreviate 7(N,, E¢) to E_.

Now, let x € Var(E) be a test state, with z = y < s.0k > 2z in E. What is the reply
to the test in a state z(n) of E¢? Well, construct E, and reply true if and only if y(n)
is not a risk state in this finite specification. We assume as before that the identity
of the true-branch is visible in the test (so we have to reply to a method of the form
ok:y:n), and define the risk assessment service S(E¢) with reply function

true if y(n) € Risk(ER),

false otherwise,

F(o(ok:ym)) = {
for all states y(n) of E¢.

Theorem 3 Let E be a finite linear specification. Then S(E¢) as defined above is a
correct risk assessment service for Ec, that is, for any state x(n) of Ec,

risk € actions(xz(n) /s S(E¢)) if, and only if, xz(n) € Risk(Ep).
The proof is similar to the proof for the regular case in Section 4.1:

Proof. The if-part follows from Lemma 2. For the only-if-part, suppose that risk €
actions(x(n) /s S(E¢)). Then there must be a trace of x(n) leading to a state where
risk can be performed, corresponding to a sequence of states

g (ng), Tp—1(nk—1), ..., x1(n1)

with & > 1, z, = z, np = n, xr1 = y < risk > z for some y, z, and n; = 0, with the
following properties:

o (*) Fori=2,...,k, z; =y<alzin E for some y,z with z;_1 € {y, 2}, and
a = s.ok implies z;(n;) /s S(E¢) = zi—1(ni—1) /s S(Ec)-

e (**) By Lemma 1, n; < N, for i = 1,...,k, so that the trace is part of the finite
En.

We now prove by induction on k that zy(ny) € Risk(EZ).

Base case. If k = 1 then x1(ny) € Risk(Ep) because x1 = y < risk > z for some y, 2.

Induction step. Let k > 1 and assume that xy_1(ng—1) € Risk(EZ). By (*):
zp =y<al zin E with 41 € {y,2}, and a = s.ok implies zx(ng) /s S(E¢) =
zk—1(ng—1) /s S(Ec). If a # s.ok, then x(ny) € Risk(EpZ) by definition. If a = s.0k,
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then xg(ng) /s S(Ec) = xp—1(nk—1) /s S(Ec), and ng = ng_1. Since xg_1(ng—1) €
Risk(E7) we know by definition of S(E¢) and (**) that it must be that it answered
false to the s.ok test, and therefore that y(ny) € Risk(EZ) and x5_1 = z. So both
y(nk) € Risk(EpZ) and z(ny) € Risk(E}) and therefore by definition of Risk(E7) also
x(nk) € Risk(EZ). -

Our final goal is to prove the decidability and correctness of a risk assessment service
for any one-counter thread, given its finite linear specification F and counter value C(n).
Adopting identity (1), i.e.,

z/.C(n) =z(n) /.C(n) forall x € Var(E) and n € N,

where z(n) is defined by the infinite linear specification E¢, we can now reason as
follows: suppose (r = y < s.0k > z) € E. By Theorem 3, the risk assessment service
S(E¢) provides the correct reply to x(n) as defined by E¢. Because in the infinite
specification E¢ all equations that contain counter actions are deterministic, it follows
that this reply is also correct for z(n) /. C(n), and thus for = /. C(n) as defined by E.
We conclude that risk assessment for a one-counter thread x /.C(n) can be made using
its infinite specification E¢, and is hence by Theorem 3 decidable and correct.

5 Conclusions

Risk assessment as investigated in this paper has two interesting characteristics. First,
it offers an alternative to Cohen’s seminal 1984-result on the impossibility of virus
detection [8]. The crucial twist in our approach is that we use a test that only establishes
whether its true-branch is risk-free and that does not evaluate its false-branch, thus
resisting arguments that are based on self-reference (this form of risk assessment was
first proposed in [7]). Secondly, exploiting a result of Rosier and Yen [12] we extended
the class of threads for which risk assessment is decidable to the one-counter threads.

We expect that risk assessment is also decidable for pushdown threads (i.e., regular
threads that may use a stack), but our proof does not generalize to this case (some
partial results can be found in [4]). The essential problem is that control decisions
depending on a stack over at least two elements can occur at any stack contents (e.g.,
a test on the identity of the top-element), while such control decisions in the case of a
counter can take place only if the counter has value 0. So, the decidability of a service
for risk assessment (or any similar form of action-forecasting) is still an open question.

Finally, apart from the decidability of risk assessment, the one-counter threads form
a noteworthy class of threads. We conclude with a summary of some typical properties
of this class of threads:

1. Equivalence is decidable (shown in [3]),
2. Inclusion is undecidable (see also [3]), and

3. Reachability is preserved under bounded counter values (Theorem 1 in the present
paper).
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The following refinement of the last property may be interesting in its own right. In
various papers on thread algebra (e.g., in [3]), a more refined notion of reachability is

used, namely the relation % as the reflexive transitive closure of action relations
xﬂazygx and xﬁlalZya—l;y

which also record the reply value true respectively false. It is trivial to adapt the
proof of Theorem 1 to this notion of traces and this does not change the number of
transitions of the associated w-1CM. Hence:

Corollary 1 Let E be a finite linear specification with x,y € Var(E). If

z [ Cln) Sy [c C(m)

where o is a trace in {aT,aF | a € A}*, then
p
z [eC(n) >y [cC(m)

for some p such that alphabet(c) = alphabet(p) and the counter values in L do not
exceed 3+ (4 - |Var(E)|)® + max(n,m).
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