University of Amsterdam
Programming Research Group

Predictable and Reliable Program Code:
Virtual Machine-based Projection Semantics
(submitted for inclusion in the Handbook of

Network and Systems Administration)

JA. Bergstra
|. Bethke

Report PRG0603 September 2006

JA. Bergstra

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel. +31 20 525.7591
e-mail; janb@science.uva.nl

|. Bethke

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel. +31 20 525.7583
e-mail; inge@science.uva.nl

Programming Research Group Electronic Report Series

Predictable and Reliable Program Code:
Virtual Machine-based Projection Semantics
(submitted for inclusion in the Handbook of

Network and Systems Administration)

J.A. Bergstra®"! I. Bethke ®>*

aUniversity of Amsterdam, Faculty of Science, Programming Research Group

b Utrecht University, Department of Philosophy, Applied Logic Group

1 Introduction

Network and systems administration seems to be a subject not based on the-
ory, or at least not primarily based on theory. Mark Burgess [22-25] provides
aspects of theory and so do Alva Couch and Yizhan Sun in [29], but the gap
between these papers and conventional foundational theory of computing is
quite large. Theoretical computer science has its empty areas as well, but we
hold that many critical issues in network and systems administration cannot
be reliably addressed without the application of semantic theory, be it tailor
made theories.

The line between system administration and other aspects of computing is
never clear. System administrators are often amongst the first users to test
new technologies, and are involved in building new applications in a production
environment. When things go wrong, the system administrator is often one of
the first people to be involved in problem finding.

Many problems in the security and reliability of mission-critical software can
result from misleading program semantics. The possibility for mistakes in cod-
ing to weaken a system or result in unexpected behaviour was one of the mo-
tivations for the introduction of the Ada language. Here we present a simple

* Corresponding author. Address: Kruislaan 403, 1098 SJ Amsterdam, The Nether-
lands

! E-mail: janb@{phil.uu.nl, science.uva.nl}

2 E-mail: inge@science.uva.nl

theory developing a reliable syntax whose execution semantics are unambigu-
ous. Of all the languages used by system administrators and operators in
deploying services (e.g. PHP, Perl, TCL, Scheme etc.) few can be said to have
such a clear connection between syntax and behaviour. The system world
would do well to foster this kind of predictability in future technologies.

Since the introduction of time sharing operating systems, command languages
or scripts have been used to manage the running of programs. Job Control
Language was introduced to manage program execution for batch control. In
the 1980s, the DOS environment on the IBM PC mimicked the idea of scripts
with its simple “batch files”, used to start applications from the command
line, but these were never as sophisticated as those coming from timesharing
systems.

The Unix Bourne shell, and later C shell, were a turning point for system
scripting. They allowed—and continue to allow—a user to combine indepen-
dent programs using ‘pipes’ or communication channels which behave like a
Virtual Private Network interface between applications. Later, the inefficien-
cies and irregularities of syntax led to the development of operating system
independent languages such as Awk, then Perl and Tcl which have only par-
tially replaced the shell.

Today there is a need for a new generation of languages for system man-
agement, in a variety of contexts. One example is configuration management.
Configration management is currently an active area—see the chapter by Alva
Couch in this book. A prototype language that is widely used for here is
Cfengine [20], which takes a declarative view that has been likened to Prolog
[21]. Cfengine uses an irregular syntax but aims to give clear semantics based
on fixed point behaviour [24].

As languages become high level, the details of their semantics become im-
portant in order to understand their behaviour. Today, scripting languages
like shell, Perl, PHP and Tcl are very low level and leave the higher level
semantics entirely to imperative, declarative, functional and object oriented
programmers. Python and Ruby are bridging this gap.

In this chapter we wish to consider this subject—the semantics of scripting
languages—as part of the foundations of system and network administration
and provide a theoretical account to elementary higher level object oriented
scripting languages using the field of semantic frameworks. Our aim is to
highlight the role of layers of language abstraction and their effect on semantics
of language statements. We show how these languages can be built up from
low level primitives through virtualization layers to high level constructs, so
that we might build new languages that are “correct by construction”. This
is a large field of research, so we have modest aims for our chapter, but we

hope that this will inspire more work of an applied nature to feed the current
debates and controversies over semantics.

We start with providing a survey of semantic theories of programming and
propose the viewpoint that all of these theories have the intrinsic problem
of asking their readers to think in terms of mathematical domains that may
fail to be self evident for the practical minds working in network and systems
administration. Then we provide an alternative semantic theory that we have
developed under the name ‘projection semantics’. Projection semantics is a
way to state that compilers determine the meaning of programs. A projec-
tion is a theoretical account of a possibly slow but conceptually convincing
compiler, or rather of the transformation that the compiler is supposed to
produce. The classical assumption that such a projection should be validated
against a denotational or mathematical semantic theory is dropped! Semantic
intuitions are supposed to reside at the level of the projections, i.e. conceptual
abstractions of what compilers do or might do.

A second aspect of the appoach that we advocate is that it is execution ar-
chitecture based. With this we mean that in giving conceptual models for
programs and their meaning it is essential that an operating context, or ex-
ecution architecture is taken as the point of departure. Here we will use the
execution architecture of [14] which proposes that a program executes in a
context where it interacts with both local (auxiliary) and external services.
The external services represent the world to which the running program ulti-
mately directs its activity—i.e. whether its operation is supposed to achieve
intended effects—while the services local to the execution architecture repre-
sent transformations on auxiliary and volatile data which are thrown away as
soon as the execution of the program halts and which cannot be inspected by
any other system component than the running program. Because this view-
point is reasonably close to a possible description of a virtual machine our
projection semantics is called virtual machine based. Perhaps a more informa-
tive name is execution architecture based projection semantics. Programming
with program notations that permit being modelled by these techniques might
be called execution architecture based programming. Below we will reconstruct
a small fragment of object oriented scripting as execution architecture based
programming, by providing a projection from a high level—though very sim-
ple—syntax to a low level one for which an execution architecture is known
in detail.

Many matters can be clarified on the basis of projection semantics for an exe-
cution architecture based reconstruction of programs and program notations.
A further development in the direction of concurrent programming languages,
for instance the large variety of thread scheduling mechanisms also called
interleaving strategies, will capture major user intuitions while being almost
irresponsibly naive in comparison to existing dominant concurrency theories.

The instruction sequence language ISLA that is used below finds its semantics
in so-called thread algebras. Thread algebras are conceptually simplified—and
for that same reason technically more complex and less stable—process al-
gebras fully dedicated to the semantic issue to be solved. Therefore our pro-
jection semantics may be classified as a special case of process algebra based
semantics. Process algebra based semantics of program notations has a his-
tory of more than 20 years: see e.g. Milner [49], Vaandrager [63], Cleaveland
et al. [26], Andrews [3], Bergstra, Middelburg and Usenko [12] and Mauw and
Reniers [46].

2 Semantics of programming languages

The study of programs has a profound history in the setting of formal lan-
guages and grammars. Originating from theoretical studies of automata and
parsing, the path from program texts to program execution has been sub-
ject to many investigations and has to some extent been found useful in var-
ious practical applications such as compiler-writing systems, type-checkers,
code-generators and documentation generators. However, in contrast to the
popularity of formal syntax, formal semantics—the field concerned with the
rigorous mathematical study of the meaning of programming languages and
their models of computation—has been less exploited in practical applica-
tions concerning the design and implementation of programming languages.
Currently, only few systems generating any kind of implementation from se-
mantic descriptions are available [41]. In particular, semantic results are rarely
incorporated in practical systems that help language designers to implement
and test a language under development, or to assist programmers in answer-
ing their questions about the meaning of some language feature not properly
documented in a language’s reference manual. Among the reasons for this
state of affairs, one stands out. The use of even a properly-implemented and
well-maintained system is limited to the input available for it. For significant
practical uses of semantic descriptions, the input should be a complete, fully
formal semantic description of the observable behaviour of a program in con-
trast to the kind of descriptions usually found in textbooks and manuals, where
crucial details are often omitted and informal conventions are introduced in
the interest of conciseness. Yet despite the theoretical efforts in establishing
the foundations of various frameworks, good pragmatic features needed for
the efficient use of semantic descriptions are often lacking. Below we give a
recap of the semantic frameworks of current interest. For an extensive survey
along with a list of uses that have been made of them, and speculations on
the hindrances for greater use, the reader is referred to [52].

Before we give a brief summary of the semantic frameworks of current in-
terest, let us distinguish between static and dynamic semantics. Static se-

mantics—which appears to be used more often in practical applications than
dynamic semantics—concerns the checking for well-formedness of a program
without actually executing it. It thus corresponds to its compile-time be-
haviour and is independent of any input that is provided to the program
at run-time. Well-formedness is usually decidable, so static semantics may
be treated as a kind of (context-sensitive) syntax specified by attribute gram-
mars. For compiled programs, their well-formedness has already been checked,
and their dynamic semantics corresponds to their run-time behaviour. For lan-
guages implemented by interpreters, programs usually run without a foregoing
overall well-formedness check. Any required checks happen at run-time and
can thus be considered part of the dynamic semantics. In the sequel we shall
focus entirely on dynamic semantics and do not worry about what seman-
tics is given to programs containing ill-typed expressions, assuming that such
programs are filtered out by a preceding static semantics.

The dynamic semantics of a language is given by a mathematical model which
represents the possible computations described by the language. The three
main classes of approach can be classified as operational, denotational, or az-
1omatic.

Starting from the early 1960’s [47], operational semantics models the compu-
tations of programs as a—perhaps infinite—sequence of computational steps
between states. Although states in computations generally depend on the syn-
tactical appearance of the executed program, syntactically-distinct programs
can have the same sets of states. In order to obtain a reasonable notion of se-
mantic equivalence in operational semantics, some equivalence relation that ig-
nores the syntactic dependence of states has to be introduced; popular choices
are bisimulation equivalences [64]. Various ways of modelling computations
have been developed yielding different frameworks for operational semantics
of programming languages. The most prominent ones are:

(1) Structural operational semantics (SOS)—the pioneering work on opera-
tional semantics—was proposed by Plotkin in [1]. Here computations are
modelled as sequences of—possibly labelled—transitions between states—a
mixture of syntax and computed values—involving syntax, computed val-
ues, and auxiliary entities. SOS has been widely used to describe process
calculi used for specification, but also for the design and description of
the programming languages Facile and Ada.

(2) Natural semantics was developed by Kahn in the mid-1980’s [44]. Termi-
nating computations are modelled as evaluation relations between syntax
and computed values, possibly involving auxiliary entities; nonterminat-
ing computations are generally ignored. This semantics was used during
the design and official definition of Standard ML.

(3) Reduction semantics is a framework proposed by Felleisen and Friedman
[32] towards the end of the 1980’s. This type of operational semantics

models computations as sequences of term rewriting steps where the in-
termediate terms consist again of computed values and auxiliary entities.
Reduction semantics was used during the design of Concurrent ML.
Abstract state machines (ASM), previously called “evolving algebras” *
[40], was developed by Gurevich in the late 1980’s. In contrast to the pre-
ceding approaches, states are mathematical structures where data come
as abstract objects which are equipped with basic operations—partial
functions— and relations. The notion of computation is given by a tran-
sition system which determines which functions in a given state have
to be updated. ASM was adopted by ISO for the use in the Prolog stan-
dard. More recently in the new millenium, ASM has been used to provide
specifications of Java and the JVM [61], and of the JCVM [57].

Denotational semantics models each part of a program as its denotation—typi-
cally a higher-order function between complete partial orders [39]— represent-
ing its observable behaviour. The semantics of loops and recursion usually in-
volves the explicit use of fixed-point operators or a specification as equations
whose least solution is to be found. Apart from the original Scott-Strachey
style of denotational semantics, we consider here also monadic semantics and
predicate transformers.

(5)

(7)

Scott-Strachey semantics is the original style of denotational semantics
developed at the end of the 1960’s [56]. Here domains of denotations and
auxiliary entities are defined by domain equations, i.e. equations involv-
ing complete partial orders with continuous functions. Many standard
techniques for representing programming concepts as pure mathematical
functions have been established in this framework. For instance, sequenc-
ing may be represented by composition of functions, or by the use of con-
tinuations. The denotational description of nondeterminism, concurrency,
and interleaving has led to the development of so-called power domains
[60]. Because of Strachey’s fundamental contributions, researchers were
able to give semantic definitions to programming languages like Ada, Al-
gol60, Algol68, PL/1, Lisp, Pascal, Scheme and Snobol [16,48,6,51,53,62].
Monadic semantics is based on category-theoretic concepts and was de-
veloped by Moggi [50] at the end of the 1980’s. Denotations in monadic
semantics are elements of so-called monads, i.e. type constructors that
capture various notions of sequential computation. Monad transformers
construct monads incrementally and add new aspects of a computation
to a given monad. Monadic semantics appears to be currently lacking an
example of its use in connection with a practical programming language.
Predicate transformer semantics was proposed by Dijkstra [30] in the

3 The idea of evolving algebras has probably independently been developed and
applied during the design of the wide-spectrum language COLD. For more details
see [43,34,35].

mid-1970’s. Here the semantics of a programming language is defined by
assigning to each command in the language a corresponding predicate
transformer returning the weakest pre-condition which ensures termina-
tion of the command under a certain post-condition. Predicate trans-
formers are required to have properties corresponding to the continuity
of functions on Scott-domains. Unlike other semantic formalisms, predi-
cate transformer semantics was not designed as an investigation into the
foundations of computations. Rather, it was intended—and still is—to
provide programmers with a methodology to develop their programs as
“correct by construction” in a “calculational style”.

Axiomatic semantics is an approach based on mathematical. Its purpose is
to provide a set of logical axioms and rules in order to reason about the
correctness of computer programs with the rigour of mathematical logic. As
usual with axiomatic specifications, there may be insufficiently many proper-
ties been given—in which case there may be more than one model—or the set
of properties may be inconsistent—in which case there are no models at all.
As with predicate transformers, predicates are used as formulae. We consider
Hoare logic.

(8) Hoare logic (also known as Floyd-Hoare logic) was developed by Hoare
[42] in the late 1960’s. Hoare’s logic has axioms and inference rules for
all the constructs of a simple imperative programming language. In addi-
tion to the rules for the simple language in Hoare’s original paper, rules
for other language constructs—such as concurrency, procedures, jumps,
and pointers—have been developed since then by Hoare and many other
researchers. Hoare logic was used during the design of Pascal, and the
resulting description as the basis for program verification.

A large number of semantic frameworks have been provided during the past
three decades. We have classified them mainly as operational, denotational,
and axiomatic in a deliberately brief and superficial style, focussing on the
most important differences between the frameworks, and ignoring many de-
tails. Compared to the amount of effort that has been devoted to the devel-
opment of these semantic frameworks and their uses listed above, the list of
significant practical uses may be considered as relatively small. Hindrances to
greater use are user-unfriendliness and the fact that most frameworks do not
scale up smoothly from tidy illustrative to full-scale practical languages.

3 Projection semantics

A major difficulty with the approaches to programming language semantics
that stem from theory is that the audience is asked to think in terms of cer-

tain more or less sophisticated semantic domains, typically function spaces or
transition systems of some particular kind. This is always felt as an obsta-
cle and textbooks on programming never seem to pay any attention to such
mathematical background.

Projection semantics (PS) was developed in the setting of program algebra in
the years 1998 and 1999 [9,10] and is different in that it explains the seman-
tics of a program in a ‘higher’ language in terms of a translation, here called
projection, in a known program notation. A program is supposed to have the
same meaning as its projection, by definition. The semantics of the projec-
tion, i.e., the resulting program after projection, is therefore given in terms of
programming language semantics as well, the only progress made being that
it is in a notation which one claims to be understood.

As an example we consider the basic program notation based on a parame-
ter set of basic instructions {a, b, c, ...} representing a command issued by a
program during execution to its context. That context may involve classical
ingredients such as a printing device but it may also involve the calculation of
a value contained in a variable which is often taken simply as something inside
a program. The execution of a basic instruction takes place during program
execution. It is done by the machine architecture that executes the program
and it will have two effects: a possible state change in the execution context
and a Boolean value which is produced as a result of processing the instruc-
tion—viewed as a request to its environment—and which is subsequently re-
turned to the program under execution where it may be used to decide which
is the next instruction to be carried out. In addition to the parameter set, the
basic program notation contains test instructions—each basic instruction can
be turned into positive or negative test instruction by prefixing it with - or +
—and absolute jump instructions ###k with & € N.

A program is then a finite stream of instructions. Execution starts at the first
instruction and ends when the last instruction is executed or if a jump is made
to a nonexisting instruction. In particular, ##0 represents program termina-
tion because the instruction count is taken to start with 1. The working of test
instructions is as follows: if the i-th instruction is 4a its execution begins with
the execution of a. After completion of that action a reply value is at hand.
If the reply was true the run of the program proceeds with instruction num-
ber 7 + 1—if that exists otherwise execution terminates. Alternatively, if the
reply was false the execution proceeds with instruction number 7 + 2—again
assuming its existence, leading to termination in the other case as well. Thus
a negative reply enacts that an instruction is skipped. Execution of a nega-
tive test instruction —a proceeds in a similar way yielding a skip if a returns
true. Finally, the execution of a jump instruction ##k makes the execution
continue with the k-th instruction if that instruction exists. Otherwise the pro-
gram execution terminates. If ##k itself is the k-th instruction the execution

is caught in a never ending loop.

An example of a basic program is a;+b; ##0; ¢; ¢; ##2 which may be read
as: first do a and then b, and then repeat c;c;b as long as the last reply for b
was negative, and terminate after the first positive reply to an execution of b
is observed.

The behavioural semantics of basic programs is defined in [8,10,11]. This se-
mantics is based on the basic thread algebra TA. TA has a constant S for
termination, a constant D for inaction or divergent behaviour, and a composi-
tion mechanism named post conditional composition: the expression P <al> ()
represents the execution of action a, and if true was returned, behaviour
continues as P, and otherwise as (). A shorthand for P <al> P is ao P,
and this resembles the usual action prefix in process algebra. Furthermore
TA is equipped with a family of approximation operators which can be used
to handle infinite behaviour. Now any basic program X gives rise to a (pos-
sibly infinite) TA process. For example, the process P corresponding to the
above mentioned basic program a;+b; ##0; c; c; ##2 can be defined by the
two equations P=ao0Q, Q@ =S (cocoQ).

Based on this extremely simple program notation more advanced program fea-
tures can be developed within projection semantics such as conditional state-
ments, while loops, recursion, object classes, method calls etc. In taking care
of a cumulative and bottom up introduction of such complex features while
providing appropriate projections into the lower levels of language develop-
ment, an intermediate languages can be developed that keeps all definitions
rigorous, ensures a clear meaning of higher program constructs and serves as
an intermediate step for programs written in a higher-order language.

4 Virtual machines and intermediate languages

Virtual machines (VMs) are a popular target for language implementors. They
reside as application programs on top of an operating system and export
abstract machines that can run programs written in a particular intermediate
language (IL). As an intermediate step, programs written in a higher-order
language (HL) are first translated into a more suitable form before object or
machine code is generated for a particular target machine. Masking differences
in the hardware and software layers below the virtual machine, any program
written in the high-level language and compiled for these virtual machines will
run on them. In an ideal situation the frontend of a virtual machine will be
entirely independent of the target hardware, while the backend will be sensibly
independent of the particular language in which source programs are written.
In this way the task of writing compilers for n languages on m machines is

factored into n + m part-compilers rather than n x m compilers.

i

Fig. 1. Outline of a virtual machine design

One of the first virtual machines was the p-Code machine invented in the late
1970’s as an intermediate form for the ETH Pascal compilers [2] but becoming
pervasive as the machine code for the UCSD Pascal system. What had been
noted was that a program encoded for an abstract machine may be used in two
ways: a compiler backend may compile the code down to the machine language
of the actual target machine, or an interpreter may be written which emulates
the abstract machine on the target. This interpretative approach surrenders a
significant factor of speed, but has the advantage that programs are much more
dense in the abstract machine encoding. As a consequence of this technology
high-level languages became available for the first time on microcomputers. As
an additional benefit, the task of porting a language system to a new machine
reduced to the relatively simple task of creating a new interpreter on the new
machine.

In the late 1990’s Sun Microsystems released their Java [37] language system.
This system is also based on an abstract machine - the Java Virtual Machine
(JVM) [45]. Nowadays, JVMs are available for almost all computing plat-
forms. In mid-2000 Microsoft revealed a new technology based on a wider use
of the world wide web for service delivery. This technology became known as
the .NET system and was designed with the objective of supporting multiple
languages. At the heart of this initiative stands the Common Language Infras-
tructure (CLI) virtual machine executing the Common Intermediate Language

(CIL).

10

A long-running question in the design of virtual machines has been whether
register or stack architectures can be implemented more efficiently with an
interpreter. Many designers favour stack architectures since the location of the
operands is implicit in the stack location, prominent examples being the stack-
based JVM and CLI. In contrast, the operands of register machine instructions
must be specified explicitly. A more recent example of this sort of virtual
machine is Parrot intended to run dynamic languages. In the sequel we shall
only consider stack-based VMs. For a translation from stack-based to register-
based code and efficiency comparisons see e.g. [38,58].

5 The base language

The base language is the PS answer to the conceptual question: ‘what is a
program?’. The tricky aspect is that at the same time as the base language is
claimed to provide this answer PS predicts that this answer may be in need
of refactoring at some future stage. PS runs on the unproven assumption that
whatever formal definition of a program is given, there will always be a setting
in which this definition needs to be compromised or amended in order to get
a comprehensible theory. But at the same time a PS answer to any problem
needs full precision definitions. There is no room for an open ended concept of
program like ‘a text meant to tell a machine what to do’, or—in the absence
of precise definitions of ‘unit’ and of ‘deployment’—‘a definition of a software
component as a unit of deployment’. Likewise, a machine language may not be
defined as a program notation meant for machine execution—in the absence of
a clear model of the concept of machine execution—and a scripting language
is not definable as a language for writing scripts—unless, again the concept of
a script is rigorously defined beforehand.

As a start for syntax development instruction stream language with absolute
gumps (ISLA) (cf. Section 3) may be taken which features among the sequence
of the program notations that have been designed on the basis of program alge-
bra under the name PGLD [10]. The basis of the definition of ISLA is formed
by the notion of a basic action. Basic actions may be used as instructions
in ISLA. A basic instruction a represents a command issued by the program
during execution to its context. That context may involve classical ingredients
such as a printing device but it may also involve the operation of a value con-
tained in a variable which is often taken simply as something inside a program.
The execution of a basic action a takes place during program execution. It is
done by the machine architecture that executes the program and it will have
two effects: a possible state change in the execution context and a Boolean
value which is produced as a result of processing the action—viewed as a re-
quest to its environment—and which is subsequently returned to the program
under execution where it may be used to decide which is the next instruction

11

to be carried out.

For each basic action a the following are ISLA instructions: a, +a and —a.
These three versions of the basic actions are called: void basic action (a),
positive test instruction (+a), and negative test instruction (—a). A void basic
action represents the command to execute the basic action while ignoring the
Boolean return value that it produces. Upon completion of the execution of
the basic action by the execution environment of the program processing will
proceed with the next instruction. The test actions represent the two ways
that the Boolean reply can be used to influence the subsequent execution of a
program. The only other instructions in ISLA are absolute jumps ##k with
k a natural number.

An ISLA program is a finite stream of ISLA instructions. Execution by de-
fault starts at the first (left most) instruction. It ends if the last instruction
is executed or if a jump is made to a nonexisting instruction. In particu-
lar, ##0—which will be abbreviated by !—represents program termination
because the instruction count is taken to start with 1. The working of test
instructions is as follows: if the ¢-th instruction is +4a its execution begins
with the execution of a. After completion of that action a reply value is at
hand. If the reply was true the run of the program proceeds with instruction
number 7 + 1 if that exists, otherwise execution terminates. Alternatively, if
the reply was false the execution proceeds with instruction number 7 4 2
again assuming its existence, leading to termination in the other case as well.
Thus a negative reply enacts that an instruction is skipped. In the case of a
negative test instruction —a execution proceeds with instruction number 7+ 2
at a positive reply and with instruction number 7 + 1 at reply false. The
execution of a jump instruction ##k makes the execution continue with the
k-th instruction if that exists. Otherwise the program execution terminates.
If #+#k is itself the k-th instruction the execution is caught in a never ending
loop.

Example 1 Typical ISLA programs are

o a;+b;l;c; #H#2
which may be read as first do a¢ and then b and then repeat c;b as long as
the last reply for b was negative, and terminate after the first positive reply
to an execution for b is observed.

o —a; ##6;b;¢;5e; f
which may be read as first do a, and if a returns true then do b and ¢, else
do e and f, and then terminate.

The definition of ISLA in PS has the following intention. At the initial stage
of PS development it is reasonable to view ISLA as a definition of the concept
of a program. Moreover, any text P is a program provided there is at hand

12

a projection ¢ which maps the text to an LP NA instruction sequence ¢(P)
which, by definition, represents the meaning of P as a program. The position
regarding ISLA is therefore not the untenable assertion that every program is
identical to an ISLA instruction sequence but the much more flexible assertion
that for some entity P to qualify as a program it must be known how it
represents an ISLA instruction sequence. By means of the application of the
projection that ISLA program is found and the meaning of the entity P as a
program is determined.

An alternative to ISLA is the program notation ISLR which admits basic
actions, positive and negative test actions and the termination instruction !.
The jumps are different, however. Only forward jumps (#k) and backward
jumps (\##k) (with £ a natural number) are admitted. Thus ISLR is ISL with
relative jumps. Termination also occurs if a jump is performed outside the
range of instructions. *

Example 2 A typical ISLR program is +a; #3; b; |; ¢; \#4 which may be read
as first do a and, if the reply to @ was negative, continue with b and terminate;
otherwise enter an infinite repetition of c.

ISLA and ISLR are intertranslatable by the mappings ¢ : ISLA — ISLR and
¢ : ISLR — ISLA which transform jumps depending on the place of their

occurrence and leave the other instructions unmodified. The mappings are
defined by

o Y(ug;...;up) = Y1(ur);-..;¥n(uy) where

Vi(##E) = {\#2 — k otherwise.

o P(ui;...;un) = @r(ur);...; Pn(un) where ¢;(#k) = #4k + 1 and

N
@(\#k):{!##z Eoifk <,

otherwise.

4 The program notation ISLR was originally defined in the setting of program
algebra in [10] under the name PGLC.

13

Example 3 The translations of the programs in Example 1 and 2 are

U(a; +b; 15 0 ##2) = P1(a); Lo (+0); s(1); Yalc); s (##2)
= a;+b; 1 ¢; \#3,
V(—a; #46;b;c; 15 €5 f) = Yi(—a); Ya(F##6); ¥3(b); valc); ¥s(1); Ye(e); vr(f)
= —a; #4;b;¢; 5 65 f,
D(+a; #3;b; 1 ¢, \#4) = d1(4a); p2(#3); d3(); D4 (1); d5(c); de(\#4)
= +a; #45; b; !5 ¢; ##2.

A virtue of ISLR is that it supports relocatable programming. Programs may
be concatenated without disturbing the meaning of jumps. Placing a program
behind another program may be viewed as a relocation which places each
instruction at an incremented position. This property can be best exploited if
programs are used that always use ! for termination. In some cases it is useful
to use only a forward jump to the first missing instruction for termination. For
programs of that form concatenation corresponds to sequential composition.

Another alternative to ISLA as a base language would be ISLAR, the in-
struction stream notation with absolute and relative jumps. Throughout this
paper, however, we shall take ISLA as base language, and projections will
be (chained) mappings to ISLA programs. We shall write A C B for a pro-
gram notation B extending A and use the operator ¢ for projections. In most
cases a projection transforms some program notation back to a simpler one.
Sometimes the choice of the right order of such steps is important. A for-
malism for specifying a strategy for chaining projections will not be included
below, however. It is assumed that a reader will be easily able to determine
the right order of the various projections. A full precision story may need an
annotation of all projection functions with domains and codomains. But as it
turns out these matters are often clear from the context and merely needed
for formalization rather than for rigorous explanation. Therefore that kind of
bookkeeping has been omitted, with the implicit understanding that it can
always be introduced if additional clarification is necessary.

14

6 Extensions of ISLA with labels and goto’s, conditional constructs
and while loops

6.1 Projective syntax for labels and goto’s

Labels have been introduced in the program algebra setting in [10] in the pro-
gram notation PGLDg. Here, however, labels will have the form [s], with s a
non-empty alphanumerical string, i.e., a sequence over the alphabet {a, ..., z,
A, ., Z,0,...,9}; #4][s| and ##[s][t] are the corresponding single or chained
goto instructions. The intended meaning is that a label is executed as a skip.
A single goto stands for a jump to the leftmost instruction containing the cor-
responding label if that exists and a termination instruction otherwise, and a
chained goto of the form ##/s][t] stands for a jump to the leftmost instruction
containing the label [s] followed by a jump to the leftmost instruction there-
after containing the label [t] assuming hat they both exist and termination
otherwise. The label occurrence that serves as the destination of a single or
chained goto is called the target occurrence of the goto instruction.

In order to provide a projection for A:GL (program notation A with goto’s
and labels) the introduction of annotated goto’s is useful. ##[s|m (F#+#[s][t|m)
represents the goto instruction #+#[s| (##[s][t]) in a program where the target
label is at position m. ##[s]0 (#+#]s][t]0) represents the case that no target
label exists. The projection from A:GLa (A with annotated goto’s and labels)
to A and from A:GL to A:GLa are obvious.

Projection 4 Let ISLA C A.

(1) ¢ : A:GLa — A is defined by ¢(uy;...;un) = é1(u1);- .. ; dn(uy,) where
(a) ¢i([s]) = ##i+ 1,

(b) di(##[sIm) = ¢i(F##[s][t]m) = ##m.
The other instructions remain unmodified.

(2) ¢ : A:GL — A:GLa is defined by ¢(uy;...;u,) = ¢(uq);...; ¢(u,) where
O(##[s]) = ##t[slm and ¢(##[s][t]) = ##[s][t}m with m the instruc-
tion number of the target label if it exists and 0 otherwise. The other
instructions remain unmodified.

6.2 Second level instructions

When transforming a program it may be necessary to insert one or more
instructions. Unfortunately that renders the counting of jumps useless. Of
course jump counters may be updated simultaneously thus compensating for
the introduction of additional instructions. Doing so has proved to lead to

15

unreadable descriptions of projection functions, however, and the device of
two level instruction counting will be proposed as a more readable alternative.

Instructions will be split in first level instructions and second level instructions.
The idea is that expanding projections—projections that replace instructions
by non-unit instructions—are given in such way that each instruction sequence
replacing a single instruction begins with a first level instruction while all
subsequent instructions are taken at the second level.

Second level instructions are instructions prefixed with a ~. First level in-
structions do not have a prefix; they are made second level by prefixing them
with a ~. First and second level absolute jumps ##k and ~ ##k will rep-
resent a jump to the k-th first level instruction if that exist (and termination
otherwise) simply ignoring the second level instructions. The extension of a
ISLA based program notation A with second level instructions is denoted with
A:SL. For any A D ISLA, the projection ¢ : A:SL — A removes second level
instruction markers and updates the jumps.

Projection 5 Let ISLA C A.
¢ : A:SL — A is defined by ¢(us;...;un) = ¢(u1);- .. ; ¢(uy,) where

! if £ > mazx,
Q(##k) = .

#4#k 4+ 1 otherwise.
Here max is the number of first level instructions occurring in uq;...;u, and
[is the number of second level instructions preceding the k-th first level

instruction. The other first level instructions remain unmodified. Moreover,
d(~ ##k) = ¢(F##k) and ¢(~ u) = u for all other first level instructions u.

Example 6 ¢(~ a3~ +b;~ #42; ##1) = a; +b; |; #4¢4

The only use of A:SL is as a target notation for projections from an ISLA
based program notation. There will be a number of examples of this in the
sequel.

Notation 7 For notational convenience we introduce the following abbrevia-
tions. We write

o aF#fymp for a;~ F#gmp, +aFf#ymp for +a;~ ##jmp, and —a#H#jmp
for —a; ~ ##jmp, and likewise

o ~ a#H#Hjmp for ~ a;~ #H#imp, ~ +aFH#jmp for ~ +a;~ ##ymp and
~ —aF##k for ~ —a;~ #H#mp

with jmp € NU{[s], [s][t] | s,t € {a,...,2,A,..., Z,0,...,9}F}.

16

6.3 Projective syntax for the conditional construct

Conditional constructs can be added to ISLA by using four new forms of
instruction: for each basic action a, +a{ and —a{ are conditional header in-
structions, further }{ is the separator instruction and } is the end of con-
struct instruction. The idea is that in +a{; X; }{;Y;} after performing a,
at a positive reply X is performed and at a negative reply Y is performed.
The program notation combining an ISLA based program notation A and
these conditional instructions is denoted with A:C. A projection for the con-
ditional construct instructions is found using second level instructions. Due
to the use of second level instructions the projection can be given by replac-
ing instructions without the need to update jump counters elsewhere in the
program. The projection to second level instructions will be such that e.g.

o(b; +al; c; —d; ##0; Hs +e; ##4: 15 f) =
b; —a##7; c; —d; #+40; #410; +e; #44; #410; f.

The general pattern of this projection is as follows: the conditional header
instructions are mapped onto a sequence of two instructions, one performing
the test and the second instruction containing the second level jump to the po-
sition following the projected separator instruction. The separator instruction
is mapped to a jump to the position following the projected end of construct
instruction, and the end of construct instruction is mapped to a skip, i.e., to
a jump to the position thereafter. For this projection to work out some pars-
ing of the program is needed in order to find out which separator instruction
matches with which conditional construct header instruction and which end
of construct instruction.

The annotated brace instructions needed for the projection of the conditional
construct instructions are as follows: +a{k, —a{k, }{k, k} with £ a natural
number. This number indicates the position of instructions that contain the
corresponding opening, separating or closing braces, or 0 if such an instruction
cannot be found in the program. A:Ca is the extension of a program notation
A with annotated versions of the special conditional statements. An annotated
version of the program given above is

b; +a{6; c; —d; ##0; 2}{9; +e; ##4;6}; f.

The projection from A:Ca to A:SL is now again obvious.

Projection 8 Let ISLA C A.

17

¢ : A:Ca — A:SL is defined by é(us;...;u,) = ¢1(u1);- .. ; ¢n(uy,) where

¢i(+alk) = —adt#tk +1

di(—afk) = +a##k + 1
¢i(Hk) = ##k +1
¢i(k}) = ##i+1

)
)
)
)

for £ > 0 and,
di(+a{0) = —a##0
¢i(—a{0) = +a##0
¢i(1{0) = ##0
¢i(0}) = #40

The other instructions remain unmodified.

The projection of A:C to A:Ca involves a global inspection of the entire A:C
program. There is room for confusion, for instance, in the case

P=ua;};+0{;c H:d e {

In spite of the fact that the program P is not a plausible outcome of program-
ming in ISLA:C, an annotated version of can be established as

a; 0}; +b{5; ¢; }{0; d; }{0; ¢; {0,

which contains all semantic information needed for a projection.

Projection 9 Let ISLA C A.
¢ : A:C — A:Ca is defined by ¢(us;...;u,) = ¢(u1);...; ¢(u,) where

(1) ¢(+a{) = +a{k and ¢(—a{) = —a{k
with & the instruction number of the corresponding separator instruction
if it exists and 0 otherwise,

(2) o(30) =Hk

with £ and the instruction number of the corresponding end of construct
instruction if it exists and 0 otherwise,

(3) o(}) =k}
with & the instruction number of the corresponding separator instruction
if it exist and 0 otherwise.

The other instructions remain unmodified.

18

6.4 Projective syntax for while loops

The following three instructions support the incorporation of while loops in
programs projectible to ISLA: +a{*, —a{* (while loop header instructions)
and x} (while loop end instruction). This gives the program notation A:W. As
in the case of conditional constructs, while constructs will be projected using
annotated versions.

A:Wa allows the annotated while loop instructions +a{xk, —a{xk and kx}.
The projection of annotated while loop instructions is again obvious.

Projection 10 Let ISLA C A.
¢ : A:Wa — A:SL is defined by ¢(uq;...;u,) = ¢1(uq);. . .; dn(uy,) where

¢i(+a{*k) = —a#t#tk + 1
oi(—a{*k) = +a##k + 1
Gi(kx}) = ##k
for £ > 0 and,
¢i(+a{+0) = —a##0
oi(—a{*0) = +a##0
9i(0+}) = ##0

The other instructions remain unmodified.

The introduction of annotated while braces by means of an annotating projec-
tion follows the same lines as in the case of conditional statement instructions.

Projection 11 Let ISLA C A.
¢ : A:W — A:Wa is defined by ¢(uy;...;u,) = ¢(u1);-..; ¢(uy,) where

(1) ¢(+a{*) = +a{*k and ¢(—a{*) = —a{xk
with k the instruction number of the corresponding while loop end in-
struction if it exists and 0 otherwise, and

(2) o(x}) = kx}
with & the instruction number of the corresponding while loop header
instruction if it exist and 0 otherwise.

The other instructions remain unmodified.

Notice that a projection of the extension A:C of an ISLA based program
notation A obtained by a simultaneous introduction of conditional and while

19

constructs can be given by a concatenation of the projections defined above
by starting either with conditional or while instructions. Thus

A:CW = (A:C):W — (A:C):Wa — (A:C):SL - A:C — --- — A.

We end this section with an example containing conditional and while con-
struct instructions.

Example 12 Let P = +a{;b;+c{*;d;*}; }{;e; f;}. P can be read as do a
and continue with e and f and terminate if a returns false; otherwise do b
and repeat c¢;d as long as the last reply for ¢ was positive, and terminate after
the first negative reply to an execution for c. We may view P as a program
in (ISLA:C):W. The annotated version of P given by the above projections is
+a{; b; +c{*b;d; 3x}; };e; f; } and projection to (ISLA:C):SL yields

+af; by —c##6; d; ##3; s e; £ }-
Projecting to ISLA:C we obtain
+a{; by —c; #H#T: ds #4#3; H e 3 1

We now proceed with the projection of the conditional constructs. The anno-
tated version is

+a{T; b; —c; ##7; d; #43; {10 ¢; f; 7}
and projection to ISLA:SL yields
—aFH#H8; by —c; #H# T, d; #43; #4115 65 f ##11

Finally, projecting to ISLA we obtain

—a; ##9; b; —c; ###8; d; #44; s e; f5 L.

The projections discussed in this section are summarized in Figure 2.

7 Extension with constructs involving recursion

In some cases a program needs to make use of a data structure for its computa-
tion. This data structure is active during the computation only and helps the
control mechanisms of the program. Such a data structure is called a service or
state machine [13]. A formalization of this matter involves a refinement of the
syntax for basic actions. Any service action used in a program is now supposed
to consist of two parts, respectively the focus and the method, glued together

20

A:C AW A:GL

A:Ca\A:IVa A:GLa
A:SL\
A

Fig. 2. Basic extensions of an ISLA based program notation A

with a period that is not permitted to occur in either one of them. For the
service only the method matters because the focus is used to identify to which
service (or other system component) an atomic instruction is directed. We
denote the extension of a program in notation A by the instructions of service
SER by A/SER. A service action a used in the extension will be written as
ser.a. An example is given below.

NNV is a very simple data structure holding a single natural number—initially
0—which can be set and returned. The only basic actions performed by NNV
are

(1) set(n). The set action always succeeds setting the value to n.
(2) eq(n)®. This action fails if the value is unequal to n; otherwise it returns
true.

With a natural number value a case statement

nno.case(m){; Xo; H; Xu5 Hs -5 Hs Xonas s Xims }

becomes available providing a multi-way branching based on a natural number.
The idea here is that if the value 7 of NNV lies in the range 0 to m, then X is
performed and execution continues after the last closing brace, otherwise this
construct is skipped. The program notation combining an ISLA based program
notation A with NNV based case statements is denoted with A:CS,,,. Its
projection can be given by the use of annotations and second level instructions.

The annotated brace instructions needed for the projection are nnv.case(m){k
and i}{k with natural numbers k, ¢ where k indicates the instruction number

5 Since basic actions are supposed to return Boolean values, we have replaced the
return operation by an equality indicator function.

21

of the corresponding separator or end of construct instruction and 7 the value
to be tested. k is set to 0 in the case of ill formed program syntax. A:CS,,,a
denotes the extension with annotated case statements.

Projection 13 Let ISLA C A.
¢+ A:CSpppa — A/NNV:SL is defined by ¢(uq;...;un) = ¢1(u1);...; dnluy)
where

¢i(nnv.case(m){k) = —nnv.eq(0)##k + 1
¢i(iH{k) = —nnv.eq(i)##k + 1
¢i(}) = ##i+1
for £ > 0 and,
oi(nnv.case(m){0) = ##0
¢z(7’}{0) = #+#0

The other instructions remain unmodified.

The projection of A:CS,,, to A:CS,,,a involves again a complete inspection
of the A:CS program.

Projection 14 Let ISLA C A.
¢ : A:CSppy — A:CSpppa is defined by é(uq;...;u,) = ¢(uq);. .. ; ¢(u,) where

(1) ¢(nnv.case(m){) = nnv.case(m){k
with £ the instruction number of the corresponding separator or end of
construct instruction if it exists and 0 otherwise,

(2) o(H) =ik
with 7 the test value and k£ and the instruction number of the correspond-
ing separator or end of construct instruction if it exists and 0 otherwise.

The other instructions remain unmodified.

A more advanced data structure is the stack. The key application of a stack
is to obtain projections for program constructs involving recursion.

The basic actions performed by a stack S are

(1) pop. This instruction fails if the stack is empty. Otherwise it succeeds and
removes the top from the stack while giving a positive reply.

(2) push(n). The push action always succeeds placing the natural number n
on top of the stack and producing a positive reply.

(3) topeq(n). This action returns true if the top of the stack equals n; oth-
erwise it returns false.

22

Similar to the case statement for natural number values one can now introduce
case statements

s.case(m){; Xo; Vo Xo M-+ 5 MG X1 1 Xos b

based on the topmost element of the stack. Annotation and projection are
defined in the same fashion. The program notation combining an ISLA based
program notation A with stack based case statements is denoted with A:CSy;
its annotated version is denoted A:CS;a.

Projection 15 Let ISLA C A.
¢ : A:CSs;a — A/S:SL is defined by ¢(uq;...;u,) = ¢1(u1);...; dn(u,) where

oi(s.case(m){k) = —s.topeq(0)#H#k + 1
oi(i}{k) = —s.topeq(i)##k + 1
Gi(}) = ##i + 1

for k£ > 0 and,
¢i(s.case(m){0) = ##0
¢i(i}{0) = #4#0

The other instructions remain unmodified.

Projection 16 Let ISLA C A.
¢ : A:CS; — A:CS;a is defined by é(uy;...;u,) = ¢(ur);. .. ; ¢(uy,) where

(1) ¢(s.case(m){) = s.case(m){k

with £ the instruction number of the corresponding separator or end of
construct instruction if it exists and 0 otherwise,

(2) o(H) =ik
with 7 the test value and k£ and the instruction number of the correspond-
ing separator or end of construct instruction if it exists and 0 otherwise.

The other instructions remain unmodified.

In preparation of the incorporation of recursion, dynamic jumps #+s.pop—where
the counter depends on the top of the current stack—will be introduced. The
program notation that combines an extension A of ISLA with dynamic jumps

is denoted with A:DJ. The projection to A/S:CS,:SL takes into account that
in a program uq;...; ##s.pop;...;u, at most n different values of the jump
counter are needed.

Projection 17 Let ISLA C A.
¢ : A:DJ — A/S:CS,:SL is defined by ¢(uy;...;u,) = ¢(uq);...; ¢(u,) where

23

O (##s.pop) =
s.case(n){; ~ s.pop#t#£0; ~}H; -+ s~ H; ~ s.pop#n; ~}

All other instructions remain unmodified.

Having dynamic jumps available, we can now introduce recursion. The in-
struction pair R##k, ## R represents recursion in the following way: if a
returning jump instruction R#4k occurring at position ¢ is executed a jump
to instruction k is made, moreover the instruction counter 7+1 is placed on the
stack. Whenever a return instruction #4R is executed a jump is performed
to the top of the stack which is simultaneously popped.

A:R is the program notation A augmented with returning jump instructions
of the form R#+#k and return instructions ##R. A projection to A/S:SL:DJ
can be given in the following way.

Projection 18 Let ISLA C A.
¢ : A:R — A/S:SL:DJ is defined by ¢(uq;...;us) = ¢1(u);. . .; ¢n(u,) where

oi(R##E) = s.push(i + 1)#F#k
6,(##R) = ##5.pop

All other instructions remain unmodified.

The part of the computation taking place between a returning jump and its
corresponding return instruction may be called a subcomputation. Recursion
using returning jumps and return instructions can be made more expressive
by means of parameters, i.e., values that serve as inputs to a subcomputation.
They are put in place before executing a returning jump, and the program
part executed as a subcomputation ‘knows’ where to find these parameters.
Various strategies can be imagined for arranging the transfer of parameters
during returning jump and return instructions. Here we have chosen for an
automatic parameter transfer to and from a stack to local spots.

A stack with value pool is a data structure that maintains a stack and a value
pool. The stack stores values of primitive types and instruction counters which
do not count as values. The value pool consists of finitely many pairs with the
first element being the spot relative to the value pool and the second element
its content. There are two distinguished spots: this and that. this contains
the instances for object oriented instance method calls and that the results
of subcomputations. In addition to the usual stack actions a stack with value
pool can perform the following actions which transfer values between stack
and pool:

24

(4) store(s). The precondition of this basic action is that the stack is non-
empty; otherwise it fails. If the stack is non-empty its top is removed and
made to be the content of spot s. The previous content of s, if any, is lost
in the process.

(5) load(s). This basic action takes the content of the spot s, which must
have been introduced at an earlier stage, and pushes that on the stack.
A spot is defined if it has been assigned a value by means of a store
instruction at some stage. If the spot is still undefined the action fails.
This is a copy instruction because the value is still the content of s as
well after successful execution.

We now assume that the m parameters of a recursion—and in the case of an
object oriented instance method call also an instance parameter that plays
the role of the target instance—are initially stored consecutively on a stack.
From here they are placed in the value pool at spots argl,...,argm—and
possibly this—but only after having copied the contents of these spots to a
second auxiliary stack in order to allow recovery of the original contents. Just
after the returning jump and just before the return instruction the top of the
auxiliary stack contains the parameters in decreasing order. The projection of
the return instruction will then involve the recovery of the several spots before
the returning jump from the data that were placed on the auxiliary stack.

In the sequel we shall write Rm#+#k and I Rm#+#k (m,k € N) for returning
jump instructions with m parameters and a possible instance. Given a pro-
gram notation A the extension by parametrized returning jumps and return
instructions is denoted A:Rp. The projection uses two stacks sharing a single
value pool called svp and svpg,., respectively. In order to recover the copied
spots it is necessary to replace returning jumps by instruction sequences con-
taining 2 first level instructions. As a consequence jump counters have to be
updated.

Projection 19 Let ISLA C A.
¢ : A:RP — A/SVP:SL:DJ is defined by é(us;...;u,) = ¢1(ug);...; dn(uy)

25

where

¢i(Rmt#tk) = svpaus-load(argl);

~ SUDguz-load(arg2);- -« ; ~ SUpgyus-load(argm);
~ svp.store(argl);--- ; ~ svp.store(argm);

~ svp.push(i + 1)#+#k;

SUDgug-Store(argm);

~ SUDgug-Store(argm — 1);- -+ ; ~ SUDgy.Store(argl)

&i(IRm#H#k) = svpgue-load(argl);

~ SUDguz-load(arg2);- -« ; ~ SUpgyus-load(argm);

~ SUDgug-load(this);

~ svp.store(this); ~ svp.store(argl);--- ;~ svp.store(argm);
~ svp.push(i + 1)#+#k;

SUDgug-Store(this);

~ SUDgug-Store(argm); -« ; ~ SUPgyz-Store(argl)

¢i(F##R) = F##svp.pop

Gi(##]) = ##1 + 7

where r is the number of (instance) returning jumps preceding w,;. All other
instructions remain unmodified.

The two stacks used in the projection above van be combined into a single
stack with value pool by considering a stack svp that performs in addition to
the usual stack and transfer actions also the action

(6) down(n). This action places the top just below the n-th position from
above after removing the top. Thus after down(n) the top has migrated
to the n + 1-th position from above. If that is impossible the action fails,
a negative reply is given and no change is made to the stack.

Allowing for down actions, one can replace in Projection 19 instructions of
the form svpgye-load(x) by svp.load(x); down(m) if no instance parameter is
involved and by svp.load(z); down(m + 1) otherwise; instructions of the form

26

SUDguz-Store(x) have to be stripped off their subscript.

It is important to notice that for the projection of a specific program only
a finite number of down(n) instructions is used. This implies that the stack
manipulations do not reach the expressive power of a full stackwalk, but rather
may be simulated (per program) from a stack and a finite memory service, or
more easily obtained using a bounded value buffer.

The projections of recursion instructions are summarized in Figure 3. The final
projection to A/S can be obtained by chaining the appropriate projections
discussed in the preceding sections.

A:R A:Rp

A/SVP:SL:DJ

A/SVP:DJ

A/SVP:SL:CS;

A/SVP:CS,

A/SVP:C:SL

A/SVP

Fig. 3. Projections of recursion and parametrized recursion with automatic para-
meter transfer using a stack with value pool

8 Intermediate level programs

The design of instructions can be viewed as proceeding in three phases. Un-
til this point only so-called low level instructions have been designed. Low
level instructions have either fixed projections or their projection trivially
depends on the program context. Program context dependence occurs for in-

27

stance with a closing brace instruction for which the projection may depend
on the index of its corresponding opening brace instruction. The second design
phase introduces an intermediate language ILN for high-level object oriented
programming constructs which makes use of an operation interface.

An operation interface Ol is a data structure that maintains in addition to a
stack and a value pool a heap which memorizes instance data and the class of
objects. The stack stores values of primitive types, instruction counters and
references to objects.

Assuming also the existence of a family of operators, the basic actions per-
formed by OI are in addition to the stack and value pool actions:

(7) compute(f, k) (with f the name of an operator with arity k). It is assumed
that k values vy, ..., v, are stored consecutively on the stack. If there
are too few values on top of the stack the action fails and the state is
unchanged. If there are sufficiently many values the reply is positive and
the value f(v1, ..., vx) is placed on the stack after removing all k£ arguments
from it.

(8) create. This basic action allocates a new reference and puts it on top of
the stack. If a new reference is not available this action fails.

(9) getfield(F). The precondition of this action is that the top of the stack
is a reference denoting an instance with field F'; otherwise it fails. If the
precondition is met, the content of field F' of the instance denoted by the
top is pushed from the heap on the stack after having removed the top.

(10) setfield(F'). The precondition of this action is that the top of the stack
is a reference followed by a value or a reference; otherwise it fails. If the
precondition is met, the reference and the value are popped from the
stack and field F' of the instance denoted by the popped reference is set
to the popped value.

(11) instanceof (C). The precondition of this action is that the top of the
stack is a reference; otherwise it fails. If the precondition is met, this
action returns true if the class of the instance denoted by the reference
is C', otherwise it returns false. Afterwards the reference is taken from
the stack.

(12) setclass(C). Again, the precondition is that the top of the stack is a
reference; otherwise the action fails. If the precondition is met, the class of
the instance denoted by the reference is set to C. Afterwards the reference
is popped.

In order to make this data structure less abstract, we provide a more detailed
and concrete description.

Let us denote with BinSeq the finite sequences of 0’s and 1’s. Three subsets
of BinSeq are then at the basis of the concrete operation interface:

28

e Loc is a finite or infinite set of so-called locations—in practical cases it must
be finite, in some formal modeling cases an infinite set of locations may be
more amenable.

e Jc is the finite or infinite collection of instruction counters. Here the most
plausible choice is that Ic contains binary forms of all natural numbers.

e Pual is the collection of primitive values. This is again a finite set in most
practical cases, just like Loc.

On the stack one finds

e references: taking the form rw with w € Loc, e.g. r00110; the set of rw’s
with w € Loc is denoted Ref below,

e instruction counters: taking the form iw with w € Ie, and

e primitive values: taking the form w with w € Pval.

In any state of computation the spots have either no content—the initial state
for all spots—or, if a spot has a content, it is either a reference rw or a
primitive value.

Several collections of names are used: ClassNames, FieldNames and SpotNames.
Any convention will do and these sets may overlap without generating confu-
sion. A state of the concrete operation interface consists now of the following
sets:

e (bj is a subset of Loc. Obj contains those locations that contain an object.
Initially a computation will start with Obj empty.

o C(lassification is a subset of Obj x ClassNames. We may regard Classification
in fact as a partial function from Obj to ClassNames.

o Fields is a subset of Obj x FieldNames x (Ref U Puval). Again we assume
that Fields is a partial function from Obj x FieldNames to Ref U Pval.

e Spots is a subset of SpotNames x (Ref U Pval) and hence a partial function
from SpotNames to Ref U Puval.

It is important to make a distinction between vital objects and garbage ob-
jects. Vital objects are those that can be reached from spots containing a
reference and references positioned anywhere on the stack via zero or more
selections of fields containing a reference. Non-vital objects are called garbage
objects. After each method execution garbage objects are removed and so are
their outgoing fields and classifications.

Now the operations of the heap can be interpreted as follows:

e create. If Obj = Loc then return false; otherwise find w € Loc — Oby, place
rw on the top of the stack, put w in Obj, and then return true.

e getfield(f). If the top of the stack is not a reference or if the top of the stack
contains rw, say, but Fields(rw, f) is not defined return false; otherwise

29

remove the top of the stack, place Fields(rw,f) on the stack and return
true.

o setfield(f). If the top of the stack is a reference rw, say, and if it lies on top
of a value v in Ref U Puval, pop the two uppermost items from the stack,
define Fields(rw, f) = v and return true; otherwise return false.

e instanceof (C). If the top of the stack is not a reference return false;
if the top of the stack contains rw, say, pop the stack, return true if
Classification(rw) = C, and return false otherwise.

o setclass(C). If the top of the stack is not a reference return false; if the
top of the stack contains rw, say, define Classification(rw) = C, pop the
stack and return true.

In this concrete operation interface a reference takes the form rw and spots
may also be considered references. In other models references may work dif-
ferently so this description of a concrete operation interface cannot be taken
as an analysis of what constitutes a reference in general.

In preparation of the projection of ILN we introduce a dynamic chained goto
instruction ##/[instanceof][M| where the first goto depends on the class of the
instance this. The projection from A:DCG (A with dynamic chained goto’s)
to A/OL:C:GL:SL can be given in the following way.

Projection 20 Let ISLA C A.
¢ : A:DCG — A/OL:GL:SL is defined by ¢(ui;...;u,) = o(uy);...; é(uy)
where

O (F##[instanceof || M]) = oi.load(this); ~ +instanceof (Cy)#+#[C1]|[M];
~ oi.load(this); ~ +instanceof (Co)##[Ca][M];

~ oi.load(this); ~ +instanceof (Cy)##([Cr][M]

where C'1,...,Ck are the classes introduced by setclass instructions in uq;
...; Uy. All other instructions remain unmodified.

We now proceed with the second design phase. A typical ILN program consists
of a sequence of labeled class parts. E.g., an ILN program with 4 classes looks
as follows:

[C1]; CB1,;...;[C4]; CBA.
The subprograms CB1,..., CB4 are so-called class bodies, which consist of
zero or more labeled method body parts with end markers

[M1]; MB1;end; .. .;[Mk]; MBk; end.

In addition to the usual labels, ILN has the following instruction set.

30

new(C) This instruction pushes a new reference to an instance of class C
onto the stack.

stack push The instruction F = represents pushing an entity with name F
onto the stack. £ may be a single non-empty alphanumerical string or of
the form E.F i.e., a string consisting of two alphanumerical parts glued
together with a period.

top from stack The instruction = FE takes the top from the stack and places
that entity on the place denoted with E. Again, £ may be a single non-
empty alphanumerical string or of the form F.F.

method end marker The method end marker end serves as the end of a
method.

function call A function call fc(f,n) represents the call of the function f
from a given operator family with arity n. The algorithmic content of an
operator call is not given by the program that contains it.

class method call A class method call instruction has the form mec(C, M, n).
Here M is a method, C' a class and n is the number of arguments. We tacitly
assume that the names occurring in the stack push and pop instructions of
M are amongst argl, ..., argn.

instance method call An instance method call instruction has the form
me(M,n). Here M is a method and n is the number of arguments. We
tacitly assume that the names occurring in the stack push and pop instruc-
tions of M are amongst this,argl,..., argn.

if header An if-then-else construction has the form if (E); X; else; Y; endif
separated by else and completed by an endif instruction. If the value of £
is true then the instruction stream X is performed; otherwise Y is executed.

while header A while construction has the form while(E); X; endwhile and
performs the instruction stream X as long as the value of F is true.

separator and end of construct else and the end markers endif and endwhile
serve as separator and end markers for the conditional construct and the
while loop.

ILN instructions can be projected to ISLA/OL:DCG:GL:Rp:CW.

Projection 21 ¢ : ILN — ISLA/OL:DCG:GL:Rp:CW is defined by ¢(uy;. .. ;u,) =
d1(ur); ... ; ¢n(uy) where

¢i(new(C)) = oi.create; oi.setclass(C')
¢:i(E =) = oi.load(E)
¢i(= E) = oi.store(E)
¢i(E.F =) = oi.load(E); oi.getfield(F)
¢i(= E.F) = oi.load(E); oi.setfield(F')
pi(end) = ##R

)
) =
) =
) =
) =
)

31

(bl(fc(fa m)) = Oi.compute(f, m)
oi(me(C, M, m)) = Rm##3ky + 2k + k3 + 1 + 2; ##3k1 + 2ko + k3 + i + 3;

##[C][M]
¢i(me(M, m)) = IRm##3ky + 2ko + ks + i + 2; ##3ky + 2ko + k3 + 1+ 3;
#+#instanceof |[M]
o:(if (E)) = oi.load(E); oi.compute(== true, 1); +oi.topeq(1){; oi.pop
¢i(while(E)) = oi.load(E); oi.compute(== true, 1); +oi.topeq(1){x*; oi.pop
di(else) = }; oi-pop
¢i(endif) = }
¢i(endwhile(E)) = oi.load(FE); oi.compute(== true, 1); *}; oi.pop

Here k; is the number of if and while headers and endwhile instructions, ks
the number of method calls and k3 the number of creation, field pushing and
popping, and else instructions occurring in uq;...;u; 1. Moreover, == true
is the name of the operator that returns 1 if the argument has value true
and 0 otherwise. In a setting with relative jumps one can replace the complex
absolute jumps by relative jumps of length 2. Labels remain unmodified.

A simple ILN program P and its projection are given below. P consists of a
single class part labeled [C] with method parts [CC], [get] and [M]. [CC] is
a class constructor initializing the F' field of any object of this class with a
random Boolean value, [get] is an instance method returning the value of the
F field of the calling object, and [M] is a static method creating two objects of
this class—X and Y—by calling the constructor for X but setting the F' field
of Y to the complement of the F field of X by using the constant operators
true and false.

[CT;
[CCY; fe(random, 0); = this.F'; end;
[get]; argl.F' =; = that; end,
[M];new C;= X; X =;me(CC,0);
new C;=Y;
X =;mc(C, get, 1);
if (that); fe(false,0); = Y.F;else; fe(true,0); = Y.F; endif

32

Projection into ISLA/OL:DCG:GL:Rp:CW yields

[C];

[CCT; oi.compute(random, 0); oiload(this); oi.setfield (F); ##R;

[get]; oi.load(argl); oi.getfield (F); oi.store(that); ##R;

[M]; oi.create; oi.setclass(C); oi.store(X); oi.load(X); I RO#H#19; ##20;
[instanceof ||[CC;
oi.create; oi.setclass(C); oi.store(Y);
oi.load(X); R17£#26; #427; #+£[C]lget];
oi.load(that); oi.compute(== true, 1);

+s.topeq(1){; oi.pop; fc(false,0); = Y.F; }{; oi.pop; fc(true,0); = Y.F; }

9 A high-level program notation HLN

In the third phase we deviate from the projective syntax paradigm and intro-
duce instructions at a level close to the high-level program notations used by
human programmers and computer software users.

In this section a toy high-level program notation HLN is developed. Its mean-
ing is given by a compiler projection into ILN. Like ILN programs HLN pro-
grams are supposed to have a certain fixed structure. In this structure a pro-
gram is a series of class parts as depicted in Figure 4. Class parts consist of a

class C{
instance fields{
F1 =expl;
Fn = expn;

}
M1(E1,. .., En){X}

}

Fig. 4. The structure of class parts in HLN

number of segments. These segments can be of two kinds: instance field parts

33

and method declarations. The compiler projection will transform the list of
instance field parts in a class to a class constructor for that class with label
[CC]. Method declarations—which have the form M (E1,..., En){X} and are
named different from C'C—will be projected to class method parts.

HLN has the following expressions.

exp:=E | E.F | f(expl,...,expn) | I.M(expl,... expn) | C.M(expl, ..., expn)

with f an n-ary operator from a given operator family, I a class instance
calling an n-ary instance method and C.M (expl,...,expn) an n-ary class
method call. Assignments and statements are of the form

asg .= E=exp| E.F =exp| E=new C | E.F =newC

stm := asg | return exp | I.M(expl,... ,expn) | C.M(expl,... expn) |
if (exp) blk else blk | while (exp) blk

blk := {stml;...;stmn}

The projections to ILN can be given by

exp :
$(E) = E =
$(E.F) = E.F =
o(f(expl,... expn)) = ¢(expl);...; p(expn); fe(f,n)
d(I.M(expl,... expn)) = éd(expl);...;d(expn); I =;mc(M,n); that =
d(C.M(expl,...,expn)) = ¢(expl);...;p(expn); me(C, M, n); that =
asg :

O(E = exp) = ¢(exp);= FE
¢(E.F = exp) = ¢(exp);= E.F
¢(E = new C) = new C;me(CC,0);= FE
#(E.F = new C) = new C;mc(CC,0);= E.F

34

stm :
o(return exp
d(I.M(expl, ... expn)
&(C.M(expl, ... expn)
o(if (exp) blk else blk
o(while (exp) blk

o(exp); = that

¢(expl);...; plexpn); I =;me(M,n)
¢(expl);...; ¢(expn);me(C, M, n)

if (¢(exp)); ¢(blk); else; p(blk); endif
while (¢(exp)); d(blk); endwhile(d(exp))

) =
)
)
) =
)

blk -
o({stml;...;stmn}) = ¢(stml);...; ¢(stmn)

The meaning of class parts can finally be given by
¢(class C{X}) = [C];0({X})

o(instance fields{ F'1 = expl;...; Fn = expn}) = [CC];
¢(this.F1 = expl);

¢(this.Fn = expn);

end

o(M(E1,...,En){X}) = [M];

El=;...;En =,

o(F1=argl);
¢(En = argn);
o({X});

= En;...;= E1;

end

Note that the projection of HLN to ILN is dynamically correct. That is, the
elements on the stack meet the requirements of the current instructions: when-
ever an instruction counter is expected, the top of the stack will contain one,
and whenever n values are expected, the n uppermost elements will be values.

We end this section with a typical HLN program and its projection into ILN.

35

Let P be the the following program

class A{
instance fields{F = 0; }
get(){return this.F;}
set(E){this.F = E;}
inc(E){this.set(this.get() + E); }

}
class B{
get(E){return E.F;}
test(){
X =new A;
Y = new A;
X.set(1);
X.inc(1);
Y.F = B.get(X);
}

Assuming that the constants 0,1 and addition + are predefined operators, P
can be projected into ILN by

[A];
[CCY]; fe(0,0); = this.F'; end;
[get]; this.F =; = that; end;
[set]; E =;argl =;= E; E =;= this.F;= E;end;
[inc]; E =;argl =;= E;this =;mc(get,0); that =; E =; fc(+, 2);

this =;mc(set,1); end;

36

[B];
[get]; E =;argl =;= E; E.F =;= that;= FE;end,;
[test];
new A;me(CC,0);= X;
new A;me(CC,0);= Y
fe(1,0); X =;me(set, 1);
fe(1,0); X =;me(ine, 1);
X =;mc(B,get,1);that =;= Y.F;

end

10 Concluding remarks

At this point a simple program notation for object oriented programming has
been provided admitting a projection semantics. Many more features exist
and one might say that the project of syntax design has only been touched
upon. Still the claim is made that the above considerations provide a basis
for the design of reliable syntax for much more involved program notations.
Projection semantics provides a scientifically well-founded and rigorous yet
simple approach to the semantics of programming languages. Future work
will have to clarify that this framework is industrially viable for the high-level
design and analysis of complex systems, and for natural refinements of models
to executable and reliable code.

Acknowledgements

This paper benefited greatly from the insightful comments made by Mark
Burgess and Kees Middelburg.

References

[1] L. Aceto, W.J. Fokkink, and C. Verhoef. Structural operational semantics. In
[15], 197-292 (2001).

[2] U. Ammann. Code generation for a Pascal compiler. Software - Practice and
Ezperience, 7, 391-423 (1977).

37

[3] J.H. Andrews. Process-algebraic foundations of aspect-oriented programming.
In [69], 187-209 (2001).

[4] Jos C.M. Baeten (ed). Applications of Process Algebra, Cambridge Tracts in
Theoretical Computer Science 17, Cambridge University Press (1990).

[6] Jos C.M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J.
Woeginger (eds). Automata, Languages and Programming, 30th International
Colloquium, ICALP 2003, Lecture Notes in Comput. Sci. 2719, Springer (2003).

[6] H.Beki¢, D. Bjgrner, W. Henhapl, C.B. Jones and P. Lucas A Formal Definition
of a PL/1 Subset. IBM Laboratory Vienna, TR25.139 (1974).

[7] J.A. Bergstra and I. Bethke. Polarized process algebra and program equivalence.
Tn [5], 1-21 (2003).

[8] J.A. Bergstra and I. Bethke. Polarized process algebra with reactive
composition. Theoretical Computer Science, 343(3), 285-304 (2005).

[9] J.A. Bergstra and M.E. Loots. Program algebra for component code. Formal
Aspects of Computing, 12(1), 1-17 (2000).

[10] J.A. Bergstra and M.E. Loots. Program algebra for sequential code. Journal
of Logic and Algebraic Programming, 51(2), 125-156 (2002).

[11] J.A. Bergstra and C.A. Middelburg. A thread algebra with multi-level strategic
interleaving. In [27], 35-48 (2005).

[12] J.A. Bergstra, C.A. Middelburg, and Y.S. Usenko. Discrete time process algebra
and the semantics of SDL. In [15], 1209-1268 (2001).

[13] J.A. Bergstra and A. Ponse. Combining programs and services. Journal of
Logic and Algebraic Programming, 51(2), 175-192 (2002).

[14] J.A. Bergstra and A. Ponse. Execution architectures for program algebra.
Journal of Applied Logic, to appear (2006).

[15] J.A. Bergstra, A. Ponse, and S.A. Smolka (eds). Handbook of Process Algebra,
North-Holland (2001).

[16] D. Bjgrner and O. Oest (eds). Towards a Formal Description of Ada, Lecture
Notes in Comput. Sci. 98, Springer (1980).

[17] D. Bjgrner, M. Broy, and A.V. Zamulin (eds). Perspectives of System
Informatics. 4th International Andrei Ershov Memorial Conference, PSI 2001,
Novosibirsk (2201).

[18] E. Borger (ed). Specification and Validation Methods, Oxford University Press
(1995).

[19] F.-J. Brandenburg, G. Vidal-Naquet, and M. Wirsing (eds). STACS’87, Proc.
Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Comput.
Sci. 247, Springer (1987).

38

[20] M. Burgess A site configuration engine. Computing Systems 8(2), 309 — 337
(1995).

[21] M. Burgess It’s elementary, Dear Watson: Applying logic programming to
convergent system management processes. In [28], 123 — 138 (1999).

[22] M. Burgess. Principles of Network and System Administration, J. Wiley and
Sons (2000).

[23] M. Burgess. On the theory of system administration. Science of Computer
Programming 49(1-3), 1 — 46 (2003).

[24] M. Burgess. Configurable immunity for evolving human-computer systems.
Science of Computer Programming 51(3), 197 — 213 (2004).

[25] M. Burgess. Analytical Network and System Administration - Managing
Human-Computer Systems. J. Wiley & Sons (2004).

[26] R. Cleaveland, X. Du, and S.A. Smolka. GCCS: a graphical coordination
language for system specification. In [55], 284-298 (2000).

[27] S.B. Cooper, B. Lowe, and L. Torenvliet (eds). New Computational Paradigms:
First Conference on Computability in Europe, CiE 2005, Amsterdam, The
Netherlands, June 8-12, 2005. Springer-Verlag, LNCS 3526 (2005).

[28] A. Couch and M. Gilfix. Proceedings of the 13th USENIX conference on System
administration, Seattle, Washington. USENIX Association, Berkely, CA, USA
(1999).

[29] A. Couch and Y. Sun. On observable reproducibility in network configuration
management. Science of Computer Programming, 53(2), 215-253 (2004).

[30] E.W. Dijkstra. Guarded commands, non-determinacy, and formal derivations
of programs. Commun. ACM, 18, 453-457 (1975).

[31] M.A. Ertl (ed). Advances in interpreters, virtual machines and emulators.
Science of Computer Programming, 57(3), 251-380 (2005).

[32] M. Felleisen and D.P. Friedman. Control operators, the SECD machine, and
the A-calculus. In [67], 193-217 (1987).

[33] J. Fox (ed). Proceedings of the Symposium on Computers and Automata,
Vol.21 of Microwave Research Institute Symposia Series, Polytechnic Institute
of Brooklyn Press (1971).

[34] L.M.G. Feijs and H.B.M. Jonkers. Formal Specification and Design, Cambridge
University Press, Cambridge Tracts in Theoretical Computer Science 35 (1992).

[35] L.M.G. Feijs, H.B.M. Jonkers and C.A. Middelburg. Notations for Software
Design, Springer Verlag, FACIT Series (1994).

[36] D. Gabbay and F. Guenthner (eds). Handbook of Philosophical Logic, volume
I1, Reidel Publishing Company, Dordrecht (1984).

39

[37] J. Gosling, B. Joy, and G. Steele. The Java Language Specification, Addison-
Wesley, Reading MA (1997).

[38] D. Gregg, A. Beatty, K. Casey, B. Davis, and A. Nisbet. The case for virtual
register machines. In [31], 319-338 (2005).

[39] C.A Gunter and D.S. Scott. Semantic domains. In [65], 633-674 (1990).
[40] Y. Gurevich. Evolving algebras 1993: Lipari guide. In [18], 9-36 (1995).

[41] J. Heering and P. Klint. Semantics of programming languages: A tool-oriented
approach, ACM SIGPLAN Notices, 35(3), 39-48 (2000).

[42] C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12, 576-580 (1969).

[43] H.B.M. Jonkers. An Introduction to COLD-K. In [68], 139-205 (1989).
[44] G. Kahn. Natural semantics. In [19], 22-39 (1987).

[45] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Addison-
Wesley, Reading MA (1997).

[46] S. Mauw and M.A. Reniers. A process algebra for Interworkings. In [15], 1269
1328 (2001).

[47] J. McCarthy. Towards a mathematical science of computation. In [54], 21-28
(1962).

[48] R. Milne and C. Strachey. A Theory of Programming Language Semantics.
Chapman and Hall, 1976.

[49] R. Milner. A Calculus of Communicating Systems. Lecture Notes in Comput.
Sci. 92, Springer (1980).

[50] E. Moggi. Notions of computation and monads. Information and Control, 93,
55-92 (1991).

[51] P.D. Mosses. Mathematical semantics of Algol60. Technical Report Technical
Monograph PRG-12, Programming Research Group, University of Oxford
(1974).

[52] P.D. Mosses. The varieties of programming language semantics and their uses.
In [17], 165-190 (2001).

[63] S. Muchnick and U. Pleban. A semantic comparison of LISP en SCHEME.
In Proceedings of the 1980 ACM Symposium on LISP and Functional
Programming, 56-64 (1980).

[54] C.M. Popplewell (ed). Information Processing 1962, Proceedings of the IFIP
Congress 62, North-Holland (1962).

[55] A. Porto and G.-C. Roman (eds). Proceedings of the Fourth International
Conference on Coordination Models and Languages (COORDINATION 2000),
Lecture Notes in Comput. Sci. 1906, Springer (2000).

40

[56] D.S. Scott and C. Strachey. Toward a mathematical semantics for computer
languages. In [33], 19-46 (1971).

[67] I.A. Severoni. Operational semantics of the Java Card Virtual Machine. Journal
of Logic and Algebraic Programming, 58, 3—25 (2004).

[58] Y. Shi, D. Gregg, A. Beatty, and M.A. Ertl. Virtual machine showdown: stack
versus registers. In [66], 153-163 (2005).

[59] P.M.A. Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld, and M. Bubak (eds).
Advances in Grid Computing - EGC 2005, LNCS 3470, Springer-Verlag (2005).

[60] M.B. Smyth. Power domains. Journal of Computer and System Sciences ,
16(1), 23-36 (1978).

[61] R. Stark, J. Schmid, and E. Borger. Java and the Java Virtual Machine.
Definition, Verification, Validation. Springer (2001).

[62] R.D. Tennent. A denotational description of the programming language Pascal.
Technical Report 77-47, Dept. of Computing and Inforamtion Sciences, Queen’s
University, Kingston, Ontario, Canada (1977).

[63] F.W. Vaandrager. Process algebra semantics of POOL. In [4], 173-236 (1990).

[64] R.J. van Glabbeek. The linear time—branching time spectrum I. The semantics
of concrete, sequential processes. In [15], 3-100 (2001).

[65] J. van Leeuwen, A. Meyer, M. Nivat, M. Paterson, and D. Perrin (eds).
Handbook of Theoretical Computer Science, volume B: Formal Models and
Semantics, Elsevier Science Publishers, Amsterdam; and MIT Press (1990).

[66] VEE ’05: Proceedings of the 1st ACM/USENIX International Conference on
Virtual Ezecution Environments. Chicago, IL, USA. ACM Press, USA (2005).

[67] M. Wirsing (ed). Formal Description of Programming Concepts III, Proc. IFIP
TC2 Working Conference, Gl. Avernaes, 1986, North-Holland (1987).

[68] M. Wirsing and J.A. Bergstra (eds). Algebraic Methods: Theory, Tools and
Applications, Lecture Notes in Comput. Sci. 394, Springer (1989).

[69] A. Yonezawa and S. Matsuoka (eds.) 3rd International Conference on Metalevel
Architectures and Separation of Crosscutting Concerns (REFLECTION 2001),
Lecture Notes in Comput. Sci. 2192, Springer (2001).

41

Electronic Reports Series of the Programming Research Group

Within this series the following reports appeared.

[PRG0602]

[PRGO601]

[PRGO505]

[PRGO504]

[PRGO503]

[PRGO502]

[PRGO501]

[PRG0405]

[PRG0404]

[PRG0403]

[PRG0402]

[PRG0401]

[PRG0302]
[PRGO0301]

[PRG0201]

JA. Bergstraand A. Ponse, Program Algebra with Repeat Instruction, Programming Research Group
- University of Amsterdam, 2006.

JA. Bergstra and A. Ponse, Interface Groups for Analytic Execution Architectures, Programming
Research Group - University of Amsterdam, 2006.

B. Diertens, Software (Re-)Engineering with PSF, Programming Research Group - University of
Amsterdam, 2005.

PH. Rodenburg, Piecewise Initial Algebra Semantics, Programming Research Group - University of
Amsterdam, 2005.

T.D. Vu, Metric Denotational Semantics for BPPA, Programming Research Group - University of
Amsterdam, 2005.

JA. Bergstra, |. Bethke, and A. Ponse, Decision Problems for Pushdown Threads, Programming
Research Group - University of Amsterdam, 2005.

JA. Bergstraand A. Ponse, A Bypass of Cohen’s Impossibility Result, Programming Research Group -
University of Amsterdam, 2005.

JA. Bergstraand |. Bethke, An Upper Bound for the Equational Specification of Finite State Services,
Programming Research Group - University of Amsterdam, 2004.

JA. Bergstra and C.A. Middelburg, Thread Algebra for Strategic Interleaving, Programming
Research Group - University of Amsterdam, 2004.

B. Diertens, A Compiler-projection from PGLEc.MSPio to Parrot, Programming Research Group -
University of Amsterdam, 2004.

JA. Bergstra and |. Bethke, Linear Projective Program Syntax, Programming Research Group -
University of Amsterdam, 2004.

B. Diertens, Molecular Scripting Primitives, Programming Research Group - University of
Amsterdam, 2004.

B. Diertens, A Toolset for PGA, Programming Research Group - University of Amsterdam, 2003.

JA. Bergstra and P. Walters, Projection Semantics for Multi-File Programs, Programming Research
Group - University of Amsterdam, 2003.

|. Bethke and P. Walters, Molecule-oriented Java Programs for Cyclic Sequences, Programming
Research Group - University of Amsterdam, 2002.

The above reports and more are available through the website: www.science.uva.nl/research/prog/

Electronic Report Series

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

