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ABSTRACT

This paper investigates the usefulness of PSF in software engineering and reengineering.
PSF is based on ACP (Algebra of Communicating Processes) and as some architectural
description languages are based on process algebra, we investigate whether PSF can be
used at the software architecture level, but we also use PSF at lower abstract levels. As a
case study we reengineer the compiler from the Toolkit of PSF.

Ke ywords: process algebra, software engineering, software architecture

1. Introduction

In this paper we investigate the usefulness of PSF (Process Specification Formalism) and its accompanying
Toolkit in software engineering and software reengineering. This is motivated by a range of previous
examples of the use of process algebra [2] in the area of architectural description languages (ADL’s). We
mention Wright [1] (based on CSP [11]), Darwin [12] (based on the π -calculus [15]), and PADL [6], which
is inspired by Wright and Darwin and focuses on architectural styles. We do not limit our attention to
software architecture, but apply PSF at other design levels as well.

PSF is based on ACP (Algebra of Communicating Processes) [3] and ASF (Algebraic Specification
Formalism) [4]. A description of PSF can be found in [13], [14], [7], and [8]. It is supported by a toolkit
that contains among other components a compiler and simulator. A simulation can be coupled to an
animation [9],1 which can either be made by hand or be automatically generated from the PSF specification
[10].

In software engineering and reengineering it is common practice to decompose systems into components
that communicate with each other. The main advantage of this decomposition is that maintainance can be
done on smaller components that are easier to comprehend. To allow a number of components to
communicate with each other a so-called coordination architecture will be required. In connection with
PSF we will make use of the ToolBus [5] coordination architecture, a software application architecture
developed at the CWI (Amsterdam) and the University of Amsterdam. It utilizes a scripting language
based on process algebra to describe the communication between software tools. A ToolBus script
describes a number of processes that can communicate with each other and of course with various tools
existing outside the ToolBus. The role of the ToolBus when executing the script is to coordinate the various
tools in order to perform some complex task. A language-dependent adapter that translates between the
internal ToolBus data format and the data format used by the individual tools makes it possible to write
ev ery tool in the language best suited for the task(s) it has to perform.
For larger systems, such a script can become rather complex and for that reason quite difficult to test and
debug. Specification of a script in PSF enables one to apply the analysis tools available for PSF on the
specification of the script. Moreover, if one or more tools have been specified in PSF the script may also be
analyzed in combination with PSF specifications of components of the whole system.

As a case study, we reengineer the PSF compiler. At the start of the reengineering process this compiler
consists of several components run by a driver, which makes it a suitable candidate for ToolBus based

1. This coupling is done with the use of the ToolBus and the whole application is specified in PSF. One can consider this a proof
of concept for the very thing we are trying to investigate in this paper.
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coordination. First, we develop a PSF library of ToolBus internals. We giv e an example specification to
show how to use this library, and turn this specification into a ToolBus application. Thereafter we provide a
specification of the compiler, from which we derive a specification of the compiler as a ToolBus
application. We then turn the compiler into a real ToolBus application. A specification of the architecture
for this (reengineered) compiler is extracted from its specification. Using this architectural specification,
we then build a parallel version of the compiler, while reusing specifications and implementations for
components of the compiler as it has already been configured as a ToolBus application.

2. Specification of the ToolBus library

This section presents a specification of a library of interfaces for PSF which can be used as a basis for the
specification of ToolBus applications. This specification does not cover all the facilities of the ToolBus, but
just what is necessary for the project at hand.

2.1 Data

First, a sort is defined for the data terms used in the tools. An abstraction is made from the actual data used
by the tools.

data module ToolTypes
begin

exports
begin

sorts
Tterm

end
end ToolTypes

Next, the sorts are introduced for the data terms and identifiers which will be used inside the ToolBus as
well as for communication with the ToolBus.

data module ToolBusTypes
begin

exports
begin

sorts
TBterm,
TBid

end
end ToolBusTypes

The module ToolFunctions provides names for conversions between data terms used outside and inside the
ToolBus.

data module ToolFunctions
begin

exports
begin

functions
tbterm : Tterm -> TBterm
tterm : TBterm -> Tterm

end
imports

ToolTypes,
ToolBusTypes

variables
t : -> Tterm

equations
[’] tterm(tbterm(t)) = t

end ToolFunctions

The ToolBus has access to several functions operating on different types. Here only the operators for tests
about equality and inequality of terms, will be needed. These are introduced in the module
ToolBusFunctions.

data module ToolBusFunctions
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begin
exports
begin

functions
equal : TBterm # TBterm -> BOOLEAN

end
imports

ToolBusTypes,
Booleans

variables
tb1 : -> TBterm
tb2 : -> TBterm

equations
[’] equal(tb1, tb1) = true
[’] not(equal(tb1, tb2)) = true

end ToolBusFunctions

2.2 Connecting tools to the ToolBus

In Figure 1 two possible ways of connecting tools to the ToolBus are displayed. One way is to use a
separate adapter and the other to have a builtin adapter. Tool1 communicates with its adapter over
pipelines.2

ToolBus

P1

Adapter

Tool 1

P2

Tool 2

Adapter

Figure 1. Model of tool and ToolBus interconnection

Next we define the primitives for communication between a tool and its adapter.

process module ToolAdapterPrimitives
begin

exports
begin

atoms
tooladapter-rec : Tterm
tooladapter-snd : Tterm

end
imports

ToolTypes
end ToolAdapterPrimitives

The primitives for communication between a tool and the ToolBus are fixed by the ToolBus design. At this
stage these need to be formally defined in PSF, howev er. These primitives can be used for communication

2. In Unix systems, a pipeline is a means of communication between two processes.
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between an adapter and the ToolBus as well, since the adapter logically takes the place of the tool it is
supposed to connect to the ToolBus.

process module ToolToolBusPrimitives
begin

exports
begin

atoms
tooltb-snd : TBterm
tooltb-rec : TBterm

tooltb-snd-event : TBterm
tooltb-rec-ack-event : TBterm

end
imports

ToolBusTypes
end ToolToolBusPrimitives

Inside a ToolBus script a number of primitives may be used consisting of the actions for communication
between ToolBus processes and their synchonous communication action, the actions used to communicate
with the tools, and the action required to shutdown the ToolBus.

process module ToolBusPrimitives
begin

exports
begin

atoms
tb-snd-msg : TBterm # TBterm
tb-rec-msg : TBterm # TBterm
tb-comm-msg : TBterm # TBterm
tb-snd-msg : TBterm # TBterm # TBterm
tb-rec-msg : TBterm # TBterm # TBterm
tb-comm-msg : TBterm # TBterm # TBterm

tb-snd-eval : TBid # TBterm
tb-rec-value : TBid # TBterm
tb-snd-do : TBid # TBterm
tb-rec-event : TBid # TBterm
tb-snd-ack-event : TBid # TBterm

tb-shutdown
end
imports

ToolBusTypes
communications

tb-snd-msg(tb1, tb2) | tb-rec-msg(tb1, tb2) = tb-comm-msg(tb1, tb2)
for tb1 in TBterm, tb2 in TBterm

tb-snd-msg(tb1, tb2, tb3) | tb-rec-msg(tb1, tb2, tb3) =
tb-comm-msg(tb1, tb2, tb3)
for tb1 in TBterm, tb2 in TBterm, tb3 in TBterm

end ToolBusPrimitives

The ToolBus provides primitives allowing an arbitrary number of terms as parameters for communication
between processes in the ToolBus. Here, the specification only covers the case of two and three term
arguments for the primitives, because versions with more are usually not needed. In order to do better lists
of terms have to be introduced, which is entirely possible in PSF but an unnececcary complication at this
stage. The two-term version can be used with the first term as a ’to’ or ’from’ identifier and the second as a
data argument. The three-term version can be used with the first term as ’from’, the second as ’to’, and the
third as the actual data argument. If more arguments have to be passed, they can always be grouped into a
single argument.

The module NewTool is a generic module with parameter Tool for connecting a tool to the ToolBus.

process module NewTool
begin

parameters
Tool
begin

processes
Tool
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end Tool
exports
begin

atoms
tooltb-snd-value : TBid # TBterm
tooltb-rec-eval : TBid # TBterm
tooltb-rec-do : TBid # TBterm
tooltb-snd-event : TBid # TBterm
tooltb-rec-ack-event : TBid # TBterm

processes
TBProcess

sets
of atoms

TBProcess = {
tb-rec-value(tid, tb), tooltb-snd(tb),
tb-snd-eval(tid, tb), tb-snd-do(tid, tb),
tooltb-rec(tb), tb-rec-event(tid, tb),
tooltb-snd-event(tb), tb-snd-ack-event(tid, tb),
tooltb-rec-ack-event(tb)
| tid in TBid, tb in TBterm

}
end
imports

ToolToolBusPrimitives,
ToolBusPrimitives

communications
tooltb-snd(tb) | tb-rec-value(tid, tb) = tooltb-snd-value(tid, tb)

for t in TBterm, tid in TBid
tooltb-rec(tb) | tb-snd-eval(tid, tb) = tooltb-rec-eval(tid, tb)

for t in TBterm, tid in TBid
tooltb-rec(tb) | tb-snd-do(tid, tb) = tooltb-rec-do(tid, tb)

for t in TBterm, tid in TBid
tooltb-snd-event(tb) | tb-rec-event(tid, tb) = tooltb-snd-event(tid, tb)

for t in TBterm, tid in TBid
tooltb-rec-ack-event(tb) | tb-snd-ack-event(tid, tb) =

tooltb-rec-ack-event(tid, tb)
for tb in TBterm, tid in TBid

definitions
TBProcess = encaps(TBProcess, Tool)

end NewTool

The process Tool accomplishes the connection between a process inside the ToolBus and a tool outside the
ToolBus. The process TBProcess encapsulates the process Tool in order to enforce communications and
thereby to prevent communications with other tools or processes. Note that TBProcess is used as the name
of the main process and as the name of the encapsulation set. By doing so, they can both be renamed with a
single renaming. This renaming is necessary if more than one tool is connected to the ToolBus (which is of
course the whole point of the ToolBus).

The module NewToolAdapter is a generic module with parameters Tool and Adapter for connecting a tool
and its adapter.

process module NewToolAdapter
begin

parameters
Tool
begin

atoms
tool-snd : Tterm
tool-rec : Tterm

processes
Tool

end Tool,
Adapter
begin

processes
Adapter

end Adapter
exports
begin

atoms
tooladapter-comm : Tterm
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adaptertool-comm : Tterm
processes

ToolAdapter
sets

of atoms
ToolAdapter = {

tool-snd(t), tooladapter-rec(t),
tool-rec(t), tooladapter-snd(t)
| t in Tterm

}
end
imports

ToolAdapterPrimitives,
ToolBusTypes

communications
tool-snd(t) | tooladapter-rec(t) = tooladapter-comm(t) for t in Tterm
tool-rec(t) | tooladapter-snd(t) = adaptertool-comm(t) for t in Tterm

definitions
ToolAdapter = encaps(ToolAdapter, Adapter || Tool)

end NewToolAdapter

The process ToolAdapter puts an Adapter and a Tool in parallel and enforces communication between them
with an encapsulation. In this case the main process and the encapsulation set have the same name once
more, so that only one renaming is needed.

2.3 ToolBus instantiation

The module NewToolBus is a generic module with parameter Application for instantiation of the ToolBus
with an application.

process module NewToolBus
begin

parameters
Application
begin

processes
Application

end Application
exports
begin

processes
ToolBus

end
imports

ToolBusPrimitives
atoms

application-shutdown
tbc-shutdown
tbc-app-shutdown
TB-shutdown
TB-app-shutdown

processes
ToolBus-Control
Shutdown

sets
of atoms

H = {
tb-snd-msg(tb1, tb2), tb-rec-msg(tb1, tb2),
tb-snd-msg(tb1, tb2, tb3), tb-rec-msg(tb1, tb2, tb3)
| tb1 in TBterm, tb2 in TBterm, tb3 in TBterm

}
TB-H = {

tb-shutdown, tbc-shutdown,
tbc-app-shutdown, application-shutdown

}
P = { TB-shutdown, TB-app-shutdown }

communications
tb-shutdown | tbc-shutdown = TB-shutdown
tbc-app-shutdown | application-shutdown = TB-app-shutdown

definitions
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ToolBus =
encaps(TB-H,

prio(P > atoms,
ToolBus-Control

|| disrupt(
encaps(H, Application),
Shutdown

)
)

)
ToolBus-Control = tbc-shutdown . tbc-app-shutdown
Shutdown = application-shutdown

end NewToolBus

A toolbus application can be described more clearly with ToolBus = encaps(H, Application).
The remaining code is needed to force a shutdown of all processes that otherwise would be left either
running or in a state of deadlock after a ToolBus shutdown by the application. When an application needs
to shutdown it performs an action tb-shutdown which will communicate with the action tbc-
shutdown of the ToolBus-Control process, which then performs a tbc-app-shutdown that will
communicate with application-shutdown of the Shutdown process enforcing a disrupt of the
Application process.

In Figure 2 an overview is giv en of the import relations of the modules in the PSF ToolBus library. The
module Booleans stems from a standard library of PSF.

psflib

Booleans

ToolFunctions

ToolTypesToolBusTypes

ToolBusFunctions ToolAdapterPrimitivesToolToolBusPrimitivesToolBusPrimitives

NewTool NewToolAdapterNewToolBus

Figure 2. import graph of the ToolBus library

2.4 Example

As an example of the use of the PSF ToolBus library, the specification is given of an application like the
one shown in Figure 1. In this example, Tool1 can either send a ’message’ to Tool2 and then wait for an
acknowledgement from Tool2, or it can send a ’quit’ after which the application will shutdown.

2.4.1 Specification of the tools

The first module defines the data that will be used.

data module Data
begin

exports
begin

functions
message : -> Tterm
ack : -> Tterm
quit : -> Tterm

end
imports

ToolTypes
end Data

A specification of Tool1 and its adapter is then obtained.

process module Tool1
begin

exports
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begin
atoms

snd : Tterm
rec : Tterm

processes
Tool1

end
imports

Data
definitions

Tool1 =
(

snd(message) .
sum(d in Tterm, rec(d))

+ snd(quit)
) . Tool1

end Tool1

process module AdapterTool1
begin

exports
begin

processes
AdapterTool1

end
imports

ToolFunctions,
ToolAdapterPrimitives,
ToolToolBusPrimitives

definitions
AdapterTool1 =

sum(d in Tterm,
tooladapter-rec(d) .
tooltb-snd-event(tbterm(d)) .
sum(r in TBterm,

tooltb-rec-ack-event(r) .
tooladapter-snd(tterm(r))

)
) . AdapterTool1

end AdapterTool1

Tool1 and its adapter are combined by importing NewToolAdapter and binding the parameters.

process module Tool1Adapter
begin

imports
NewToolAdapter {

Tool bound by [
tool-snd -> snd,
tool-rec -> rec,
Tool -> Tool1

] to Tool1
Adapter bound by [

Adapter -> AdapterTool1
] to AdapterTool1
renamed by [

ToolAdapter -> Tool1Adapter
]

}
end Tool1Adapter

We specify Tool2

process module Tool2
begin

exports
begin

processes
Tool2

end
imports

Data,
ToolFunctions,
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ToolToolBusPrimitives
definitions

Tool2 =
sum(d in TBterm,

tooltb-rec(d) .
tooltb-snd(tbterm(ack))

) . Tool2
end Tool2

2.4.2 Specification of the ToolBus processes

Some identifiers are defined in order to distinguish the messages sent between ToolBus processes
themselves and between ToolBus processes and their accompanying tools. The lowercase identifiers (of
type TBterm) are used with the actions tb-snd-msg and tb-rec-msg. The first argument of a
message will always be the origin of the message, and the second argument will serve as its destination.
Uppercase identifiers (of type TBid) are used as tool identifiers. Strictly speaking these are not necessary,
since there can’t be any communication with any other tool because of encapsulation. By using them,
however, the actions for communication with a tool will have more similarity to the ones used in the
ToolBus.

data module ID
begin

exports
begin

functions
T1 : -> TBid
t1 : -> TBterm
T2 : -> TBid
t2 : -> TBterm

end
imports

ToolBusTypes
end ID

For both tools a ToolBus process is defined. The specifications for these processes describe the protocol for
communication between the tools.

process module PTool1
begin

exports
begin

processes
PTool1

end
imports

Tool1Adapter,
ID,
ToolBusPrimitives,
ToolBusFunctions

processes
PT1

definitions
PTool1 = Tool1Adapter || PT1
PT1 =

sum(d in TBterm,
tb-rec-event(T1, d) .
(

[equal(d, tbterm(quit)) = true] ->
tb-shutdown

+ [not(equal(d, tbterm(quit))) = true] -> (
tb-snd-msg(t1, t2, d) .
sum(r in TBterm,

tb-rec-msg(t2, t1, r) .
tb-snd-ack-event(T1, d)

)
)

)
) . PT1
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end PTool1

process module PTool2
begin

exports
begin

processes
PTool2

end
imports

Tool2,
ID,
ToolBusPrimitives

processes
PT2

definitions
PTool2 = Tool2 || PT2
PT2 =

sum(d in TBterm,
tb-rec-msg(t1, t2, d) .
tb-snd-eval(T2, d)

) .
sum(r in TBterm,

tb-rec-value(T2, r) .
tb-snd-msg(t2, t1, r)

) . PT2
end PTool2

2.4.3 Specification of the ToolBus application

The ToolBus processes are connected with the tools and together they constitute the process Run that
merges the resulting two processes.

process module Tools
begin

exports
begin

processes
Run

end
imports

NewTool {
Tool bound by [

Tool -> PTool1
] to PTool1
renamed by [

TBProcess -> XPTool1
]

},
NewTool {

Tool bound by [
Tool -> PTool2

] to PTool2
renamed by [

TBProcess -> XPTool2
]

},
ID,
ToolBusFunctions

definitions
Run = XPTool1 || XPTool2

end Tools

At this stage renamings are necessary to be able to distinguish the two processes TBProcess.

The process Run is now transformed into a ToolBus application.

process module App
begin

imports
NewToolBus {
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Application bound by [
Application -> Run

] to Tools
}

end App

The main process of this application is ToolBus. A generated animation is shown in Figure 3, in which
AdapterTool1 just sent a message it had received from Tool1, to ToolBus process PT1.

PT1

ToolBus−Control

Tool1Shutdown

PT2

Tool2

AdapterTool1

tooltb−snd−event(T1, tbterm(message))

Figure 3. Animation of the ToolBus specification example

Each box represents an encapsulation of the processes inside the box, and a darker ellipse is a process
which is enabled to perform an action in the given state.

2.4.4 Example as ToolBus application

The application we have specified above has been built as an application consisting of three Tcl/Tk [16]
programs (Tool1, its adapter, and Tool2), and a ToolBus script. A screendump of this application at work
together with the viewer3 of the ToolBus is shown in Figure 4. The ToolBus script is shown below. The
processes PT1 and PT2 closely resemble the processes PTool1 and PTool2 in our PSF specification.
The execute actions in the ToolBus script correspond to starting of the adapter for Tool1 and starting of
Tool2 in parallel with the processes PT1 and PT2 respectively.

process PT1 is
let

T1: tool1adapter,
D : term,
R : term

in
execute(tool1adapter, T1?) .
(

rec-event(T1, D?) .
(

if equal(D, quit) then
shutdown("")

fi
+ if not(equal(D, quit)) then

snd-msg(t1, t2, D) .
rec-msg(t2, t1, R?) .
snd-ack-event(T1, D)

fi
)

) * delta
endlet

process PT2 is

3. With the viewer it is possible to step through the execution of the ToolBus script and view the variables of the individual
processes inside the ToolBus.
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Figure 4. Screendump of the example as ToolBus application with viewer

let
T2: tool2,
D : term,
R : term

in
execute(tool2, T2?) .
(

rec-msg(t1, t2, D?) .
snd-eval(T2, eval(D)) .
rec-value(T2, value(R?)) .
snd-msg(t2, t1, R)

) * delta
endlet

tool tool1adapter is { command = "wish-adapter -script tool1adapter.tcl" }
tool tool2 is { command = "wish-adapter -script tool2.tcl" }

toolbus(PT1, PT2)

The actions snd-eval and rec-value differentiate from their equivalents in the PSF specification.
The term eval(D) instead of just D is needed because the interpreter of evaluation requests that a tool
receives from the ToolBus, calls a function with the name it finds as function in this term. We could have
used any name instead of eval provided that Tool2 has got a function with that name.
Why the same scheme is needed by the ToolBus for rec-value is not known.

The processes in the ToolBus script use iteration and the processes in the PSF specification recursion. In
PSF it is also possible to use iteration in this case, since the processes have no arguments to hold the current
state. On the other hand, in PSF it is not possible to define variables for storing a global state, so when it is
necessary to hold the current state, this must be done through the arguments of a process and be formalized
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via recursion.

The last line of the ToolBus script starts the processes PT1 and PT2 in parallel. Its equivalent in the PSF
specification is the process Run.

3. Reengineering the PSF compiler

The PSF compiler is reengineered by developing a PSF specification for the compiler. From this
specification we develop a second specification that makes use of the PSF library for the ToolBus, which
will then be used for implementing a version of the compiler coordinated via the ToolBus.

3.1 Description of the compiler

The PSF compiler translates a group of PSF modules to a tool interface language (TIL) that is suitable for
tools to operate on. This compilation takes place in several phases. First each PSF module is parsed and
converted to an MTIL (modular TIL) module. Then each MTIL module is normalized with as a result an
ITIL (intermediate TIL) module. In this normalization step all imports are resolved by combining the
MTIL module with the ITIL modules that correspond to the imported modules. The resulting module no
longer depends on any imports. The main ITIL module is then flattened to TIL. An overview of these
steps is shown in Figure 5.

PSF

parser

MTIL library

normalizer

ITIL

flattener

TIL

Figure 5. Translation from PSF to TIL

The implementation of the PSF compiler is build up from several independent components, controlled by a
driver. The compiler driver consist of the following phases.

1. collecting modules
The modules are collected from the files given to the compiler, and missing imported modules are
searched for in the libraries

2. sorting modules
The modules are sorted according to their import relation.



- 14 -

3. splitting files
Files scanned in phase 1 that contain more than one module are splitted into files containing one
module each.

4. parsing (from PSF to MTIL)
All modules that are out of date, that is the destination file does not exist, or the source file (with
extension .psf) is newer than the destination file (with extension .mtil), are parsed.

5. normalizing (from MTIL to ITIL)
All modules that are out of date, that is the destination file does not exist, or the source file (with
extension .mtil) is newer than the destination file (with extension .itil) or one of its imported
modules (ITIL) is newer, are normalized.

6. flattening (from ITIL to TIL)
The main module is translated from ITIL to TIL.

7. converting sorts to sets
The simulator preprocessor is invoked for converting sorts to sets so that the simulator can deal with
them.

8. checking TRS
The term rewrite system checker is invoked.

3.2 Specification of the compiler

The complete specification of the compiler will not be displayed, but only those parts that are of interest for
turning the compiler into a ToolBus application. The generated animation of the compiler is shown in
Figure 6.

The processes PsfMtil, MtilItil, ItilTil, SimPP, and TrsCheck are implemented as calls to separate programs.
These are used as components and an abstraction is made from their internal workings in the context of this
specification.

Just to give some insight in the complexity of the specification, the import structure of the modules of the
specification is shown in Figure 7.

3.3 Specification of the compiler as a ToolBus application

Instead of calling the parser (process PsfMtil) and normalizer (process MtilItil) directly, they should be
called via the ToolBus. This can be accomplished by specifying an adapter for the compiler, and a ToolBus
script consisting of the ToolBus processes for the compiler, parser and normalizer. The resulting animation
is shown in Figure 8. The specification of the ToolBus processes is as follows.

process module PPSF
begin

exports
begin

processes
PPSF

end
imports

AdapterPSF,
ToolFunctions,
ToolBusPrimitives,
ToolBusFunctions,
ToolBus-ID

definitions
PPSF =

AdapterPSF
||

(
(

sum(args in TBterm,
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Phase3(co)

Phase1(options,ll)

CheckImport

Compiler

InLibrary

Phase2(co)

Phase7(co)

Phase5(co)

UpToDate

Phase6(co)

SplitFile

AddModules

CompileOrder

Split

TrsCheck

UpToDate

AddImports

SimPP

InLibrary

AddImports

Phase4(co) ParseModules

SplitFiles

MtilItil

LibrarySearch(ll)

Phase8(co)

ItilTil

FindTopModule

NormalizeModules

ScanFiles

PsfMtil

Figure 6. Generated animation of the compiler

tb-rec-event(PSF, tbterm(tterm(tool-mtil)), args) .
tb-snd-ack-event(PSF, tbterm(tterm(tool-mtil))) .
tb-snd-msg(psf, mtil, args)

) .
sum(result in TBterm,

tb-rec-msg(mtil, psf, result) .
tb-snd-do(PSF, result)

)
+ sum(args in TBterm,

tb-rec-event(PSF, tbterm(tterm(tool-itil)), args) .
tb-snd-ack-event(PSF, tbterm(tterm(tool-itil))) .
tb-snd-msg(psf, itil, args)

) .
sum(result in TBterm,

tb-rec-msg(itil, psf, result) .
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psflib

Booleans

GenericList

CompilerOptions

Option

Modules

Module

ImportCycle CompileOrder

Files

File

FileTypes FileContent

SimpleFileSystem

Library

Libraries

Types

Phase1

Result

Phase2 Phase3Phase4Phase5Phase6 Phase7Phase8

Compiler

Figure 7. Import graph of the specification of the compiler

tb-snd-do(PSF, result)
)

+ tb-rec-event(PSF, tbterm(quit)) .
tb-shutdown

) * delta
)

end PPSF

process module PMTIL
begin

exports
begin

processes
PMTIL

end
imports

MTIL,
ToolBusPrimitives,
ToolBus-ID

definitions
PMTIL =

MTIL
||

(
sum(args in TBterm,

tb-rec-msg(psf, mtil, args) .
tb-snd-eval(MTIL, args) .
sum(result in TBterm,

tb-rec-value(MTIL, result) .
tb-snd-msg(mtil, psf, result)

)
) * delta

)
end PMTIL

process module PITIL
begin

exports
begin

processes
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ToolBus−Control

ITIL

PSF−Adapter
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Figure 8. Generated animation of the compiler as ToolBus application

PITIL
end
imports
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ITIL,
ToolBusPrimitives,
ToolBus-ID

definitions
PITIL =

ITIL
||

(
sum(args in TBterm,

tb-rec-msg(psf, itil, args) .
tb-snd-eval(ITIL, args) .
sum(result in TBterm,

tb-rec-value(ITIL, result) .
tb-snd-msg(itil, psf, result)

)
) * delta

)
end PITIL

The import graph of the specification of the compiler as ToolBus application is shown in Figure 9.
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Figure 9. Import graph of the specification of the compiler as ToolBus application

3.4 Implementation of the compiler as a ToolBus application

The original implementation of the compiler has been provided with an interface that communicates with
the adapter. The adapter is written in Perl [19] as an extension of the Perl-adapter provided with the
ToolBus. The ToolBus script is derived from the specification of the ToolBus processes. The parser and
normalizer are wrapped with Perl scripts that take care of fetching the exit status of the two tools and
sending this information back as a result.
The actual application is a Perl script that provides an environment with all the right settings and invokes
the ToolBus, according to the arguments given on the command line.

Although it is not of central interest at this stage, a comparison the performance of the compiler which uses
the ToolBus (tbpsf) compared to the original compiler (psf) is given. The tests consists of a complete
compilation of the specification of the compiler as a ToolBus application consisting of 49 modules and an
update in which only several modules have to be (re)compiled. The tests have been performed on two
different machines, one with only one cpu (M1), and one with four cpu’s (M4). The timings4 shown in
Table 1 are averages over sev eral runs.

It clearly shows that the use of the ToolBus imposes a lot of overhead, largely due to context switching.
Because of the four cpu’s, the configuration M4 needs fewer context switches, and so has less overhead.

4. The configurations were running in normal operation mode, which means that timings are influenced by other processes and
load on the file server, and for that reson are very rough.
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Table 1. Performance of the compilers

M1 M4
complete update complete update

psf 5.5s 3.0s 5.5s 2.8s
tbpsf 17.2s 5.8s 7.5s 3.3s

4. Software architecture

A software design consist of several levels, each lower one refining the design on the higher level. The
highest level is often referred to as the architecture, the organization of the system as a collection of
interacting components. In conventional software engineering processes, the architecture is usually
described rather informally by means of a boxes-and-lines diagram. Following a lot of research going on in
this area architectural descriptions are becoming more formal, especially due to the introduction of
architectural description languages (ADL’s). A specification in an ADL can be refined (in several steps) to
a design from which an implementation of the system can be built. Here, the reverse has to be done. Given
a specification of a design in PSF one tries to extract the underlying architecture by means of an appropriate
abstraction. The specification of the architecture will still be in PSF, howev er such that one may generate
an animation. This corresponds to the boxes-and-lines diagram but it is fully specified.

In the following sections we describe the possibilities for abstraction, andy apply these to extract the
architecture of the compiler.

4.1 Abstraction

In [17], action refinement is used as a technique for mapping abstract actions onto concrete processes,
called virtual implementation, which is more fully described in [18]. For extracting the architecture from a
specification we use the reverse of action refinement: action abstraction. One may do this by hiding
internal actions of a component, and applying process algebra rules to combine consecutive internal actions
into a single (internal) action. But also in this transformation step one has to abstract from implementation
decisions that do not belong at the resulting higher abstract level. Often this can be done by only looking at
the external behavior of a component, its interface.

With parameterized actions, data terms are available which can also be refined. At a certain abstract level
one may not care how data is implemented as long as the data is of a particular type. For instance in a
message passing system one may deal with any message as just a message without knowing its content.
Then for the specification at an abstract level one may use the zero-adic function message for the parameter
of an action. In the specification at a lower abstraction level this constant can be refined to a more complex
term. Data abstraction is the reverse of this, we then replace complex terms with zero-adic functions. With
such an abstraction, a receiving action of such a term can now use this zero-adic function instead of a
variable coming from a summation construction.

4.2 Architecture of the compiler

In the specification of the compiler the order of compilation steps is laid down. First all modules are parsed
and then all modules are normalized. This is an implementation decision. A module can be normalized as
soon as it has been parsed and all the modules it imports have been normalized. To abstract from this
decision we specify the compiler with the following process.

PSF’ =
skip .
(

(
skip .
snd(do(tterm(tool-mtil), tterm(args))) .
rec(result)
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+ skip .
snd(do(tterm(tool-itil), tterm(args))) .
rec(result)

) * snd(quit)
)

Here, we use the abstract data terms ’args’ and ’result’. This process describes the external behavior of the
compiler. The skip actions are abstractions of internal actions.

The adapter for the compiler is defined as follows, where also the abstract form of the data terms are used.

PSF-Adapter =
(

tooladapter-rec(do(tterm(tool-mtil), tterm(args))) .
tooltb-snd-event(tbterm(tterm(tool-mtil)), tbterm(tterm(args))) .
tooltb-rec-ack-event(tbterm(tterm(tool-mtil))) .
tooltb-rec(tbterm(tterm(result)) .
tooladapter(tterm(result))

+ tooladapter-rec(do(tterm(tool-itil), tterm(args))) .
tooltb-snd-event(tbterm(tterm(tool-itil)), tbterm(tterm(args))) .
tooltb-rec-ack-event(tbterm(tterm(tool-itil))) .
tooltb-rec(tbterm(tterm(result)) .
tooladapter(tterm(result))

) *
tooladapter-rec(quit) .
tooltb-snd-event(tbterm(quit))

The parallel composition of PSF’ and PSF-Adapter combined with encapsulation of the communication
actions is equivalent to the following process.

AdapterPSF’ =
skip .
(

(
skip .
tooladapter-comm(do(tterm(tool-mtil), tterm(args))) .
tooltb-snd-event(PSF, tbterm(tterm(tool-mtil)), args)
tooltb-rec-ack-event(tbterm(tterm(tool-mtil))) .
tooltb-rec(result) .
adaptertool-comm(tterm(result))

+ skip .
tooladapter-comm(do(tterm(tool-itil), tterm(args))) .
tooltb-snd-event(PSF, tbterm(tterm(tool-mtil)), args)
tooltb-rec-ack-event(tbterm(tterm(tool-mtil))) .
tooltb-rec(result) .
adaptertool-comm(tterm(result))

) *
tooladapter-comm(quit) .
tooltb-snd-event(tbterm(quit))

)

We hide all internal actions of this process and replace the data terms with a more abstract form.

AdapterPSF’’ =
skip .
(

(
skip .
skip .
tooltb-snd-event(PSF, tool-mtil, args)
tooltb-rec-ack-event(tool-mtil) .
tooltb-rec(result) .
skip

+ skip .
skip .
tooltb-snd-event(PSF, tool-mtil, args)
tooltb-rec-ack-event(tool-mtil) .
tooltb-rec(result) .
skip

) *
skip .
tooltb-snd-event(quit)

)
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The ToolBus process PPSF with the data terms can be written in an abstract form as follows.

PPSF’ =
AdapterPSF’’

|| (
(

tb-rec-event(PSF, tool-mtil, args) .
tb-snd-ack-event(PSF, tool-mtil) .
tb-snd-msg(psf, mtil, args) .
tb-rec-msg(mtil, psf, result) .
tb-snd-do(PSF, result)

+ tb-rec-event(PSF, tool-itil, args) .
tb-snd-ack-event(PSF, tool-itil) .
tb-snd-msg(psf, itil, args) .
tb-rec-msg(itil, psf, result) .
tb-snd-do(PSF, result)

) *
tb-rec-event(PSF, quit) .
tb-shutdown

)

After encapsulation of the communication actions between the tool and its ToolBus process this is
equivalent to the following.

PPSF’’ =
skip .
(

(
skip .
skip .
tb-comm-event(PSF, tool-mtil, args) .
tb-comm-ack-event(PSF, tool-mtil) .
tb-snd-msg(psf, mtil, args) .
tb-rec-msg(mtil, psf, result) .
tb-comm-do(PSF, result) .
skip

+ skip .
skip .
tb-comm-event(PSF, tool-itil, args) .
tb-comm-ack-event(PSF, tool-itil) .
tb-snd-msg(psf, itil, args) .
tb-rec-msg(itil, psf, result) .
tb-comm-do(PSF, result) .
skip

) *
skip .
tb-comm-event(PSF, quit) .
tb-shutdown

)

Hiding all communications between the tool and the ToolBus process the following result is obtained.

PPSF’’’ =
skip .
(

(
skip .
skip .
skip .
skip .
tb-snd-msg(psf, mtil, args) .
tb-rec-msg(mtil, psf, result) .
skip .
skip

+ skip .
skip .
skip .
skip .
tb-snd-msg(psf, itil, args) .
tb-rec-msg(itil, psf, result) .
skip .
skip

) *
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skip .
skip .
tb-shutdown

)

Applying the τ -law x. τ . y = x. y of our process algebra yields

PPSF’’’’ =
skip .
(

(
skip .
tb-snd-msg(psf, mtil, args) .
tb-rec-msg(mtil, psf, result)

+ skip .
tb-snd-msg(psf, itil, args) .
tb-rec-msg(itil, psf, result)

) *
skip .
tb-shutdown

)

The same is done for the processes PMTIL and PITIL.

PMTIL’’’’ =
(

tb-rec-msg(psf, mtil, args) .
tb-snd-msg(mtil, psf, result)

) * delta
PITIL’’’’ =

(
tb-rec-msg(psf, itil, args) .
tb-snd-msg(itil, psf, result)

) * delta

The parallel composition of the above three processes describes the intended architecture. An animation of
this architecture is shown in Figure 10.

Shutdown

ToolBus−Control

ITIL

PSF

MTIL

Figure 10. Animation of the architecture

With some renaming this can be written in a more suitable form.

Compiler = PSF || MTIL || ITIL
PSF =

skip .
(

(
skip .
snd(psf, mtil, args) .
rec(mtil, psf, result)

+ skip .
snd(psf, itil, args) .
rec(itil, psf, result)

) *
skip .
shutdown

)
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MTIL =
(

rec(psf, mtil, args) .
snd(mtil, psf, result)

) * delta
ITIL =

(
rec(psf, itil, args) .
snd(itil, psf, result)

) * delta

The above PSF text provides a specification of the compiler architecture. The architecture does not enforce
any restrictions on the type of connections used to glue the various components together. Both the original
compiler as well as the reengineered version compiler that makes use of the ToolBus are implementations
of this architecture.

5. Parallel compiler

The parsing and normalization of modules allows for parallelization. Parsing of modules and the
normalization of other modules which already have been parsed and for which all the modules that they
import have already been normalized, can be done in parallel.

We build a parallel compiler and reuse as much as possible from the specifications and implementation of
the reengineered compiler.

5.1 Architecture

Instead of issuing commands for parsing and normalization of modules, the parallel compiler should
compose an information structure that tells which modules have to be parsed and/or normalized and on
which modules they depend that also have to be parsed and/or normalized. The compiler has to send this
structure to a scheduler which decides when modules are to be parsed or normalized.

We giv e here the specification of the architecture for the parallel compiler.

Compiler = PSF || Scheduler || MTIL || ITIL
PSF =

skip .
(

skip .
tb-snd-msg(psf, scheduler, compile-info) .
tb-rec-msg(scheduler, psf, result) .
tb-shutdown

+ skip .
tb-shutdown

)
Scheduler =

tb-rec-msg(psf, scheduler, compile-info) .
(

(
skip .
tb-snd-msg(scheduler, mtil, args)

+ tb-rec-msg(mtil, scheduler, result)
+ skip .

tb-snd-msg(scheduler, itil, args)
+ tb-rec-msg(itil, scheduler, result)
) * tb-snd-msg(scheduler, psf, result)

)
MTIL =

(
tb-rec-msg(scheduler, mtil, args) .
tb-snd-msg(mtil, scheduler, result)

) * delta
ITIL =

(
tb-rec-msg(scheduler, itil, args) .
tb-snd-msg(itil, scheduler, result)
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) * delta

An animation of this architecture is shown in Figure 11.
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ToolBus−Control
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ITIL

ShutdownPSF

Figure 11. Animation of the architecture

This specification features only one MTIL and one ITIL process, but this scheme allows for more MTIL
and ITIL processes in parallel. Whichever process is free can pick up a request from the scheduler to parse
or normalize a module.

Although the specification of the architecture contains separate processes for compiler and scheduler, it
does not imply that these need to be implemented as separate tools. The scheduler can be incorporated in
the compiler, as we show below.

The parallel composition of PSF and Scheduler, is equivalent to the following process.

skip . (
skip . tb-comm-msg(psf, scheduler, compile-info) .
(

P * tb-comm-msg(scheduler, psf, result) . tb-shutdown
)

+ Q
)

Here, P stands for the alternative composition of the send and receive actions in the Scheduler process, and
Q stands for skip . tb-shutdown.

Hiding the communications between compiler and scheduler results in the following.

skip . (skip . skip . (P * Q) + Q)

Applying the τ -law x. τ . y = x. y gives

skip . (skip . (P * Q) + Q)

Applying the rule for iteration x * y = x. (x * y) + y gives

skip . (skip . (P . (P * Q) + Q) + Q)

Applying the τ -law x. (y + τ . z) = x. (y + τ . z) + x. z in reverse gives

skip . skip . (P . (P * Q) + Q)

Applying the rule for iteration in reverse and the τ -law x. τ . y = x. y gives

skip . (P * Q)

Replacing P and Q gives us

skip .
(

skip .
tb-snd-msg(scheduler, mtil, args)
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+ tb-rec-msg(mtil, scheduler, result)
+ skip .

tb-snd-msg(scheduler, itil, args)
+ tb-rec-msg(itil, scheduler, result)
) * skip .
tb-shutdown

)

This looks the same as the compiler process in the architecture of tbpsf but then with the sending and
receiving actions in parallel with the scheduler process in this architecture.
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Figure 12. Generated animation of the parallel compiler as ToolBus application
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5.2 Specification of the parallel compiler

As we already mentioned in the previous section, there are several options for the cooperation of the
compiler and the scheduler. A possiblity is to incorporate the scheduler in the compiler and let the
scheduler part take care of the connections with the ToolBus. Here, however, we hav e chosen to implement
the Scheduler as separate process (tool) to be connected to the ToolBus which gets its information from the
compiler over the ToolBus.

We reuse a large part of the specification of the compiler for the specification of the parallel compiler. The
parsing and normalization phases are replaced by a phase that builds up a Compiler-Information structure.
The ToolBus processes are adjusted and extended to reflect the processes in the specification of the
architecture. And the specification of the scheduler is added.

The animation of the parallel compiler is shown in Figure 12. The import graph for the specification of the
parallel compiler is shown in Figure 13.
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Figure 13. Import graph of the specification of the parallel compiler

The module Naturals and all its imports and the module Tables stem from the standard library of PSF.
Naturals is used for counting the MTIL and ITIL processes that have to be started in the specification of the
ToolBus script and Tables is used for the construction of the Compiler-Information structure.

5.3 Implementation of the parallel compiler

The implementation of the compiler has been extended with a phase for building the Compiler-Information
structure which can be invoked instead of the parsing and normalizing phases, controlled by an option. The
scheduler has been implemented in Perl. The actual application is a Perl script that provides an
environment with the right settings and which will invoke the ToolBus according to the arguments given on
the command line. This script also gives the possibility to start the parallel compiler with indicated
numbers of parsing and normalization processes.

In Table 2 the performance of the parallel compiler is shown for several combinations of numbers of
parsing and normalization processes, for the complete compilation of the specification of the compiler as a
ToolBus application.

We see that on configuration M1 the parallel compiler has a better performance than tbpsf, but it is not
faster than psf. So the communication overhead connected with the ToolBus is too large to overcome on
this configuration. Parallel compilation on configuration M4 is faster than psf, although not much, because
the amount of work that can be done in parallel is limited by the imposed order of compilation of the
modules due to their import relation.
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Table 2. Performance of the parallel compiler

# processes complete
mtil itil M1 M4

1 1 12.8s 6.0s
1 2 11.7s 5.4s
1 3 11.6s 5.4s
2 1 12.9s 6.1s
2 2 12.1s 5.2s
2 3 11.9s 4.8s
2 4 11.6s 4.9s
3 2 11.7s 5.0s
3 3 11.6s 4.8s
3 4 11.6s 4.9s
4 4 11.6s 4.7s

6. Conclusions

We hav e made a specification for the compiler in the ToolKit of PSF and a specification of a library of
ToolBus internals, which we used for developing a specification of the compiler with the use of this
ToolBus library for coordination of the components of the compiler. From this specification, we were able
to extract a specification of the architecture of the compiler. Furthermore, we have build a parallel compiler
by developing a specification of the architecture, a refined specification, and an implementation, with reuse
of as much as possible of the specification and implementation for the compiler as ToolBus application.

PSF turned out to be very useful. Its modularization and parameterization features made the use of a
library for the ToolBus internals possible, which makes the specification of a software system with
interacting components much easier. Specification can be done at various abstract levels, as we have shown
by making specifications of the compiler close to the implementation level as well as at the architectural
level. The latter indicates that PSF with the ToolBus library can be used as an ADL. The animation facility
coupled with simulation gives a very good view of which processes are involved in certain
communications, much more than a visual inspection of the PSF specification itself can provide. The
animation of the architecture is very useful for explaining the software system to stakeholders who have not
been involved in the software design process.

Although we have used the PSF ToolBus library in our specification, an implementation does not
necessarily need to use the ToolBus. All the connections between processes in the ToolBus part of the
specification can be implemented in numerous ways. These connections are abstract, and the ToolBus
provides an implementation.

In this paper, we hav e reported on the experience gained through reengineering a compiler that already
consisted of separately implemented components, but one should also acquire experience with starting at
the software architecture level and working towards an implementation. Here lies the use of the PSF
simulator. This is a complex piece of software with integrated graphical user interface implemented in the
X Window System. The user interface could well be implemented as separate components in Tcl/Tk. In
this way, not only the interface can be changed easily, but also a simulator kernel for a different process
algebra notation can be used if that is preferable.
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