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Abstract

In the setting of program algebra (PGA) we consider the repeat instruction. This
special instruction is designed to represent infinite sequences of instructions as fi-
nite, linear programs. The resulting program notation is called PGLA and can be
considered a string syntax for PGA. We redefine the repeat instruction by allowing
its counter to be also zero. Then we show that PGLAcore, a kernel of PGLA, can
replace PGA as a carrier for program algebra by providing axioms for instruction se-
quence congruence, structural congruence and thread extraction. Finally, we provide
three alternative projection semantics for PGLA that all coincide on PGLAcore.

Key words: Program algebra, Repetition operator, Repeat instruction, Equational
specification.

1 Introduction

Program algebra (PGA) is a logical theory which provides an algebraic frame-
work and semantical foundations for sequential programming. In this paper
we consider PGLA, a variant of PGA in which programs are represented in a
purely linear fashion, i.e., as a sequence of instructions. In particular we show
that a kernel of PGLA can serve as a carrier for program algebra. This may
be of importance for tool building or (semi-) automated theorem proving.

Given a set of basic instructions, a primitive instruction is either a basic one, a
test-instruction converted from a basic instruction by prefixing it with + or —,
or a jump or termination instruction. In Section 2 we explain the syntax and
meaning of primitive instructions in detail. A program object is a non-empty
sequence of primitive instructions: each primitive instruction is a program,
and if X and Y are programs, then so is X; Y, the concatenation of X and Y.
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In particular, program objects may be infinite, e.g., if a is a basic instruction,
an infinite sequence of a’s constitutes a program object. Program objects are
considered single-pass instruction sequences: during the run of the instruction
sequence, each instruction is visited at most once and dropped after having
been executed. Program objects are our main subject of interest.

In PGA all primitive instructions are considered constants and there are two
operations on terms: concatenation and repetition. As sketched above, con-
catenation is a binary, infix operator and is taken to be associative (brackets
are not used in repeated applications). In order to represent infinite program
objects, PGA has repetition as a unary operator, written (_)“. For example,
for a a basic instruction, a“ represents the infinite program object a;a;a;.. ..
In Section 2 we recall some basic information about PGA.

The program notation PGLA ([3]) is defined to represent PGA-programs
(closed terms over PGA) in linear form: repetition is replaced by a family
of single instructions and sequences are formed with concatenation only. This
makes sense if the transition from theory (PGA) to practice (such as a Toolset
for PGA [4]) is undertaken. Apart from the fact that w is not an ASCII charac-
ter, we intend in a setting with tools to suppress context-dependencies such as
the opening bracket in a repetition. The instruction used in PGLA to replace
the repetition operator is the repeat instruction:

\#n

prescribes to repeat the last n instructions if n > 0, and deadlock if n = 0.
So for n > 0, uy;...;u,; \\#n with all u; primitive instructions represents the
same program object as (uq;...;u,)¥. A peculiarity of the repeat instruction
is that it is not a primitive instruction and does not comply with the no-
tion of a single pass instruction sequence. For example, the instruction \\#1
in a; \\#1 is never “visited and dropped”, rather, upon its execution (thus
after a) it repeats a and preserves itself. Thus, a;\\#1 is a sequence of two
PGLA-instructions, but represents an infinite program object (namely an in-
finite sequence of a’s, just as a* does). In Section 3 we distinguish PGLAcore
as a kernel of PGLA that can serve as a fully fledged basis for program al-
gebra: a PGLA-program ug;. . .; ug; \\#n is in PGLAcore if £ > n > 0. For
PGLAcore we provide axioms for instruction sequence congruence, axiomatiz-
ing the equivalence of program objects, and axioms for structural congruence,
admitting the optimization of jump counters. The price to be paid for this
linear representation of repetition is that the question how to deal with “too
large” repeat counters has to be answered: what program object is represented
by sequences such as a; \\#2 or by a single repeat instruction? In Section 4 we
discuss these matters in detail and provide some answers. Finally, in Section 5
we end with some conclusions.



2 PGA, two congruences and thread extraction

In this section some basic information about PGA (based on [3]) is recalled.
Furthermore, we shortly discuss Thread Algebra (cf. [2]), earlier described in
e.g. [1,3] under the name Polarized Process Algebra.

2.1 PGA, primitive instructions and program objects

The program notation PGA is based on a parameter set A of so-called basic
instructions. These are regarded as indivisible units and execute in finite time.
Furthermore, a basic instruction is viewed as a request to the environment,
and it is assumed that upon its execution a boolean value (true or false)
is returned that may be used for subsequent program control. The language
PGA has two composition constructs:

Concatenation. If X and Y are PGA-programs, i.e., closed terms, then X;Y
is one as well.
Repetition. If X is a PGA-program, then so is X*.

Given A, the primitive instructions of PGA are the following:

Basic instruction. All elements of A, typically a,b,.... When executed, a ba-
sic instruction generates a boolean value and the associated behavior may
modify a state. After execution, a program has to enact its subsequent
instruction. If that instruction fails to exist, inaction occurs. Subsequent
execution is not influenced by the returned boolean value.

Termination instruction. The termination instruction ! yields termination of
the program. It does not modify a state, and it does not return a boolean
value.

Positive test instruction. For each element a of A there is a positive test in-
struction +a. When executed, the state is affected according to a, and in
case true is returned, the remaining sequence of instructions is executed. If
there are no remaining instructions, inaction occurs. In the case that false
is returned, the next instruction is skipped and execution proceeds with the
instruction following the skipped one. If no such instruction exists, inaction
occurs.

Negative test instruction. For each element a of A there is a negative test
instruction —a. When executed, the state is affected according to a, and in
case false is returned, the remaining sequence of instructions is executed.
If there are no remaining instructions, inaction occurs. In the case that true
is returned, the next instruction is skipped and execution proceeds with the
instruction following the skipped one. If no such instruction exists, inaction
occurs.



Table 1.
PGA-axioms for instruction sequence congruence, where n > 0.

(X;Y);Z = X;(Y;Z)  (PGA1) X9y = X¥ (PGA3)

(XM = Xv (PGA2) (X;Y)¥ = X;(YV;X)¥  (PGAA4)

Forward jump instruction. For any natural number k, the instruction #£k de-
notes a jump of length k£ and £ is called the counter of this instruction. If
k = 0, this jump is to the instruction itself and inaction occurs (one can say
that #0 defines divergence, which is a particular form of inaction). If k = 1,
the instruction skips itself, and execution proceeds with the subsequent in-
struction if available, otherwise inaction occurs. If k£ > 1, the instruction #k
skips itself and the subsequent £—1 instructions. If there are not that many
instructions left in the remaining part of the program, inaction occurs.

Each primitive instruction is considered a PGA-program. We note that with
unfolding, captured by the identity X“ = X; X“ and explained in Section 2.2,
PGA-programs refer to an execution mechanism that is left-sequential (from
left to right) and single-pass (each instruction is executed at most once). This is
closer to the behavioral semantics defined in [3] (and discussed in Section 2.4)
than would be possible when more ‘advanced’ programming features as goto’s
or backward jumps were included from the start, and hence may clarify why
we distinguish PGA as most basic.

2.2 Instruction sequence congruence and first canonical forms

In PGA, different types of equality are discerned, the most simple of which is
instruction sequence congruence, identifying programs that execute identical
sequences of primitive instructions (program objects).! For PGA-programs
not containing repetition, instruction sequence congruence boils down to the
associativity of concatenation, and is thus axiomatized by the axiom

(X;Y);Z =X;(Y;Z)  (PGA1)

We further leave out brackets in repeated concatenations. Define X' = X
and for n > 0, X" = X; X" Then instruction sequence congruence for
infinite program objects is axiomatized by the axioms (schemes) in Table 1.
It is straightforward to derive from the axioms PGA2-4 the unfolding identity
of repetition: X* = (X; X)¥ = X; (X; X)¥ = X; X“.2 Whenever two PGA-

1 Although a bit long, primitive instruction sequence congruence would have been
a more adequate name.

2 Conversely, from unfolding and the conditional proof rule X =Y; X = X =YY,
one derives PGA2-4.



Table 2.
PGA-axioms for structural congruence, where k,n,m € N, u;,v; range over the

primitive instructions, and uq;...; ug; represents the empty sequence.
(X;Y)Z = X;(Y;Z) (PGA1)
(XM = Xv (PGA2)
XYYy = Xv (PGA3)
(X Y)Y = X; (Y X)¢ (PGA4)
#nALius;. .. un; #0 = #05u1; .. .5 up; #0 (PGAS5)
H#n+1;uts. . up; Fm = #ntm+1iu;. .. ug #Fm (PGAG)
(#k+n+1;ur;. .5 un)? = (F#ksur;. . 5up)? (PGAT)

X =gyt (030 ume)Y = #Fndmtk+2; X = #n+k+1; X (PGAS)

programs X and Y are instruction sequence congruent, this is written
X =4 Y.

The subscript ;5 will be dropped if no confusion can arise. Instruction sequence
congruence is decidable (see [3]).

Each PGA-program can be rewritten into one of the following forms:

(1) Y not containing repetition, or
(2) Y; Z¥, with Y and Z not containing repetition.

Any program term in one of the two above forms is said to be in first canonical
form. According to [3], for each PGA-program there is a PGA-program in first
canonical form that is instruction sequence congruent. Moreover, in the case
of Y; Z%, there is a unique first canonical form if the number of instructions
in Y and Z is minimized (using PGA1-4). First canonical forms are useful as
input for further transformations (cf. [3]).

2.8  Structural congruence and second canonical forms

PGA-programs in first canonical form can be converted into second canonical
form: a first canonical form in which no chained jumps occur, i.e., jumps to
jump instructions (apart from #0), and in which each non-chaining jump into
the repeating part is minimized. The associated congruence is called structural
congruence and is axiomatized in Table 2. We write X =, Y if X and Y are



structurally congruent, and drop the subscript if no confusion can arise. Two
examples, of which the right-hand sides are in second canonical form:

#2; a; (#5;0; +¢)” =5 #4; ; (#2; b; +¢)*,
+a; #2; (+b; #2; —c; #2)° =, +a; #0; (4+b; #0; —c; #0)“.

For each PGA-program there exists a structurally equivalent second canonical
form. Moreover, in the case of Y; Z% this form is unique if the number of in-
structions in Y and Z is minimized. As a consequence, structural congruence is
decidable. In the first example above, #4; a; (#2; b; +c¢)* is the unique minimal
second canonical form; for the second example it is +a; (#0; +b; #0; —c)“.

2.4 Thread algebra: behavioral semantics for PGA

In this section we shortly discuss thread algebra. Threads model the execution
of PGA-programs. Finite threads are defined inductively as follows:

S — stop, the termination thread,
D — inaction or deadlock, the inactive thread,
P <al> (@ —the postconditional composition of P and () under
action a, where P and () are finite threads and a € A.

The behavior of the thread P <al>() starts with the action a and continues as
P upon the reply true to a, and as ) upon the reply false. Note that finite
threads always end in S or D. We use action prefiz a o P as an abbreviation
for P <al P and take o to bind strongest.

Upon its execution, a basic or test instruction yields the equally named ac-
tion in a post conditional composition. Thread extraction on PGA, notation
| X| with X a PGA-program, is defined by the thirteen equations in Table 3.
For a PGA-program in second canonical form, these equations either yield a
finite thread, or a so-called reqular thread, i.e., a finite state thread in which
infinite paths can occur. Each regular thread can be specified (defined) by a
finite number of recursive equations. As a first example, the regular thread )
specified by

Q:aOR
R=coR<b> (S<d>Q)

is the thread defined by |a; (+b; #2; #3; c; #4;+d;!;a)¥|. A picture of this
tread:



Table 3.

Equations for thread extraction, where a ranges over the basic instructions, and u

over the primitive instructions (k € N).

@ =5, (2) 5 X[ =5,
) [a] =aoD, (4) |a; X| = ao|X],
() |+al = aoD, 6 v X] = X 9ab [#2:X],
(1) |-al =aoD, 6  laX| = |42 X| 9ab ||
(9) [#k| =D, (10) |#0; X| = D,
(11) [#1; X| = |X],
(12)  [#k+2u] = D,
(13)  [#k+2u; X| = |#k+1; X|.
Q: [a] where [a] ~ aoP
R: (b) P
[c] (d) and (a) ~ P <ab P,

Some more examples:

| +a;#3|=aoD,
|+ a; #3; (#0)“| = | + a; #0; (#0)“| = a o D,
[#4; a; (#2;b; +¢)| = [(+c; #2; b; )| = P with
P=PdcblboP,
+a; #0; (b; #0;
+a; #0; (+b; #0;

—c; #0) =
—c; #0)* =

DJdal>boD,

D <al>P with
P=D<db>(P<c>D).

It can be inferred that |us;...;un| = |u1;...;un; (#0)¥| for u; ranging over
the primitive instructions. We shall use a* as an informal notation for the
thread defined by |a¥|. For more information on thread algebra we refer to [2].



Table 4.
PGAr-axioms, where &k € N and w; ranges over the primitive instructions.

Ul .. ugr1; \HEHL = (ugs .. ugg)? (PGAr)
\#k; X = \\#k (PGLA1)
\#0 = #0; \\#1 (PGLA2)

3 PGLA: a linear notation for PGA-programs

In this section we introduce PGLA in detail. PGLA is designed to represent
each PGA-program in ASCII-based notation, and at the same time as a finite
list of instructions: the repetition operator is not in PGLA and instead there
are repeat instructions \\#k for all k& € N. Furthermore, brackets are not used
in PGLA. A sequence of primitive instructions ending with \\##k will repeat its
last k instructions, excluding the repeat instruction itself. Instructions to the
right of a repeat instruction are irrelevant and can be deleted. A special case
is of course \\#0: this instruction represents deadlock as it keeps repeating
“nothing” and is further discussed below.

We first consider the combination of PGA and PGLA and present axioms, first
canonical PGLA-forms and representation results for this particular program
algebra. Then we distinguish PGLAcore as an interesting subset of PGLA:
instruction sequence congruence, structural congruence and thread extraction
can all be defined on PGLAcore without reference to PGA.

3.1 PGArep, PGA with repeat instructions

Let PGArep stand for the extension of PGA with repeat instructions, so both
PGA and PGLA can be seen as subsets of PGArep. As a program algebra,
PGArep can be defined by the axioms for PGA and the three axiom schemes
in Table 4, where the axiom PGAr connects PGA and PGLA. Note that in a
context with at least k preceding instructions, PGLA1 is derivable from PGAr
and PGA3 (i.e.,, X¥;Y = X¥). Furthermore, PGLA2 simply postulates that
\\#0 equals #0; \\#1 and thus by PGAr the program object (#0)“. Therefore
we call \\#0 the abort or deadlock instruction. We write

PGA4r, respectively PGA8r
for the axioms in Table 4 combined with PGA1-4 (Table 1), respectively

PGA1-8 (Table 2). Note that X, Y, Z in the axioms PGA1-4 range in PGArep
over sequences that may contain both primitive and repeat instructions.



Table 5.
More axioms for PGLA where k,l € N, m,n € N\ {0} and u;,v; are primitive
instructions (note that PGLA5=PGA5 and PGLA6=PGAG®6, see Table 2).

;-5 U \H#ER = (ugs. .. un)™; \\#mn (PGLA3)

UL - U3 VLG - -3 Ut \\ AR =

ULy e U3 VL5 e 3 U3 UL - - 3 Uy \FEMAR  (PGLA4)

BhA s s 20 = H0: w15 - - 3 up; A0 (PGLAS5)
#HEk+1u1;. . ug; #m = #Fktm+1ug; .. u; #m (PGLAG)
#HE+H1+Gurs . ug; \\F#E+L = #lugs .. ug; \\#E+1 (PGLAT)

#EFHIEmAL ur; U V1 U \\FEM =
#HE+1+Gur; . ugs v ..o, \#Fm (PGLAS)

In the combined setting of PGArep, the axiom PGLA1 implies that each
PGLA-program (i.e, a sequence of PGLA-instructions) can be equated to one
that contains at most one repeat instruction and by axiom PGLA2, the counter
of this repeat instruction can be made larger than 0. The following proposition
illustrates how the PGA4r axioms can be used to reason on PGLA-programs.

Proposition 1 For all k € N,

PGA4r F \\#0 = (F#0)F 1 \\#k+1.

Proof. For £ = 0 this is PGLA2. For the remaining cases, use (#0)¥ =
((#£0)¥+1)« (which follows from PGA2) and PGAr. O

It is an easy exercise to derive from PGA8r the axioms for PGLA displayed
in Table 5. These axioms are related to PGA2,4-8, respectively (see Table 2).
Note that the axioms PGLA2 3 immediately imply the identity proved in
Proposition 1. Better than that, the axioms PGLA1-8 (PGLA1-4) are suffi-
ciently strong to prove all identities between PGLA-programs that follow from
PGAST (PGA4T):

Theorem 2 For PGLA-programs p and q,

(1) PGA8r +p=q <= PGLA1-8+p=g¢q, and
(2) PGA4r +p=q < PGLAl-4Fp=q.

Proof. It is not hard to see that with the axiom PGAr all “missing” PGA-



axioms are derivable from PGLA1-8. Conversely, with PGAr, all PGLA1-8-
axioms can be derived from PGA8r. Similar for result (2). O

In the above we focused on PGLA-programs. In the remainder of this paper we
show that PGLA with its axiom system PGLA1-8 can serve as a fully fledged
variant of PGA. To this end we define first canonical PGLA-forms for PGArep.
Then we show that these can be used to represent any PGArep-program in
the string syntax PGLA.

Definition 3 A PGArep-program is in first canonical PGLA-form if it is of
the form

ULy Ugrr OT Uis...;Ug; \\F#N

with u; primitive instructions and k,n € N. (Recall that uy; . . .; ug; represents
the empty sequence.)

Theorem 4 For each PGArep-program p there is a first canonical PGLA-
form q such that PGA4r - p = gq.

Proof. In the case that p is a finite sequence of PGArep-instructions, so
without the repetition operator, we are done if there is no repeat instruction, or
if all instructions following the leftmost repeat instruction are deleted (axiom
PGLA1).

In the other case, derive from p with PGA1-4 a form X;Y“ with X and Y
containing no repetition operator (cf. first canonical forms in PGA). Then
replace Y by Y; \\##k with k£ the number of instructions in Y (axiom PGAr).
Finally, delete all instructions (if any) following the leftmost repeat instruction
in X;Y; \\#k (axiom PGLA1). O

3.2 PGLAcore, two congruences and thread extraction

Not all PGLA-programs have an intuitive meaning. For example, a;\\#2 or
#7; +a; \\#b are first canonical forms that illustrate this situation. Let
PGLAcore

stand for the subset of first canonical PGLA-forms with the property that
each repeat instruction \\#n is preceded by at least n primitive instructions.

The next result follows immediately from Theorems 2 and 4.

10



Corollary 5 Two PGLA-core programs are instruction sequence congruent if
and only if they can be equated with the axioms PGLA1-4.

For example,

+a; —b; #4; \\#2 =isc +a; —b; #4; —b; \\#2
=isc +a; —b; #4; —b; #4; \\#4.

In order to argue that PGLAcore is a fully fledged alternative for PGA we
define second canonical PGLA-forms on PGLAcore.

Definition 6 A second canonical PGLA-form is a first canonical PGLA-form
in which no chained jumps occur and in the case of uy;...;um; \\F#n, m >
n > 0 and all jumps to Up pi1, ..., Uy, are minimized (cf. axioms PGLA5-8 in
Table 5).

Examples, where the right-hand side is in second canonical PGLA-form:

+a; #7; +b; \\#0 =, +a; #0; +b; (#0)°%; \\#6.

The next result again follows immediately from Theorems 2 and 4.

Corollary 7 Two PGLAcore programs are structural congruent if and only if
they can be equated with the arioms PGLA1-8.

We state without proof that both first and second canonical PGLA-forms
have a unique minimal representation in PGLAcore in terms of their number of
primitive instructions; for the last example above this is +a; #0; +b; #0; \\#1.
Furthermore, both congruences are decidable.

Also, thread extraction can be defined on PGLAcore in a straightforward way
on second canonical forms. We write

[[X ]]pgla

for the thread extraction of PGLA-program X. Of course, structural congruent,
programs define identical threads. In the case that a program contains no
repeat instruction, we define

f
;.. uklpgia & [wis - - -5 uks \#0] pgia

and use axiom PGLA2 to obtain a second canonical PGLA-form. To define
behavior extraction on second canonical forms u;...; U, x; \\F#n we use an

11



Table 6.
Equations for thread extraction on PGLAcore, where u; ranges over the primitive
instructions, j,k € N and n € N\ {0}.

Let X = ui;...;uptk; \\#n, then [X]pg, = |1, X| with
15, X| = [j—n, X| if j > ntk,
|7, X| =S if u; =,

i, X| = ao|j+1, X| if u; =a,
1, X| = |j+1,X| <a> |j+2, X] if uj = +a,
i, X| = |j+2, X| Qa b [j+1, X| if u; = —a,
3, X| = D if uj = #0,

17, X| = |j+k+1, X| if uj = #k+1.

auxiliary function |7, uq;. .. ; Upig; \\F#n| where j makes reference to the posi-
tion of instructions:

f
[uats - -3 s \FERpgta 1,015 -5 Ungs N0
and [j, uy;...; uy; \\#n| is defined by case distinction in Table 6.

We state without proof® the following result, implying that on PGLAcore
[Xpgia agrees with thread extraction on PGA-programs (see Section 2.4).

Theorem 8 Letk > 0,n > 0, and let u; range over the primitive instructions.
Then [u1;. .. 5 Uk Ugs1; - - -3 Ukgns \F]pgla = |U15 -3 Uk (Upg1s - -5 Ukgn) -

Recall that |us;...;ug; (#0)¥| = |ug;...; ug| can be inferred from the equa-
tions in Table 3 and also that PGAAT b wq;...;uUp;Uki1s- -5 Uksn; \FN =
U - (Ukgs - - Ukgn)”

4 PGLA as a programming language

In this section we discuss various semantics for full PGLA. According to The-
orem 4 it suffices to consider programs in first canonical PGLA-form. Thus, it
remains to consider the case in which a sequence of primitive instructions ends
with a repeat instruction of which the counter is too large. First we discuss
PGLA as it is defined in [3]. Then we provide three alternative definitions of
PGLA, differing in how they define the meaning of programs ending with a
repeat instruction with a too large counter, such as a; \\#2. Finally, we discuss
an embedding from PGA into PGLA.

3 But see equation (1) in Section 4.1.

12



4.1 The original definition of PGLA

Given a program notation PGLX, a projection is a function pglx2pga that
maps each PGLX-program to PGA while preserving the intended meaning,
i.e., the thread defined by that program. Conversely, an embedding or co-
projection is a mapping pga2pglx in the reverse direction that preserves the
intended meaning. Typically, for each PGA-program X it should hold that

Ipglx2pga(pga2pglx(X))| = |X]|.

According to the principles of program algebra, a programming language is
a pair (PGLX, pglx2pga). From this point of view, (PGLA, pgla2pga) was
introduced in [3] as the programming language that is as close as possible
to PGA. The only modification of (PGLA, pgla2pga) proposed in this paper
is to add the repeat instruction \\#0, as this smoothes the set of PGLA
instructions.

However, considering PGLA as the basis for a stand-alone programming lan-
guage environment — a point of view that a tool-builder might propose or
prefer — implies that we should extend our PGLAcore framework to full
PGLA and provide all its analytical means independent of PGA. This implies
that it remains to define thread extraction on full PGLA.

Both these points of view combine very well, and are in a technical sense inter-
changeable. Either thread extraction on PGLA conforms to a given projection,
or the other way around. We prefer the first point of view (and explain this
in Section 5). The projection pgla2pga is defined in [3] only on first canonical
PGLA-forms (as they are called in this paper) as follows:

Definition 9 Let u; range over the primitive instructions, then

pgla2pga ;.. .;Upt1) = Ut ... Upil,
;.. ug; (#0) ifk>n=0,
pgla2pga(us;...;ug; \#N) = S uts -3 Up—p; (Ug—pp1s-- -3 up)?  if K >n >0,
(us .. .5 ug; (F0)"F)» ifn>k>0.

The special case that n = 0 is not considered in [3]. If also £ = 0 in the first
clause, then pgla2pga(\\#0) = (#0)*. In the last clause, £ = 0 (thus n > 0)
yields

pgla2pga(\\#n) = ((#0)")".

The latter PGA-program object is instruction sequence congruent with (#0)“.
Observe that the projection pgla2pga fully dictates thread extraction on

13



PGLA: if £ < n, then

[u1; - -5 s \F#En]pgia « [ugs .. ug; (#O)Tbik; \#n ] pgia-

The correctness of thread extraction on PGLA as defined here and in Sec-
tion 3.2 for PGLAcore can now be proved by showing that for all programs
X in first canonical PGLA-form,

[XTpgia = [pglazpga(X)]. (1)

We do not give a proof of this equation, but we note that [X],4, is defined
(designed) to make it valid. Furthermore, observe that equation (1) implies
Theorem 8.

4.2 Three alternative definitions of PGLA

We consider three alternative projections for PGLA, each of which might be
more attractive than pgla2pga from a practical point of view (we elaborate
on this point in Section 5). All these projections conform to the single-pass
character of program objects, and are of course identical on PGLAcore. Below
we present these semantics by way of definitions for thread extraction, sub-
stantiating our claim that defining thread extraction also fixes the associated
projection. Let u; range over the primitive instructions and let 0 < k < n.

(1) A first alternative is to fill a “repeat gap” with #1-instructions (i.e., with
skip instructions):

Twrs - -5 ugs \\F#n] pgias o [us e (D)™ \\#nlpgia,

and for all X in PGLAcore, [X] pgas def [ X 1pgia- We call this interpretation
pglas (soft PGLA) and the associated projection pglas2pga is obtained
by replacing the last clause in Definition 9 by

pglas2pga(us;...;ur; \\F#n) = (u1;...;u; (F1)"F)2.
(2) Another idea is to fill a repeat gap with \\#0 instructions (i.e., with
deadlock instructions):
[[ul; ceey Ups \\#n]]pglah = [[ul; <oy Ups <\\#0)n—k, \\#n]]pgla =
- [[ul; ey Ugs \\#Oﬂpglaa
and for all X in PGLAcore, [X] g def [X ]pgia- We call this interpretation

pglah (hard PGLA) and the associated projection pglas2pga is obtained
by replacing the last clause in Definition 9 by

pglah2pga(u;. . .;ug; \\F#n) = uq;...;ug; (F0)“.
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(3) Yet another idea is to truncate the counter of the repeat instruction:
[[ul; - Ugs \\#n]]pglat = Hul; <oy Uk, \\#k]]pglaa

and for all X in PGLAcore, [X]ga def [X]pgia- We call this interpreta-
tion pglat (truncated PGLA) and the associated projection pglas2pga is
obtained by replacing the last clause in Definition 9 by

pglat2pga(us;...;ug; \\F#n) = (ug;...;ug)”.

Note that the soft interpretation of PGLA, i.e., pglas2pga or [-],gas, can be
directly associated with the PGA thread extraction equation |#1; X| = | X|
(equation (11) in Table 3).

4.8 A single embedding into PGLA

The embedding pga2pgla from PGA to PGLA is defined in [3] on PGA-

programs in first canonical form and yields programs that are in PGLAcore:

let £ > 0, n > 0, and let u; range over the primitive instructions, then
pga2pgla(us;...;ug) = ;... ; Uy,

Pga2pgla(ui; .« -3 Uk; (Uett; - - -5 Ukgn)®) = Uti oo o5 Uk Upd; - - - 5 Ukgn \\FET-

Clearly, for each PGA-program X in first canonical form and for all ¢ €
{pgla2pga, pglas2pga, pglah2pga, pglat2pgal,

¢(pga2pgla(X)) = X,

and thus |¢(pga2pgla(X))| = | X]|.

5 Conclusions

We provided an algebraic theory of the ASCII representation PGLA of pro-
gram algebra PGA. In PGLA the repetition operator is replaced by a family
of repeat instructions \\#k, where the counter k& ranges over the naturals
N (including 0). A repeat instruction \\#4k prescribes to repeat the last k
instructions. In particular, \\#0 prescribes deadlock.

Then, PGA and PGLA were considered in a combined setting, involving both
the repeat instructions of PGLA and the repetition operator of PGA. The
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resulting program algebra PGArep is used to establish axioms and represen-
tation results for PGLA. As of yet, we see no other application for the program
algebra PGArep.

The contents of this paper adheres to the philosophy of PGA, i.e.,

(1) A program object is a (possibly infinite) sequence of primitive instructions
that is single-pass, and

(2) A programming language is a pair (L, ¢) where L is a a set of expressions
(the programs) and ¢ is a projection to PGA.

Our main motivation to undertake this research is the understanding that in
the setting of PGA’s hierarchy of programming languages [3], (PGLA, ¢) is
the single one that admits axiomatizations of instruction sequence congruence,
structural congruence and thread extraction, and that at the same time can
serve as the basis for a programming environment for program algebra [4].
This holds for

¢ € {pgla2pga, pglas2pga, pglah2pga, pglat2pga},

and of course for many more definitions of projections to PGA. We proposed
the latter three projections because they fit the philosophy sketched above
and because a disadvantage of the (original) projection pgla2pga is that it
does not combine in an elegant way with jumps, as witnessed by the following
examples where we abbreviate |pgla2pga(X)| by |X|pe. (as is done in [3]):

|a; #1; \\#3|pg1a =2 0 D,
|a; #2; \\#3|pgta = 2°°.

In general, |a; #k; \\#3|pgia = |(a; #k; #0)¥| = a* if kmod 3 =2, and aoD
otherwise. So in the original approach, D either arises from the added #0
instruction or from the interplay with \\#3 and the original jump instruction;
this we now consider very arbitrary.

According to the proposed “soft projection” pglas2pga, [a; #k; \\#3] pgtas =
aoD if k mod 3 = 0 and a* otherwise, so inaction only arises if £ = 0 or from
the interplay between #k and \\#3. We also proposed a “hard interpretation”
pglah2pga that yields deadlock upon a repeat instruction that prescribes to
repeat too many instructions. For instance, [a; #k; \\#3]pgian = @ o D for all
k € N. Finally, we proposed pglat2pga, a projection that truncates a too
large repeat instruction: [a; #k; \\#3] pgiar = [2; #k; \\#2] pgiat = a0 D if k is

even, and a* otherwise.

Irrespective of which projection is given definitional status, we argued that
PGLA and its axioms form a fully fledged alternative for PGA. Our conclu-
sion is that we consider PGA as the most basic theory (instead of PGLA), if
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only because there is no canonical interpretation of PGLA outside PGLAcore.
Therefore all projection semantics map to PGA. In particular, the projection
function pgla2pga maintains its definitional status: it embodies the original
definition of PGLA as a programming language. However, each of the three
alternative projections discussed in this paper has its own methodological ad-
vantages, and each of (PGLA, ¢) for ¢ one of these projections may be an
attractive candidate for further establishing PGLA as the basis of a program-
ming environment for program algebra.

A last remark on related work: PGA can be viewed as a theory of instruction
streams with PGLA as one of many representations of it. Unfortunately, we
have not been able to identify any pre-existing theory by other authors to
which this work can be related in a convincing manner. The phrase instruction
stream seems not to play a clear role in the theory of programming. The
software engineering literature at large features many uses of this phrase, but
only in a casual setting.
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