University of Amsterdam
Programming Research Group

Divison Safe Calculation in Totalised Fields

JA. Bergstra
J.V. Tucker

Report PRG0605 September 2006

JA. Bergstra

Programming Research Group
Faculty of Science

University of Amsterdam
Kruislaan 403

1098 SJ Amsterdam

The Netherlands

tel. +31 20 525.7591
e-mail; janb@science.uva.nl

J.V. Tucker

Department of Computer Science
University of Wales Swansea

Singleton Park
Swansea, SA2 8PP
United Kingdom

e-mail; j.v.tucker@swansea.ac.uk

Programming Research Group Electronic Report Series

Division Safe Calculation in Totalised Fields!

J A Bergstra?

University of Amsterdam,
Informatics Institute,
Kruislaan 403,

1098 SJ Amsterdam,
The Netherlands

J V Tucker?

Department of Computer Science,
University of Wales Swansea,
Singleton Park,
Swansea, SA2 8PP,
United Kingdom

Abstract

A O-totalised field is a field in which division is a total operation with 0~ = 0.
Equational reasoning in such fields is greatly simplified but in deriving a term one
still wishes to know whether or not the calculation has invoked 0~'. If it has not
then we call the derivation division-safe. We propose three methods of guaranteeing
division-safe calculations in O-totalised fields.

1 Introduction

The primary algebraic properties of the rational, real and complex numbers are captured
by the operations and axioms of fields. The field axioms consist of the equations that
define commutative rings and, in particular, two axioms, which are not equations, that
define the inverse operator and the distinctness of the two constants. Traditionally, fields

1To refer to this paper cite as Research Report PRG 0605, Programming Research Group, University
of Amsterdam, September 2006 or Technical Report CSR 14-2006, Department of Computer Science,
University of Wales Swansea, September 2006.

2Email: janb@science.uva.nl

3Email: j.v.tucker@swansea.ac.uk

are partial algebras because the inverse operations are undefined at 0. The class of fields
does not possess an equational axiomatisation.

However fields, especially the field of rational numbers and finite fields, are among
the most important data types for computation. Rationals define measurements in the
physical world and computer real arithmetic is based on a finite subset of the rational
numbers. Computer integer arithmetic is based on finite rings and fields. All these fields
are computable fields.

In [6, 7, 8], we have begun to investigate the field of rationals, and fields in general,
using the elementary methods of abstract data type theory, especially equations, initial
algebras and term rewriting. Calculations in fields are commonplace and the aim is to
simplify algebraic reasoning and term rewriting for fields by removing the complications
of partial functions and non-equational axioms.

A O-totalised field is a field which has its inverse operator made total by imposing the
equation

0~ =0.

If F'is a field we denote the O-totalised field by Fj, so the 0-totalised fields of rational Q,
real R and complex C numbers are denoted Qg, Ry and Cy, respectively.

Interestingly, the study of 0-totalised fields leads to new axioms and structures. For
example, an new equational theory called “elementary number algebra” (EN A) has been
identified in [6] (there under the ‘name’ C'R+STP+ Ril) as a single sorted finite equational
specification for the operations +, —, -, which has all O-totalised fields among its models
and, in addition, a large class of commutative rings with inverses and 0-divisors. A model
of EN A has been baptized a meadow in [6] and a theory of meadows is emerging.

Equational specification and reasoning in such totalised fields is indeed greatly sim-
plified but in deriving a term one still wishes to know whether or not it has invoked 07
Consider the calculation

A=t 1=+) 0 +1=(1+1)-0+1=1

in Qp (or in any totalised field). Although the algebraic manipulation is simple we may
wish to consider it unsafe, exceptional or, at least, special in some way: the calculation
allows 0 in denominators and, moreover, makes use of the equation 0= = 0. It is impor-
tant to note that the outcome of the calculation is the valid term 1 and it is impossible
to see from the outcome of the calculation that the derivation of the term involved unsafe
steps.

The question to be discussed in this paper is this:

How do we detect and avoid unsafe divisions in calculations in O-totalised fields?

If a calculation has not invoked 0~! then we call it division-safe. We propose three
methods of guaranteeing division-safe calculations in 0-totalised fields, as follows:

1. Proof system: Once a proof of ¢ = r has been found, prove additional information
that implies that t = r was derived in a division-safe way.

2. Axioms: Change the axioms of FNA to a weaker set that do not permit any
division unsafe derivations.

3. Algebra: Modify a field to create a new algebra that satisfies all equations with
division-safe proofs but fails to satisfy other equations.

Each of these methods has merit and works for fields in general. The key idea is for
each term t to construct a new check term C} such that

C; =1 < “t can be evaluated in a division-safe way”.

The origin of our work is found in two sources: a contemplation of recent work by Larry
Moss and the objective to proceed with previous works on the algebraic specification of
computable and semi-computable data types (in particular Bergstra and Tucker [1, 2, 3, 4])
in the context of data types relevant for the theory of computation over the real numbers.

Recently Moss found in [18] that there exists an equational specification of the ring of
rationals (i.e., without division or inverse) with just one unary hidden function. He used
a remarkable enumeration theorem for the rationals in Calkin and Wilf [9]. He also gave
specifications of other rational arithmetics and asked if hidden functions were necessary.

In [6] we proved that there exists a finite equational specification under initial algebra
semantics, without further hidden functions, but making use of an inverse operation, of
the field of rational numbers. The existence of an equational specification using hidden
functions follows from a result in [1], plus the observation that the rational number field
is a computable algebra. The issue is to limit the use of hidden functions to useful and
familiar operations. The fact that only a single hidden function is used depends upon
special properties of the field of rational numbers. In [7] the specification found for the
rational numbers was extended to the complex rationals with conjugation, and in [8] a
specification was given of the algebra of rational functions with field and degree operations
that are all total. In [?] we consider the situation for finite fields.

2 Elementary Algebraic Specifications (EAS)

2.1 Elementary algebraic specifications and totality

The theory of computable data types demonstrates that any computable system can be
modelled using a finite set of equations or conditional equations under initial algebra
semantics, possibly with the help of auxiliary or hidden functions.

In [7] we have discussed a very limited specification technique which we have termed
elementary algebraic specification (EAS). The basic elements of EAS are as follows. We
use algebraic specifications (X', E') of a total ¥ algebra using a set E’ of equations or
conditional equations and initial algebra semantics such that (X, E')|s = A. In par-
ticular, the elementary specifications require total functions, allow hidden functions and
sorts, and may or may not be complete term rewriting systems. Clearly, there are plenty
of restrictions in force as there are many properties ruled out - see [7] for a long list with
arguments for their omission. The FAS specification problem is this: Given a ¥ algebra
A, can one find an elementary algebraic specification (X', E') such that I(3X, E')|x = A.

An EAS is ‘better’ if it is finite rather than infinite, contains equations rather than
conditional equations, or features nice term rewriting properties such as confluency and
termination.

To use these EAS methods, we need to make algebras total that are usually con-
sidered to contain partial operators. Unavoidably, totalisation introduces an element of

arbitrariness or artificiality because values are added which are not based on the primary
intuitions at hand.

Totalisation is not without problems when specifying a stack, as we have seen in our
[5]. Totalisation is a matter of costs and benefits and in some cases the theory of a totalised
data type, even when specified by means of a convincing EAS, may be harder to swallow
than some of its non-elementary expositions, even including the required meta-theory for
those non-elementary features. Stacks are a candidate of such a data type.

However, in the case of fields we have found totalisation and EAS methods convincing.
For that we have four arguments:

(1) The EAS specification theory of totalised fields is rich and attractive.

(2) Totalisation of fields leads to a specification £ N A which itself has a larger class of
models, consisting of the so-called meadows and having remarkably natural properties.

(3) EAS provides a decoupling of syntax and semantics that is fundamental. All simple
answers to the question why 07! fails to exist depend on the observation that this piece of
syntax should not have been written down in the first place because it carries no intended
meaning. Exactly this interplay between syntax and semantics is completely removed in
the setting of EAS and totalised fields.

(4) The costs of totalisation, due to the introduction of a “fake” value for 07! and its
impact on the theory of numbers are already compensated by the gains mentioned in (1)
and (3) above.

2.2 Technical Preliminaries on Algebraic Specifications

We assume the reader is familiar with using equations and conditional equations and
initial algebra semantics to specify data types. Some accounts of this are: ADJ [13],
Meseguer and Goguen [11], or Wirsing [24].

The theory of algebraic specifications is based on theories of universal algebras (e.g.,
Wechler [23], Meinke and Tucker [17]), computable algebras (Stoltenberg-Hansen and
Tucker [20]), and term rewriting (Terese [22]). The theory of computable fields is surveyed
in Stoltenberg-Hansen and Tucker [21].

We use standard notations: typically, we let ¥ be a many sorted signature and A
a total X algebra. The class of all total ¥ algebras is Alg(X) and the class of all total
Y-algebras satisfying all the axioms in a theory T is Alg(X,T). The word ‘algebra’ will
mean total algebra.

3 Axioms for Number Algebras

The primary signature ¥ is simply that of the field:

signature X
sorts field

operations
0: — field,
1: — field;

+: field x field — field,
—: field — field;

-1 field x field — field;
—L: field — field

end

3.1 Commutative Rings and Fields

The signature Y consists of ¥ minus the inverse operator ~!. The first set of axioms is
that of a commutative ring with 1, which establishes the standard properties of +, —, and -.

equations CR

(r+y)+2 = 2+ (y+2) (1)
Tty = y+zx (2)
r+0 = =z (3)
T+ (—x) 0 (4)
(z-y)-z = z-(y-2) (5)
Ty = y-x (6)
r-1 = = (7)
z-(y+2) rTytaT-z (8)
end
These axioms generate a wealth of properties of +, —, - with which we will assume the

reader is familar.

At this point there are different ways to proceed with the introduction of division.
The orthodoxy is to add the following two axioms for fields: let Gil (general inverse law)
denote the axiom

r#0 = z-271=1
and let Sep (the axiom of separation) denote
0#1.
Let (X, Tfiea) be the axiomatic specification of fields, where

Tfield = CR+ Gil + Sep.

3.2 Totalised Fields

In field theory the value of 07! is left undefined. However, in working with elementary
specifications, operations are total. Thus, the class Alg(X, Teq) is the class of all possible
total algebras satisfying the axioms in T q; we refer to these algebras as totalised fields.

Now, for all totalised fields A € Alg(X, Tiaq) and all z € A, the inverse z ! is defined.
If 04 is the zero element in A then, in particular, 0" is defined. The actual value 0"
can be anything but it is convenient to set 0;1 = 04 (see [6], and compare, e.g., Hodges
[15], p. 695). A field A with 03" = 04 is called 0-totalised. This choice gives us a nice
equational specification to use, the zero inverse law Zil:

0t=0
With ZTF we specify zero totalised fields:
ZTF = CR+ Gil + Sep + Zil.

Let Alg(X, ZTF) be the class of all 0-totalised fields. One of the main ¥-algebras we are
interested in is

@0 = (Q|O/]'7 +a 0 "_1) S AZQ(E, ZTF)

where the inverse is total 27! = 1/zif z 20 and 0 if x = 0

Following [6] one may replace the axioms Gil and Sep by other axioms for division,
especially, the three equations in an unit called SIP for strong inverse properties. They
are considered “strong” because they are equations involving ~! without any guards, such

as x # 0:

equations SIP

—~
8
o

|
[
\
|
[
<
L
—~
—_
o

end

In [6] we find that the following equations are provable:

Lemma 3.1. CR+SIPF 07t =0 and CR+SIPF+0-2 = 0. Thus, CR+ SIP
0-071=0.

In dealing with division it is helpful to have functions such as
Zx)=1—z-xtand N(z) =z -2 L.

Clearly, Z(z) =1 —N(z) and Z(2) =0z 27! = 1.

In [6] (Theorem 3.5) an axiom L, based on Lagrange’s Theorem, is used to give an
equational specification of the the rationals. Lagrange’s Theorem states that every natural
number can be represented as the sum of four squares. We define a special equation L
(for Lagrange):

Z(1+2® +y*+ 22 +u?) =0,

L expresses that for a large collection of numbers, in particular those ¢ which can be
written as 1 plus the sum of four squares, ¢ - ¢~! equals 1.

Theorem 3.2. There exists a finite elementary equational specification (3, C R+S1P+L)
without hidden functions, of Qg under initial algebra semantics.

J

3.3 ENA and Meadows
In [6] we also add to CR + SIP the restricted inverse law (Ril):

r-(v-z7l) =2

1

which, using commutativity and associativity, expresses that x - 7" is 1 in the presence

of z.

Definition 3.3. We define the specification elementary number algebra ENA = CR +
SIP + Ril.

We note that:
Lemma 3.4. RilFz-27'=0<=2=0

For models of EN A the following convention is taken from [6]. A meadow satisfying
Sep is called non-trivial. All total fields are clearly non-trivial meadows but not conversely.
In particular, the prime fields Z, of prime characteristic are meadows. That the initial
algebra of CR+ SIP + Ril is not a field follows from the fact that (1+1)-(1+1)"t =1
cannot be derivable because it fails to hold in the prime field Zs of characteristic 2 which
is a model of these equations as well.

Hirschfeld [14] has shown that equations SIP1 and SIP2 are derivable from SIP3 using
CR + Ril.

4 Equational proof systems for safe division

4.1 Check terms and division safety

Let ¥ be the signature of fields and T'(3, X') be the algebra of all ¥-terms with variables
from X.

Definition 4.1. To each term t(xq,...,x,) over ¥ we assign a check term Cy(xq,. .., 2y)
as follows:

Co=1

=1

C,=1-0-x

Ct1+t2 - Ctl ’ Ctz
Ctl't2 - Ctl . Ct2
thl — Ct -t t_l

Note that the term C; has the same variables as ¢.

(In the definition above for totalised fields we could replace C, = 1 — 0 - 2 with the
simpler C;, = 1. We have used the more complicated term ready for the algebraic method
later in Section 6; there we define twin fields in which the equation 0 -2 = 0 is not valid
in general.)

The idea of the construction of check terms is that:

(C; = 1 < inside-out evaluation of ¢ can be done in a division-safe way.

7

For example, in a non-safe derivation containing 0~!, we have
Co1=0Cp-0-01=1-0-0"t=0.
For instance,

Claty)/(z+1) = Coy * Crzp1 = Cp - Cy - Copy - (2 + 1) /(2 + 1) =
1-1.C,-C-(2+1)/(z+1) = (2+1)/(z + 1).

Definition 4.2. Let Fy be a 0-totalised field. An equation Fy |=t = r valid in Fy is said
to be division safe if

F()':Ctzl/\crzl

The proof system method to ensure division safety is this: seek a set T" of axioms for
Fy, i.e., Fy € Alg(X,T) such that each proof T+ ¢t = r can be complemented by proofs
that THCy,=1and T+ C, = 1.

4.2 Equational proof systems

Interestingly, we do not have far to look for one solution: consider initial algebra specifi-
cations. Suppose that there is a set E of equations such that [(X, F) = F,. By initiality,
equational reasoning is complete for closed identities relative to initial algebra specifica-
tions. Thus, for any closed termst,r if Fy = Cy = 1 and Fy |= C, = 1 we have immediately
FOI—C’tzlandFol—C’rzl.

Let us define this equational proof system method for division safety formally as
follows:

Definition 4.3. We write Fy f=45 t = r in the O-totalised field Iy if
FrEt=radly=C,=1NC, =1.
We write (3,7T) bFgs t =1 if
ET)Ft=rand (,T)FC,=1NC, = 1.
The method works because we have:

Theorem 4.4. Let Fy be any totalised field and (X, E) any equational specification such
that 1(3, E) = Fy. Then for any closed terms t,r we have

(E,E) l_dst:T<:>F0):dst:’l“.

Proving (X, E) k45 t = r is a general general approach to ensuring division safety; its
practicality is dependent on the specification.

5 Equational axioms for weak safe division

5.1 Weak safe division in O-totalised fields

We now consider a weaker notion of safety that has some interesting properties.

Definition 5.1. Let Fy be a 0-totalised field. An equation Fy |=t = r valid in Fy is said
to be weakly division safe if

F()):Ct:Cr-

Clearly, in a weakly division safe equation either both sides of the equation are safe
or unsafe.

Compare the notion with divison safety (in Definition 4.2). There are equations that
are weakly division safe but not necessarily division safe. For example, in any 0-totalised
field Fy we have Iy = 07! = 071, which is weakly division-safe but is not division-safe.

Definition 5.2. We write Fy |Fyas t = 1 in the O-totalised field Fy if
FyEt=rand Fy = Cy = C,.
We write (3,T) Fyas t =1 if
X, T)Ft=rand (X,T)F C,=C,.

For many equations ¢ = r where r is the simplified or “calculated” result or normal
form of ¢ it will be obvious by inspection that Fy |= C, = 1. In this case we have:

Lemma 5.3. Suppose that Fy = C, = 1. Then a5 t = 1 implies Fqs t = 1.

Lemma 5.4. Let Fy be a 0-totalised field and (X, E) be any specification true of Fy, i.e.,
Fy = E. Suppose every equation in E is weakly division safe for Fy. For every equation
t =1 such that (X, E) &t =r then t = r is weakly division safe.

5.2 Meadows and the rationals

In the case of meadows and the rationals, we are able to weaken the axioms FN A and L
we have used in such a way that

(i) all closed division-safe identities are provable; and

(ii) only weakly division-safe identities are provable.

In the light of Lemma 5.4, we start by checking the equations of our usual specification
ENA. The following are the equations that are not weakly division safe.

(a) Additive Inverse: x + (—z) = 0 because it implies 07! + (—=071) = 0.

(b) (z71)* = z because it implies (071)"* = 0.

(¢) Ril : x -z - 27! = x because it implies 0-0- 07! = 0.

It is possible to replace each of these equations in EN A by weakly division safe alter-
nates as follows:

In the set C'R of commutative rings axioms we replace additive inverse by these three
equations

r+(—2)=0-2,0-0=0,0-1=0
In the set STP of inverse axioms the axiom above is replaced by:
-1

(Y l=z.2-2

The axiom Ril is replaced by

Let ENA’ be the new set of axioms. Then we have:

Lemma 5.5. For any O-totalised field Iy we have Fy = EN A" and since EN A’ are weakly
division-safe all the equational consequences of ENA' are division safe.

Furthermore, in the special case of Qy more can be shown. First, the Lagrange equation
L: Z0+ 22+ y* + 22 +u?) =0

is not weakly divison-safe as may be seen on substituting 0~! for the variables z1, ..., 2.
But, the Lagrange axiom L can replaced by

Zl+ 2>+ y*+22+u*) =0 - (z+y+z+u).
which is weakly division-safe.
Lemma 5.6. For any closed terms t,r
Qo [Fas t =1 implies ENA'+ L' -t =r

Proof. The proof is derived from the proof that Qy = [(¥, ENA + L) from Bergstra
and Tucker [6]. The proof of weak division safe identities between closed terms does not

depend on non-division safe identities.
m

Thus, the axioms of ENA’ + L' is a reasonable specification of Qq since it is a com-
plete proof system for division-safe ground identities, and proves only weakly division-safe
identities as well, though not all weakly division-safe identities.

6 Algebras for safe division

The third approach seeks a form of error algebra for fields, which are no longer O-totalised
fields. Then the idea is that ENA" and EN A’ + L’ might be part of specifications for
such algebras.

Given a field F' of signature ¥ we define a new X algebra F},;, such that

Ftwin):t:’l"<:>F0l_wd5t:T

10

For each element a € F' we make a copy a € Fj,i, which represents the same value
but in a division unsafe form. We may write @ = a + 07. In a O-totalised field we have
a = a, of course.

Twin fields are defined as follows. Let F' be a field. Let Fy be the O-totalised form of
F.

Definition 6.1. The twin field extension of F is defined to be a ¥ algebra with carrier
B x F'; the constants 0,1 are

(t,0F) and (t,1F).

The operations are

(b: I) Tt Frwin (Ca y) = (b Ne,x +p y):

(b7 l‘) "Fiwin (Ca y) = (b Ve,z-p y)

(6,007 = (/,0)

(b,x)~ = (b.y)

Thus, Fiysp, contains an isomorphic copy of F', namely {¢} x F' and an isomorphic copy
of Fy, namely {f} x F. The inverse on the copy of F is made by: (¢,0)™! = (f,0). Once
an element lands in the error part of the twin field the operations keep it there. Notice
that a twin field is not a field because

where #p 0 and x -y =p 1

0-07' 40 and so 02 = 0 fails in F},,.

Lemma 6.2. Let I be a field, Fy be its O-totalised form and Fi.;, its twin field. For any
terms t,r, if Fuyin Et =1 then F =t =r and the equation is weakly division safe in Fy.

Given this definition of F},;, we give a set of equations that can play a role similar to
ENA:

ENApin=ENA +{07 2=0"1 0" +2)'=0"+270-2+ 07 =07'}.

Using a proof similar to that of Theorem 3.2 in Bergstra and Tucker [6] we have:

Theorem 6.3. Qi = (X, EN Apyin + L').

7 Concluding Remarks

Our work on the rationals and other fields can be viewed as a case study in abstract
data types in which ‘number algebra’ is to be compared with ‘process algebra’ and other
types of algebras that have been designed as elementary algebraic specifications to capture
mechanisms found in the theory of computers and computation.

In this number algebra one takes the liberty to depart from the algebraist’s orthodoxy
(fields with their partial operations) and adapt the design of the algebras of numbers to
the requirements of the computational modeling technique used, here elementary algebraic
specifications (EAS). Thus, one can view this proposed topic ‘number algebra’ as a theory
of arithmetics, including fields, shaped according to one of the many general modeling

11

techniques that have been developed in computer science: algebraic specifications where
equational reasoning is extremely important. The topic is also an attempt to answer
the question: What can one accomplish with the rationals and other fields using simple
equational reasoning only?

Given its origins, the focus is on questions that one might pose from the computer
science perspective: questions on specification, verification, prototyping, decidability and
expressiveness. However, the theory of meadows is not without interest in pure algebra.

Assuming that one wants to view fields as total algebras, two strategies are feasible.
First, use O-totalised fields which possess nice equational specifications but which provide
no protection against weak division unsafe conclusions. In this case protection against
division unsafe results can be found via the use of additional proof obligations. An
alternate is to use weaker equations.

Secondly, there are dedicated error algebras such as twin fields customised to the
setting of fields. Each twin field contains a O-totalised field as a substructure. Twin
fields admit a specification theory similar to that of O-totalised fields though require more
complex equations. Twin fields guarantee that only weakly division safe conclusions are
derived.

References

[1] J A BERGSTRA AND J V TUCKER, The completeness of the algebraic specification methods
for data types, Information and Control, 54 (1982) 186-200.

[2] J A BERGSTRA AND J V TUCKER, Initial and final algebra semantics for data type

specifications: two characterisation theorems, SIAM Journal on Computing, 12 (1983)
366-387.

[3] J A BERGSTRA AND J V TUCKER, Algebraic specifications of computable and semicom-
putable data types, Theoretical Computer Science, 50 (1987) 137-181.

[4] J A BERGSTRA AND J V TUCKER, Equational specifications, complete term rewriting
systems, and computable and semicomputable algebras, Journal of ACM, 42 (1995) 1194-
1230.

[5] J A BERGSTRA AND J V TUCKER, The data type variety of stack algebras, Annals of
Pure and Applied Logic, 73 (1995) 11-36.

[6] J A BERGSTRA AND J V TUCKER, The rational numbers as an abstract data type, Re-
search Report PRG0504, Programming Research Group, University of Amsterdam, August
2005 or Technical Report CSR12-2005, Department of Computer Science, University of
Wales Swansea, August 2005. Submitted for publication.

[7] J A BERGSTRA AND J V TUCKER, Elementary algebraic specifications of the rational com-

plex numbers, K Futatsugi et al, Goguen Festschrift, Springer Lecture Notes in Computer
Science, vol. 4060, 459-475, Springer 2006.

[8] J A BERGSTRA, Elementary algebraic specifications of the rational function field, in A
Beckmann et al, Logical approaches to computational barriers. Proceedings of Computability

12

[21]

[22]

[23]

[24]

in Europe 2006, Springer Lecture Notes in Computer Science, vol 3988, 40-54, Springer,
2006.

N CALKIN AND H S WILF, Recounting the rationals, American Mathematical Monthly,
107 (2000) 360-363.

E CoNTEJEAN, C MARCHE AND L RABEHASAINA, Rewrite systems for natural, integral,
and rational arithmetic, in Rewriting Techniques and Applications 1997, Springer Lecture
Notes in Computer Science vol. 1232, 98-112, Springer, Berlin,1997.

J MESEGUER AND J A GOGUEN, Initiality, induction, and computability, In M Nivat
(editors) Algebraic methods in semantics, Cambridge University Press, 1986 pp 459 - 541

J A GOGUEN, J W THATCHER, E G WAGNER AND J B WRIGHT, Initial algebra semantics
and continuous algebras, Journal of ACM, 24 (1977), 68-95.

J A GOGUEN, J W THATCHER AND E G WAGNER, An initial algebra approach to the
specification, correctness and implementation of abstract data types, in R.T Yeh (ed.) Cur-
rent trends in programming methodology. 1V. Data structuring, Prentice-Hall, Engelwood
Cliffs, New Jersey, 1978, pp 80-149.

Y HIRSCHFELD, Personal Communication, August 2006.
W HODGES, Model Theory, Cambridge University Press, Cambridge, 1993.

S KAMIN, Some definitions for algebraic data type specifications, SIGLAN Notices 14 (3)
(1979), 28.

K MEINKE AND J V TUCKER, Universal algebra, in S. Abramsky, D. Gabbay and T
Maibaum (eds.) Handbook of Logic in Computer Science. Volume I: Mathematical Struc-
tures, Oxford University Press, 1992, pp.189-411.

L Moss, Simple equational specifications of rational arithmetic, Discrete Mathematics and
Theoretical Computer Science, 4 (2001) 291-300.

L Moss, J MESEGUER AND J A GOGUEN, Final algebras, cosemicomputable algebras,
and degrees of unsolvability, Theoretical Computer Science, 100 (1992) 267-302.

V STOLTENBERG-HANSEN AND J V TUCKER, Effective algebras, in S Abramsky, D Gabbay
and T Maibaum (eds.) Handbook of Logic in Computer Science. Volume IV: Semantic
Modelling , Oxford University Press, 1995, pp.357-526.

V STOLTENBERG-HANSEN AND J V TUCKER, Computable rings and fields, in E Griffor
(ed.), Handbook of Computability Theory, Elsevier, 1999, pp.363-447.

TERESE, Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science 55,
Cambridge University Press, Cambridge, 2003.

W WECHLER, Universal algebra for computer scientists, EATCS Monographs in Computer
Science, Springer, 1992.

M WIRSING, Algebraic specifications, in J van Leeuwen (ed.), Handbook of Theoretical

Computer Science. Volume B: Formal models and semantics, North-Holland, 1990, pp 675-
788.

13

Electronic Reports Series of the Programming Research Group

Within this series the following reports appeared.

[PRGO604]

[PRGO603]

[PRG0602]

[PRGO601]

[PRGO505]

[PRGO504]

[PRGO503]

[PRGO502]

[PRGO501]

[PRG0405]

[PRG0404]

[PRG0403]

[PRG0402]

[PRG0401]

[PRG0302]
[PRGO0301]

[PRG0201]

JA. Bergstra and A. Ponse, Projection Semantics for Rigid Loops, Programming Research Group -
University of Amsterdam, 2006.

JA. Bergstra and |. Bethke, Predictable and Reliable Program Code: Virtual Machine-based
Projection Semantics (submitted for inclusion in the Handbook of Network and Systems
Administration), Programming Research Group - University of Amsterdam, 2006.

JA. Bergstraand A. Ponse, Program Algebra with Repeat Instruction, Programming Research Group
- University of Amsterdam, 2006.

JA. Bergstra and A. Ponse, Interface Groups for Analytic Execution Architectures, Programming
Research Group - University of Amsterdam, 2006.

B. Diertens, Software (Re-)Engineering with PSF, Programming Research Group - University of
Amsterdam, 2005.

PH. Rodenburg, Piecewise Initial Algebra Semantics, Programming Research Group - University of
Amsterdam, 2005.

T.D. Vu, Metric Denotational Semantics for BPPA, Programming Research Group - University of
Amsterdam, 2005.

JA. Bergstra, |I. Bethke, and A. Ponse, Decision Problems for Pushdown Threads, Programming
Research Group - University of Amsterdam, 2005.

J.A. Bergstraand A. Ponse, A Bypass of Cohen’s Impossibility Result, Programming Research Group -
University of Amsterdam, 2005.

JA. Bergstraand |. Bethke, An Upper Bound for the Equational Specification of Finite State Services,
Programming Research Group - University of Amsterdam, 2004.

JA. Bergstra and C.A. Middelburg, Thread Algebra for Strategic Interleaving, Programming
Research Group - University of Amsterdam, 2004.

B. Diertens, A Compiler-projection from PGLEc.MSPio to Parrot, Programming Research Group -
University of Amsterdam, 2004.

JA. Bergstra and |. Bethke, Linear Projective Program Syntax, Programming Research Group -
University of Amsterdam, 2004.

B. Diertens, Molecular Scripting Primitives, Programming Research Group - University of
Amsterdam, 2004.

B. Diertens, A Toolset for PGA, Programming Research Group - University of Amsterdam, 2003.

JA. Bergstra and P. Walters, Projection Semantics for Multi-File Programs, Programming Research
Group - University of Amsterdam, 2003.

|. Bethke and P. Walters, Molecule-oriented Java Programs for Cyclic Sequences, Programming
Research Group - University of Amsterdam, 2002.

The above reports and more are available through the website: www.science.uva.nl/research/prog/

Electronic Report Series

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

