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Softwar e (Re-)Engineering with PSF
Bob Diertens

Programming Research Group, Faculty of Science, University of Amsterdam
ABSTRACT

This paper investigates the usefulness of PSF in software engineering and reengineering.
PSF is based on ACP (Algebra of Communicating Processes) and as some architectural
description languages are based on process algebra, we investigate whether PSF can be
used at the software architecture level, but we also use PSF at lower abstract levels. As a
case study we reengineer the compiler from the Toolkit of PSF.

Keywords: process algebra, software engineering, software architecture

1. Introduction

In this paper we investigate the usefulness of PSF (Process Specification Formalism) and its accompanying
Toolkit in software engineering and software reengineering. This is motivated by a range of previous
examples of the use of process algebra [2] in the area of architectural description languages (ADL’s). We
mention Wright [1] (based on CSP [11]), Darwin [12] (based on the z-calculus [15]), and PADL [6], which
is inspired by Wright and Darwin and focuses on architectural styles. We do not limit our attention to
software architecture, but apply PSF at other design levels as well.

PSF is based on ACP (Algebra of Communicating Processes) [3] and ASF (Algebraic Specification
Formalism) [4]. A description of PSF can be found in [13], [14], [7], and [8]. It is supported by a toolkit
that contains among other components a compiler and simulator. A simulation can be coupled to an
animation [9],* which can either be made by hand or be automatically generated from the PSF specification
[10].

In software engineering and reengineering it is common practice to decompose systems into components
that communicate with each other. The main advantage of this decomposition is that maintainance can be
done on smaller components that are easier to comprehend. To allow a number of components to
communicate with each other a so-called coordination architecture will be required. In connection with
PSF we will make use of the ToolBus [5] coordination architecture, a software application architecture
developed at the CWI (Amsterdam) and the University of Amsterdam. It utilizes a scripting language
based on process algebra to describe the communication between software tools. A ToolBus script
describes a number of processes that can communicate with each other and of course with various tools
existing outside the ToolBus. The role of the ToolBus when executing the script is to coordinate the various
tools in order to perform some complex task. A language-dependent adapter that translates between the
internal ToolBus data format and the data format used by the individual tools makes it possible to write
every tool in the language best suited for the task(s) it has to perform.

For larger systems, such a script can become rather complex and for that reason quite difficult to test and
debug. Specification of a script in PSF enables one to apply the analysis tools available for PSF on the
specification of the script. Moreover, if one or more tools have been specified in PSF the script may also be
analyzed in combination with PSF specifications of components of the whole system.

As a case study, we reengineer the PSF compiler. At the start of the reengineering process this compiler
consists of several components run by a driver, which makes it a suitable candidate for ToolBus based

1. This coupling is done with the use of the ToolBus and the whole application is specified in PSF. One can consider this a proof
of concept for the very thing we are trying to investigate in this paper.



coordination. First, we develop a PSF library of ToolBus internals. We give an example specifi cation to
show how to use this library, and turn this specifi cation into a Tool Bus application. Thereafter we provide a
specifi cation of the compiler, from which we derive a specifi cation of the compiler as a ToolBus
application. We then turn the compiler into area ToolBus application. A specifi cation of the architecture
for this (reengineered) compiler is extracted from its specifi cation. Using this architectural specifi cation,
we then build a parallel version of the compiler, while reusing specifi cations and implementations for
components of the compiler asit has aready been confi gured as a ToolBus application.

2. Specification of the ToolBus library

This section presents a specifi cation of a library of interfaces for PSF which can be used as a basis for the
specifi cation of ToolBus applications. This specifi cation does not cover al the facilities of the ToolBus, but
just what is necessary for the project at hand.

2.1 Data

First, asort is defi ned for the dataterms used in the tools. An abstraction is made from the actual data used
by thetools.

data module Tool Types
begin

exports

begin

sorts
Tterm

end

end Tool Types

Next, the sorts are introduced for the data terms and identifi ers which will be used inside the ToolBus as
well as for communication with the Tool Bus.

data module Tool BusTypes
begin
exports
begin
sorts
TBterm
TBi d
end
end Tool BusTypes

The module Tool Functions provides names for conversions between data terms used outside and inside the
ToolBus.

data module Tool Functi ons
begin
exports
begin
functions
tbterm: Tterm-> TBterm
tterm: TBterm-> Tterm
end
imports
Tool Types,
Tool BusTypes
variables
t . ->Tterm
equations
[Ttterm(tbtern(t)) =1t

end Tool Functi ons

The ToolBus has access to several functions operating on different types. Here only the operators for tests
about equality and inequality of terms, will be needed. These are introduced in the module
Tool BusFunctions.

data module Tool BusFuncti ons



begin
exports
begin
functions
equal : TBterm# TBt er m-> BOOLEAN
end
imports
Tool BusTypes,
Bool eans
variables
thbl: -> TBterm
tb2 : -> TBterm
equations
[] equal (tbl, tbl) =true
[] not (equal (tbl, tb2)) =true
end Tool BusFuncti ons

2.2 Connecting toolsto the ToolBus

In Figure 1 two possible ways of connecting tools to the ToolBus are displayed. One way is to use a
separate adapter and the other to have a builtin adapter. Tooll communicates with its adapter over
pipelines.?

ToolBus
P1 P2
1 1
Adapter
AT Tool 2
Tool 1

Figurel. Model of tool and ToolBus interconnection

Next we defi ne the primitives for communication between atool and its adapter.

process module Tool AdapterPrimtives
begin
exports
begin
atoms
t ool adapter-rec : Tterm
t ool adapter-snd : Tterm
end
imports
Tool Types
end Tool AdapterPrinmtives

The primitives for communication between atool and the ToolBus are fi xed by the ToolBus design. At this
stage these need to be formally defi ned in PSF, however. These primitives can be used for communication

2. In Unix systems, a pipeline is ameans of communication between two processes.



between an adapter and the ToolBus as well, since the adapter logically takes the place of the tool it is
supposed to connect to the ToolBus.

process module Tool Tool BusPrimtives

begin
exports
begin
atoms
tooltb-snd : TBterm
tooltb-rec : TBterm
tool tb-snd-event : TBterm
tool tb-rec-ack-event : TBterm
end
imports

Tool BusTypes
end Tool Tool BusPrinitives

Inside a ToolBus script a number of primitives may be used consisting of the actions for communication
between ToolBus processes and their synchonous communication action, the actions used to communicate
with the tools, and the action required to shutdown the Tool Bus.

process module Tool BusPrimitives

begin
exports
begin
atoms

tb-snd-nmsg : TBterm# TBterm
tb-rec-nmsg : TBterm# TBterm
tb-commnsg : TBterm# TBterm
tb-snd-nmsg : TBterm# TBterm# TBterm
tb-rec-nmsg : TBterm# TBterm# TBterm
tb-conmnsg : TBterm# TBterm# TBterm
tb-snd-eval : TBid # TBterm
tb-rec-value : TBid # TBterm
tb-snd-do : TBid # TBterm
tb-rec-event : TBid # TBterm
t b-snd-ack-event : TBid # TBterm
t b- shut down

end

imports

Tool BusTypes
communications

tb-snd-nmsg(tbl, tb2) | tb-rec-nsg(tbl, tb2) =th-comm neg(tbl, tb2)
for tbl in TBterm tb2 in TBterm

tb-snd-nmsg(tbl, tb2, tb3) | th-rec-nsg(tbl, th2, th3) =
t b-conm nsg(tbl, tb2, tb3)
for thbl in TBterm tb2 in TBterm tb3 in TBterm

end Tool BusPrimtives

The ToolBus provides primitives allowing an arbitrary number of terms as parameters for communication
between processes in the ToolBus. Here, the specifi cation only covers the case of two and three term
arguments for the primitives, because versions with more are usually not needed. In order to do better lists
of terms have to be introduced, which is entirely possible in PSF but an unnececcary complication at this
stage. The two-term version can be used with the fi rst term asa’to’ or 'from’ identifi er and the second as a
data argument. The three-term version can be used with the fi rst term as’from’, the second as 'to’, and the
third as the actual data argument. If more arguments have to be passed, they can always be grouped into a
single argument.

The module NewTool is a generic module with parameter Tool for connecting atool to the ToolBus.

process module NewTool
begin
parameters
Tool
begin
processes
Tool



end Tool
exports
begin
atoms
tooltb-snd-value : TBid # TBterm
tooltb-rec-eval : TBid # TBterm
tooltb-rec-do : TBid # TBterm
tool tb-snd-event : TBid # TBterm
tooltb-rec-ack-event : TBid # TBterm
processes
TBPr ocess
sets
of atoms
TBProcess = {
tb-rec-value(tid, tb), tooltb-snd(tb),
tb-snd-eval (tid, tb), tb-snd-do(tid, th),
tooltb-rec(tb), tb-rec-event(tid, th),
t ool t b-snd-event (tb), tb-snd-ack-event(tid, th),
t ool t b-rec- ack-event (th)
| tidinTBid, tbin TBterm

end
imports
Tool Tool BusPrimitives,
Tool BusPrimtives
communications
tool tb-snd(tb) | tb-rec-value(tid, tb) =tooltb-snd-value(tid, tbh)
for t in TBterm tidin TBid
tooltb-rec(tb) | tb-snd-eval (tid, tb) =tooltb-rec-eval (tid, th)
for t in TBterm tidin TBid
tooltb-rec(tb) | tb-snd-do(tid, tb) =tooltb-rec-do(tid, tbh)
for t in TBterm tidin TBid
t ool t b-snd-event (tb) | tb-rec-event(tid, tb) =tooltb-snd-event(tid, tb)
for t in TBterm tidin TBid
t ool t b-rec-ack-event (tb) | tb-snd-ack-event(tid, th) =
tool t b-rec-ack-event(tid, th)
fortb in TBterm tidin TBi d
definitions
TBPr ocess = encaps( TBProcess, Tool)
end NewTool

The process Tool accomplishes the connection between a process inside the ToolBus and a tool outside the
ToolBus. The process TBProcess encapsulates the process Tool in order to enforce communications and
thereby to prevent communications with other tools or processes. Note that TBProcess is used as the name
of the main process and as the name of the encapsulation set. By doing so, they can both be renamed with a
single renaming. Thisrenaming is necessary if more than one tool is connected to the ToolBus (which is of
course the whole point of the ToolBus).

The module NewTool Adapter is a generic module with parameters Tool and Adapter for connecting a tool
and its adapter.

process module NewTool Adapt er
begin
parameters
Tool
begin
atoms
tool-snd : Tterm
tool-rec : Tterm
processes
Tool
end Tool ,
Adapt er
begin
processes
Adapt er
end Adapt er
exports
begin
atoms
t ool adapter-comm: Tterm



adaptertool -comm: Tterm
processes
Tool Adapt er
sets
of atoms
Tool Adapter = {

tool -snd(t), tool adapter-rec(t),
tool -rec(t), tool adapter-snd(t)
| t in Tterm

end

imports

Tool AdapterPrimtives,
Tool BusTypes
communications
tool -snd(t) | tool adapter-rec(t) = tool adapter-com(t) fort in Tterm
tool -rec(t) | tool adapter-snd(t) = adaptertool -conm(t) fort in Tterm
definitions
Tool Adapt er = encaps( Tool Adapt er, Adapter || Tool)
end NewTool Adapt er

The process Tool Adapter puts an Adapter and a Tool in parallel and enforces communication between them
with an encapsulation. In this case the main process and the encapsulation set have the same name once
more, so that only one renaming is needed.

2.3 ToolBus instantiation

The module NewToolBus is a generic module with parameter Application for instantiation of the ToolBus
with an application.

process module NewTool Bus
begin
parameters
Application
begin
processes
Application
end Application
exports
begin
processes
Tool Bus
end
imports
Tool BusPrimtives
atoms
appl i cati on- shut down
t bc- shut down
t bc- app- shut down
TB- shut down
TB- app- shut down
processes
Tool Bus- Contr ol
Shut down
sets
of atoms
H={
t b-snd-nmsg(tbl, tb2), tb-rec-nmsg(tbl, tb2),
t b-snd-nmsg(tbl, tb2, tb3), tb-rec-nmsg(tbl, tb2, tbh3)
| tblin TBterm tbh2 in TBterm tb3 in TBterm

}
TB-H = {
t b- shut down, tbc-shut down,
t bc- app- shut down, appli cati on-shut down

P = { TB-shut down, TB-app-shutdown }
communications
t b- shut down | tbc-shut down = TB- shut down
t bc- app- shut down | appl i cati on-shutdown = TB- app- shut down
definitions



Tool Bus =
encaps( TB- H,
prio( P > atoms,
Tool Bus- Cont r ol
|| disrupt(

encaps( H, Application),
Shut down

)
)

)
Tool Bus- Control = tbc-shutdown . t bc-app-shut down
Shut down = appl i cati on- shut down
end NewTool Bus

A toolbus application can be described more clearly with Tool Bus = encaps(H, Application).
The remaining code is needed to force a shutdown of al processes that otherwise would be left either
running or in a state of deadlock after a ToolBus shutdown by the application. When an application needs
to shutdown it performs an action t b- shut down which will communicate with the action t bc-
shut down of the Tool Bus- Cont r ol process, which then performsat bc- app- shut down that will
communicate with appl i cat i on- shut down of the Shut down process enforcing a disrupt of the
Appl i cati on process.

In Figure 2 an overview is given of the import relations of the modules in the PSF ToolBus library. The
module Booleans stems from a standard library of PSF.

NewToolBus
ToolBusPrimitives Tool ToolBusPrimitives

ToolBusTypes

NewTool Adapter
Tool Functions Tool AdapterPrimitives

Tool Types

ToolBusFunctions

Figure 2. import graph of the ToolBus library

2.4 Example

As an example of the use of the PSF ToolBus library, the specifi cation is given of an application like the
one shown in Figure 1. In this example, Tool1 can either send a’message’ to Tool2 and then wait for an
acknowledgement from Tool 2, or it can send a’ quit’ after which the application will shutdown.

2.4.1 Specification of the tools

The fi rst module defi nes the data that will be used.
data module Dat a

begin
exports
begin
functions
message : -> Tterm
ack : -> Tterm
quit : ->Tterm
end
imports
Tool Types
end Dat a

A specifi cation of Tool1 and its adapter is then obtained.

process module Tool 1
begin
exports



begin
atoms
snd : Tterm
rec . Tterm
processes
Tool 1
end
imports
Dat a
defi nitions
Tool 1 =
(
snd( nessage) .
sum(d in Tterm rec(d))
+ snd(quit)
) . Tool 1
end Tool 1

process module Adapt er Tool 1
begin
exports
begin
processes
Adapt er Tool 1
end
imports
Tool Functi ons,
Tool AdapterPrimtives,
Tool Tool BusPrimitives
defi nitions
Adapt er Tool 1 =
sum(d in Tterm
t ool adapter-rec(d) .
t ool t b-snd-event (tbtern(d)) .
sum(r in TBterm
t ool t b-rec-ack-event (r) .
t ool adapter-snd(ttern(r))

)
) . Adapt er Tool 1
end Adapt er Tool 1

Tool1 and its adapter are combined by importing NewTool Adapter and binding the parameters.

process module Tool 1Adapt er
begin
imports
NewTool Adapt er {
Tool bound by [
tool -snd -> snd,
tool -rec -> rec,
Tool -> Tool 1
] to Tool 1
Adapt er bound by [
Adapt er -> Adapt er Tool 1
] to Adapt er Tool 1
renamed by [
Tool Adapt er -> Tool 1Adapt er
]

}
end Tool 1Adapt er

We specify Tool2

process module Tool 2
begin
exports
begin
processes
Tool 2
end
imports
Dat a,
Tool Functi ons,



Tool Tool BusPrimtives
defi nitions
Tool 2 =
sum(d in TBterm
tooltb-rec(d) .
t ool t b- snd(t bt er n(ack))
) . Tool 2
end Tool 2

2.4.2 Specification of the ToolBus processes

Some identifi ers are defi ned in order to distinguish the messages sent between ToolBus processes
themselves and between ToolBus processes and their accompanying tools. The lowercase identifi ers (of
type TBterm) are used with the actions t b- snd-nsg and t b-rec-nsg. The first argument of a
message will always be the origin of the message, and the second argument will serve as its destination.

Uppercase identifi ers (of type TBid) are used as tool identifi ers. Strictly speaking these are not necessary,
since there can’'t be any communication with any other tool because of encapsulation. By using them,

however, the actions for communication with a tool will have more similarity to the ones used in the

ToolBus.

data module | D

begin
exports
begin
functions
T1: ->TBid
tl: ->TBterm
T2 : -> TBid
t2: ->TBterm
end
imports
Tool BusTypes
end | D

For both tools a ToolBus process is defi ned. The specifi cations for these processes describe the protocol for
communication between the tools.

process module PTool 1
begin
exports
begin
processes
PTool 1
end
imports
Tool 1Adapt er,
I D,
Tool BusPrimitives,
Tool BusFuncti ons
processes
PT1
defi nitions
PTool 1 = Tool 1Adapter || PT1
PT1 =
sum(d in TBterm
tb-rec-event (T1, d) .

[equal (d, tbtern(quit)) =true]->
t b- shut down
+ [not (equal (d, tbtern{quit))) =true]-> (
tb-snd-msg(tl, t2, d) .
sum(r in TBterm
tb-rec-msg(t2, t1, r) .
t b- snd- ack-event (T1, d
)
)

)
) . PT1
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end PTool 1

process module PTool 2
begin
exports
begin
processes
PTool 2
end
imports
Tool 2,
1 D,
Tool BusPrinitives
processes
PT2
defi nitions
PTool 2 = Tool 2 || PT2
PT2 =
sum(d in TBterm
tb-rec-msg(tl, t2, d) .
t b-snd-eval (T2, d)

) .
sum(r in TBterm
tb-rec-value(T2, r) .
tb-snd-nmsg(t2, t1, r)
) . PT2
end PTool 2

2.4.3 Specification of the ToolBus application
The ToolBus processes are connected with the tools and together they constitute the process Run that
merges the resulting two processes.

process module Tool s
begin
exports
begin
processes
Run
end
imports
NewTool {
Tool bound by [
Tool -> PTool 1
] to PTool 1
renamed by [
TBProcess -> XPTool 1
]
1

NewTool {
Tool bound by [
Tool -> PTool 2

] to PTool 2
renamed by [
TBPr ocess -> XPTool 2
]
}

|1 D,
Tool BusFuncti ons
defi nitions
Run = XPTool 1 || XPTool 2
end Tool s

At this stage renamings are necessary to be able to distinguish the two processes TBProcess.

The process Run is now transformed into a Tool Bus application.

process module App
begin
imports
NewTool Bus {
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Appl i cation bound by [
Application -> Run
] to Tool s
}
end App
The main process of this application is ToolBus. A generated animation is shown in Figure 3, in which
AdapterTool1 just sent amessage it had received from Tool 1, to Tool Bus process PT1.

ToolBus—Control AdapterTooll

/

ooltb—snd-event(T: rm(r )

@

U

"/

e——
—)
\

Figure 3. Animation of the ToolBus specifi cation example

Each box represents an encapsulation of the processes inside the box, and a darker ellipse is a process
which is enabled to perform an action in the given state.

2.4.4 Example as ToolBus application

The application we have specifi ed above has been built as an application consisting of three Tcl/Tk [16]
programs (Tool1, its adapter, and Tool2), and a ToolBus script. A screendump of this application at work
together with the viewer® of the ToolBus is shown in Figure 4. The ToolBus script is shown below. The
processes PT1 and PT2 closely resemble the processes PTool 1 and PTool 2 in our PSF specifi cation.
The execut e actions in the ToolBus script correspond to starting of the adapter for Tool1 and starting of
Tool2 in parallel with the processes PT1 and PT2 respectively.

process PT1 is
let

T1: tool ladapter,
D: term
R: term

in
execut e(t ool ladapter, T1?) .

rec-event (T1, D?) .

if equal (D, quit) then
shut down("")

fi

+ if not (equal (D, quit)) then

snd-nsg(tl, t2, D .
rec-msg(t2, t1, R?) .
snd- ack- event (T1, D)

fi

)
) * delta
endlet

process PT2 is

3. With the viewer it is possible to step through the execution of the ToolBus script and view the variables of the individua
processes inside the Tool Bus.
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Options

process PT1 is

let
T1: tool adapter,
D : term,
R : term

in

[®] toolladapter

(= [ BT

received "nessage” from tool
zending to ToolBus
received ack fron ToolBus

executeitooll adapter, T19) .

{

‘| lzending to tool

rec-event{T1, D% .

if egual(D, quif) then

" shutdown(™) B twll HEH
i
+ if not{equal(D, quif)) then send message I

shd-msgitl, t2, 0 .

rec-msgitz, 11, RY) . it

sno-ack-veni(1, 0) e |
Hane: Stop Go ; Step

PT1 FTz
& tool2 HB

received "nessage”
sending ‘ack”’

ool
tool adapter

Figure 4. Screendump of the example as Tool Bus application with viewer

let
T2: tool 2,
D: term
R: term
in
execute(tool 2, T2?) .
rec-msg(tl, t2, D?) .
snd-eval (T2, eval (D)) .
rec-val ue(T2, value(R?)) .
snd-nsg(t2, t1, R
) * delta
endlet

tool t ool ladapt er is{ command = "w sh-adapter -script tool ladapter.tcl" }
tool t ool 2 is { command = "wi sh-adapter -script tool 2.tcl"” }

toolbus( PT1, PT2)

The actions snd- eval and r ec- val ue differentiate from their equivalents in the PSF specifi cation.
The term eval (D) instead of just D is needed because the interpreter of evaluation requests that a tool

receives from the ToolBus, calls a function with the name it fi nds as function in this term. We could have
used any name instead of eval provided that Tool2 has got a function with that name.

Why the same scheme is needed by the ToolBusfor r ec- val ue isnot known.

The processes in the ToolBus script use iteration and the processes in the PSF specifi cation recursion. In
PSF it is aso possible to use iteration in this case, since the processes have no arguments to hold the current
state. On the other hand, in PSF it is not possible to defi ne variables for storing a global state, so when it is
necessary to hold the current state, this must be done through the arguments of a process and be formalized
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via recursion.

The last line of the ToolBus script starts the processes PT1 and PT2 in parallel. Its equivalent in the PSF
specification is the process Run.

3. Reengineering the PSF compiler

The PSF compiler is reengineered by developing a PSF specification for the compiler. From this
specification we develop a second specification that makes use of the PSF library for the ToolBus, which
will then be used for implementing a version of the compiler coordinated via the ToolBus.

3.1 Description of the compiler

The PSF compiler translates a group of PSF modules to a tool interface language (TIL) that is suitable for
tools to operate on. This compilation takes place in several phases. First each PSF module is parsed and
converted to an MTIL (modular TIL) module. Then each MTIL module is normalized with as a result an
ITIL (intermediate TIL) module. In this normalization step all imports are resolved by combining the
MTIL module with the ITIL modules that correspond to the imported modules. The resulting module no
longer depends on any imports. The main ITIL module is then flattened to TIL. An overview of these
steps is shown in Figure 5.

PSF

mic |

TIL

Figure 5. Translation from PSF to TIL

The implementation of the PSF compiler is build up from several independent components, controlled by a
driver. The compiler driver consist of the following phases.

1. collecting modules
The modules are collected from the files given to the compiler, and missing imported modules are
searched for in the libraries

2. sorting modules
The modules are sorted according to their import relation.
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3. splitting files
Files scanned in phase 1 that contain more than one module are splitted into fi les containing one
module each.

4. parsing (from PSFto MTIL)
All modules that are out of date, that is the destination fi le does not exist, or the source fi le (with
extension .psf) is newer than the destination fi le (with extension .mtil), are parsed.

5. normalizing (from MTIL to ITIL)
All modules that are out of date, that is the destination fi le does not exist, or the source fi le (with
extension .mtil) is newer than the destination fi le (with extension .itil) or one of its imported
modules (ITIL) is newer, are normalized.

6. flattening (from ITIL to TIL)
The main moduleistranslated from ITIL to TIL.

7. converting sorts to sets
The simulator preprocessor isinvoked for converting sorts to sets so that the simulator can deal with
them.

8. checking TRS
The term rewrite system checker is invoked.

3.2 Specification of the compiler

The complete specifi cation of the compiler will not be displayed, but only those parts that are of interest for
turning the compiler into a ToolBus application. The generated animation of the compiler is shown in
Figure 6.

The processes PsfMtil, Mtilltil, Itil Til, SimPP, and TrsCheck are implemented as calls to separate programs.

These are used as components and an abstraction is made from their internal workings in the context of this
specifi cation.

Just to give some insight in the complexity of the specifi cation, the import structure of the modules of the
specifi cation is shown in Figure 7.

3.3 Specification of the compiler as a ToolBus application

Instead of calling the parser (process PsfMtil) and normalizer (process Mtilltil) directly, they should be
called viathe ToolBus. This can be accomplished by specifying an adapter for the compiler, and a ToolBus
script consisting of the ToolBus processes for the compiler, parser and normalizer. The resulting animation
isshown in Figure 8. The specifi cation of the ToolBus processesis as follows.

process module PPSF
begin
exports
begin
processes
PPSF
end
imports
Adapt er PSF,
Tool Functi ons,
Tool BusPrimtives,
Tool BusFuncti ons,
Tool Bus-1D
definitions
PPSF =
Adapt er PSF

sum(args in TBterm
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Figure 6. Generated animation of the compiler

tb-rec-event (PSF, tbternm(ttern{tool - thll)) a
t b- snd- ack-event (PSF, tbtern(ttern{tool - 1)

gs) .
t b-snd- nsg(psf, ntil, args) '

,
)

sur'n(result in TBterm
tb-rec-nsg(ntil, psf, result) .
t b-snd- do(PSF, result)

+ sum(args in TBterm
tb-rec-event (PSF, tbtern(ttern(tool-itil)), args) .
t b- snd- ack-event (PSF, tbtern(ttern{tool -iti
tb-snd-nsg(psf, itil, args)

sufn(result in TBterm
tb-rec-nsg(itil, psf, result) .
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Figure 7. Import graph of the specifi cation of the compiler
t b- snd- do( PSF, result)

+ tb-rec-event(PSF, tbtern(quit)) .

t b- shut down
) * ddta
end PPSF
process module PMTI L
begin
exports
begin
processes
PMTI L
end
imports
MTI L,
Tool BusPrimitives,
Tool Bus-1D
defi nitions
PMII L =
MT1 L
Il
sum(args in TBt erm
tb-rec-nmsg(psf, nmtil, args) .
t b- snd-eval (MII L, args) .
sum(result in TBterm
tb-rec-val ue(MII L, result) .
tb-snd-nmsg(ntil, psf, result)
)
) * ddta
end PMTI L
process module PI TI L
begin
exports
begin

Pprocesses
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PITIL
end
imports
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I TIL,
Tool BusPrimitives,
Tool Bus-1D
defi nitions
PITIL =
ITIL
Il
sum(args in TBt erm
tb-rec-nmsg(psf, itil, args) .
t b-snd-eval (I TIL, args) .
sum(result in TBterm
tb-rec-value(ITIL, result) .
tb-snd-nmsg(itil, psf, result)
)
) * ddta
end PITIL

Theimport graph of the specifi cation of the compiler as ToolBus application is shown in Figure 9.
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Figure 9. Import graph of the specifi cation of the compiler as ToolBus application

3.4 Implementation of the compiler as a ToolBus application

The original implementation of the compiler has been provided with an interface that communicates with
the adapter. The adapter is written in Perl [19] as an extension of the Perl-adapter provided with the
ToolBus. The ToolBus script is derived from the specifi cation of the ToolBus processes. The parser and
normalizer are wrapped with Perl scripts that take care of fetching the exit status of the two tools and
sending this information back as a result.

The actual application is a Perl script that provides an environment with all the right settings and invokes
the Tool Bus, according to the arguments given on the command line.

Although it is not of central interest at this stage, a comparison the performance of the compiler which uses
the ToolBus (tbpsf) compared to the original compiler (psf) is given. The tests consists of a complete
compilation of the specifi cation of the compiler as a ToolBus application consisting of 49 modules and an
update in which only several modules have to be (re)compiled. The tests have been performed on two
different machines, one with only one cpu (M1), and one with four cpu’s (M4). The timings* shown in
Table 1 are averages over severa runs.

It clearly shows that the use of the ToolBus imposes a lot of overhead, largely due to context switching.
Because of the four cpu’s, the confi guration M4 needs fewer context switches, and so has less overhead.

4. The confi gurations were running in normal operation mode, which means that timings are infuenced by other processes and
load on the fi le server, and for that reson are very rough.
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Table 1. Performance of the compilers

M1 M4
complete update | complete update
psf 5.5s 3.0s 5.5s 2.8s
tbpsf 17.2s 5.8s 7.5s 3.3s

4. Software architecture

A software design consist of several levels, each lower one refi ning the design on the higher level. The
highest level is often referred to as the architecture, the organization of the system as a collection of
interacting components. In conventional software engineering processes, the architecture is usually
described rather informally by means of a boxes-and-lines diagram. Following alot of research going onin
this area architectural descriptions are becoming more formal, especially due to the introduction of
architectural description languages (ADL'’s). A specifi cation in an ADL can be refi ned (in severa steps) to
adesign from which an implementation of the system can be built. Here, the reverse has to be done. Given
a specifi cation of adesign in PSF one tries to extract the underlying architecture by means of an appropriate
abstraction. The specifi cation of the architecture will still be in PSF, however such that one may generate
an animation. This corresponds to the boxes-and-lines diagram but it is fully specifi ed.

In the following sections we describe the possibilities for abstraction, andy apply these to extract the
architecture of the compiler.

4.1 Abstraction

In [17], action refi nement is used as a technique for mapping abstract actions onto concrete processes,

called virtual implementation, which is more fully described in [18]. For extracting the architecture from a

specifi cation we use the reverse of action refi nement: action abstraction. One may do this by hiding
internal actions of a component, and applying process algebra rules to combine consecutive internal actions

into asingle (internal) action. But also in this transformation step one has to abstract from implementation

decisions that do not belong at the resulting higher abstract level. Often this can be done by only looking at

the external behavior of a component, its interface.

With parameterized actions, data terms are available which can also be refi ned. At a certain abstract level

one may not care how data is implemented as long as the data is of a particular type. For instance in a
message passing system one may deal with any message as just a message without knowing its content.

Then for the specifi cation at an abstract level one may use the zero-adic function message for the parameter
of an action. In the specifi cation at a lower abstraction level this constant can be refi ned to a more complex
term. Data abstraction is the reverse of this, we then replace complex terms with zero-adic functions. With

such an abstraction, a receiving action of such a term can now use this zero-adic function instead of a
variable coming from a summation construction.

4.2 Architecture of the compiler

In the specifi cation of the compiler the order of compilation stepsislaid down. First all modules are parsed
and then all modules are normalized. Thisis an implementation decision. A module can be normalized as
soon as it has been parsed and all the modules it imports have been normalized. To abstract from this
decision we specify the compiler with the following process.
PSF =
sKip .
(
skip .
snd(do(tternm(tool -ntil), ttern(args))) .
rec(result)
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+ skip .
snd(do(ttern{(tool-itil), tterm(args))) .
rec(result)

) * snd(quit)

Here, we use the abstract dataterms’args and 'result’. This process describes the external behavior of the
compiler. The skip actions are abstractions of internal actions.

The adapter for the compiler is defi ned as follows, where a so the abstract form of the data terms are used.
PSF- Adapter =
(

t ool adapter-rec(do(ttern(tool-ntil), ttermargs))) .

t ool t b-snd-event (tbtern(tterm(tool -ntil)), tbterm(ttern(args))) .
tool t b-rec-ack-event (tbtern(ttern(tool-ntil))) .
tooltb-rec(tbterm(tternm(result)) .

t ool adapter(tterm(result))

+ tool adapter-rec(do(tterm(tool-itil), ttern(args))) .
t ool t b- snd- event(tbtern"(ttern"(tool-|t|I)). tbterm(tterm(args))) .
tool t b-rec-ack-event (tbtern(tterm(tool-itil))) .

tooltb-rec(tbtern(ttern(result)) .
t ool adapter(tterm(result))

*

t ool adapter-rec(quit) .
t ool t b-snd-event (tbtern{(quit))

The parallel composition of PSF' and PSF-Adapter combined with encapsulation of the communication
actionsis equivalent to the following process.

Adapt er PSF’ =

skip .

C
sKip .
t ool adapt er-comm{do(tternm(tool -ntil), ttern(args))) .
t ool t b- snd- event ( PSF, tbtern(ttern(too mil)), args)
tool t b-rec-ack-event (tbtern{(ttern(tool-ntil))) .
tooltb-rec(result) .
adaptertool -comm(tterm(result))

+ skip .
t ool adapt er-comm{do(tternm(tool -itil), ttern{args))) .
t ool t b- snd- event (PSF, tbterm(tterm(tool -ntil)), args)
tool t b-rec-ack-event (tbtern{(ttern(tool-ntil))) .

tooltb-rec(result) .
adaptertool -comm(tterm(result))
*

t ool adapter-com{quit) .
t ool t b- snd- event (tbtern(quit))

)

We hide all internal actions of this process and replace the data terms with a more abstract form.
Adapt er PSF’ ’' =

skip .
(
C
sKip .
skip .
t ool t b- snd- event (PSF, tool -ntil, args)
tool t b-rec-ack-event(tool-ntil) .
tooltb-rec(result) .
skip
+ skip .
skip .
t ool t b- snd- event (PSF, tool -ntil, args)
tool t b-rec-ack-event(tool-ntil) .
tooltb-rec(result) .
skip
) *
skip

t ool t b- snd- event (quit)
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The ToolBus process PPSF with the data terms can be written in an abstract form as follows.

PPSF =
Adapt er PSF ’
I (

(
rec-event (PSF, tool-ntil, args) .
snd- ack- event (PSF, tool-ntil) .
snd- msg(psf, mtil, args) .
rec-nsg(ntil, psf, result) .
snd- do( PSF, result)
rec-event (PSF, tool -itil, args) .
snd- ack- event (PSF, tool -itil) .
snd-nmsg(psf, itil, args) .
b-rec-nsg(itil, psf, result) .

t b- snd- do( PSF, result)
) *
tb-rec-event (PSF, quit) .
t b- shut down

t b-
t b-
t b-
t b-
t b-
t b-
t b-
t b-
t

)

After encapsulation of the communication actions between the tool and its ToolBus process this is
equivalent to the following.

PPSF ’ =
skip .

C
sKip .
skip .
t b-conm event (PSF, tool -ntil, args) .
t b-conm ack-event (PSF, tool -ntil) .
t b- snd- msg(psf, mtil, args) .
tb-rec-msg(ntil, psf, result) .
t b-conm do(PSF, result) .
skip

+ skip .
skip .
t b-conm event (PSF, tool -itil, args) .
t b- conm ack-event (PSF, tool -itil) .
t b- snd-msg(psf, itil, args) .
tb-rec-msg(itil, psf, result) .
t b-conm do(PSF, result) .
skip

skip .

t b-conm event (PSF, quit) .
t b- shut down

)

Hiding all communications between the tool and the Tool Bus process the following result is obtained.

PPSF ' =
sKip .
(
«C
skip .
sKip .
skip .
sKip .
t b-snd-msg(psf, ntil, args) .
tb-rec-msg(nmil, psf, result) .
skip .
sKip
+ sKip .
sKip .
skip .
sKip .
t b-snd-nmsg(psf, itil, args) .
tb-rec-msg(itil, psf, result) .
skip .
skip
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sKip .
skip .
t b- shut down

Applying the z-law x. 7.y = X. y of our process algebrayields

PPSF '’ =
skip .
(
C
sKip .
t b-snd-nmsg(psf, mil, args)
tb-rec-msg(mil, psf, result)
+ sKip .
t b- snd-msg(psf, itil, args) .
tb-rec-nmsg(itil, psf, result)
) *
skip .
t b- shut down
)
The same is done for the processes PMTIL and PITIL.
PMIIL """ =

tb-rec-msg(psf, mtil, args) .
tb-snd-nmsg(mtil, psf, result)

) * ddta
PITIL " =
(
tb-rec-nmsg(psf, itil, args)
tb-snd-msg(itil, psf, result)
) * ddta

The parallel composition of the above three processes describes the intended architecture. An animation of
this architecture is shown in Figure 10.
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Figure 10. Animation of the architecture

With some renaming this can be written in a more suitable form.
Conpiler = PSF || MIIL || ITIL

PSF =
skip .
(
C
sKip .
snd(psf, ntil, args)
rec(ntil, psf, result)
+ skip .
snd(psf, itil, args) .
rec(itil, psf, result)
)*
skip .
shut down
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MTIL =
rec(psf, ntil, args) .
snd(ntil, psf, result)
) * delta
ITIL =
rec(psf, itil, args) .
snd(itil, psf, result)
) * delta

The above PSF text provides a specifi cation of the compiler architecture. The architecture does not enforce
any restrictions on the type of connections used to glue the various components together. Both the original
compiler as well as the reengineered version compiler that makes use of the ToolBus are implementations
of this architecture.

5. Parallel compiler

The parsing and normalization of modules allows for parallelization. Parsing of modules and the
normalization of other modules which aready have been parsed and for which al the modules that they
import have already been normalized, can be donein parallel.

We build a parallel compiler and reuse as much as possible from the specifi cations and implementation of
the reengineered compiler.

5.1 Architecture

Instead of issuing commands for parsing and normalization of modules, the parallel compiler should
compose an information structure that tells which modules have to be parsed and/or normalized and on
which modules they depend that also have to be parsed and/or normalized. The compiler has to send this
structure to a scheduler which decides when modules are to be parsed or normalized.

We give here the specifi cation of the architecture for the parallel compiler.

Conpi | er = PSF || Schedul er || MTIL || I TIL
PSF =
sKip .
C
sKip .
t b- snd- msg(psf, schedul er, conpile-info) .
t b-rec-nmsg(schedul er, psf, result) .
t b- shut down
+ skip .
t b- shut down

)
Schedul er =
t b-rec-nmsg(psf, schedul er, conpile-info) .
«
skip .
t b- snd- msg(schedul er, ntil, args)
+ thb-rec-nsg(ntil, scheduler, result)
+ skip .
t b-snd-nmsg(schedul er, itil, args)
tb-rec-msg(itil, schedul er, result)
) * t b- snd- msg(schedul er, psf, result)
)
MIIL =
tb-rec-nmsg(schedul er, ntil, args) .
t b-snd-nmsg(mil, schedul er, result)
) * delta
ITIL =
t b-rec-msg(schedul er, itil, args) .

tb-snd-nsg(itil, scheduler, result)
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) * delta

An animation of this architecture is shown in Figure 11.

ToolBus—Control

Figure 11. Animation of the architecture

This specifi cation features only one MTIL and one ITIL process, but this scheme allows for more MTIL
and ITIL processesin paralel. Whichever processis free can pick up arequest from the scheduler to parse
or normalize amodule.

Although the specifi cation of the architecture contains separate processes for compiler and scheduler, it
does not imply that these need to be implemented as separate tools. The scheduler can be incorporated in
the compiler, as we show below.

The parallel composition of PSF and Scheduler, is equivalent to the following process.

skip . (
skip . tb-comm nsg(psf, schedul er, conpile-info) .

P * tb-comm nsg(schedul er, psf, result) .tb-shutdown

o
)
Here, P stands for the alternative composition of the send and receive actions in the Scheduler process, and
Qstands for skip . t b- shut down.
Hiding the communications between compiler and scheduler results in the following.
skip . (skip . skip. (P*Q +Q
Applying the z-law Xx. 7.y = X. y gives
Kip . (skip. (P*Q +Q
Applying therulefor iteration x * y = x.(X* y) + y gives
skip.(skip. (P. (P*Q +0Q +0Q
Applying the z-law x.(y + 7. 2) = X.(y + 7. 2) + X. Zin reverse gives
skip.skip. (P. (P*Q +0Q
Applying therule for iteration in reverse and the z-law Xx. 7.y = X. y gives

sip. (P* Q
Replacing P and Qgives us
sKip .
( .
sKip

t b- snd- nsg(schedul er, ntil, args)
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+ tb-rec-nsg(ntil, scheduler, result)
+ sKip .

t b-snd- nsg(schedul er, itil, args)
+ tb-rec-nsg(itil, scheduler, result)
) * skip .
t b- shut down

This looks the same as the compiler process in the architecture of tbpsf but then with the sending and
receiving actions in parallel with the scheduler process in this architecture.
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Figure 12. Generated animation of the parallel compiler as ToolBus application
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5.2 Soecifi cation of the parallel compiler

As we dready mentioned in the previous section, there are several options for the cooperation of the
compiler and the scheduler. A possiblity is to incorporate the scheduler in the compiler and let the
scheduler part take care of the connections with the ToolBus. Here, however, we have chosen to implement
the Scheduler as separate process (tool) to be connected to the ToolBus which gets its information from the
compiler over the ToolBus.

We reuse a large part of the specifi cation of the compiler for the specifi cation of the parallel compiler. The
parsing and normalization phases are replaced by a phase that builds up a Compiler-Information structure.
The ToolBus processes are adjusted and extended to refect the processes in the specifi cation of the
architecture. And the specifi cation of the scheduler is added.

The animation of the parallel compiler is shown in Figure 12. The import graph for the specifi cation of the
parallel compiler is shown in Figure 13.

Figure 13. Import graph of the specifi cation of the parallel compiler

The module Naturals and all its imports and the module Tables stem from the standard library of PSF.
Naturalsis used for counting the MTIL and ITIL processes that have to be started in the specifi cation of the
ToolBus script and Tables is used for the construction of the Compiler-Information structure.

5.3 Implementation of the parallel compiler

The implementation of the compiler has been extended with a phase for building the Compiler-Information
structure which can be invoked instead of the parsing and normalizing phases, controlled by an option. The
scheduler has been implemented in Perl. The actua application is a Perl script that provides an
environment with the right settings and which will invoke the ToolBus according to the arguments given on
the command line. This script also gives the possibility to start the paralel compiler with indicated
numbers of parsing and normalization processes.

In Table 2 the performance of the parallel compiler is shown for several combinations of numbers of
parsing and normalization processes, for the complete compilation of the specifi cation of the compiler as a
ToolBus application.

We see that on confi guration M1 the parallel compiler has a better performance than tbpsf, but it is not
faster than psf. So the communication overhead connected with the ToolBus is too large to overcome on

this confi guration. Parallel compilation on confi guration M4 is faster than psf, although not much, because
the amount of work that can be done in parald is limited by the imposed order of compilation of the

modules due to their import relation.
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Table 2. Performance of the parallel compiler

# processes complete

mtil  itil M1 M4
1 1 128s 6.0s
1 2 11.7s 54s
1 3 11.6s 54s
2 1 129s 6.1s
2 2 12.1s 52s
2 3 119s 48s
2 4 116s 4.9s
3 2 11.7s 5.0s
3 3 116s 4.8s
3 4 116s 4.9s
4 4 116s 4.7s

6. Conclusions

We have made a specifi cation for the compiler in the ToolKit of PSF and a specifi cation of a library of
ToolBus internals, which we used for developing a specifi cation of the compiler with the use of this
ToolBus library for coordination of the components of the compiler. From this specifi cation, we were able
to extract a specifi cation of the architecture of the compiler. Furthermore, we have build a parallel compiler
by developing a specifi cation of the architecture, a refi ned specifi cation, and an implementation, with reuse
of as much as possible of the specifi cation and implementation for the compiler as Tool Bus application.

PSF turned out to be very useful. Its modularization and parameterization features made the use of a
library for the ToolBus internals possible, which makes the specifi cation of a software system with
interacting components much easier. Specifi cation can be done at various abstract levels, as we have shown
by making specifi cations of the compiler close to the implementation level as well as at the architectural
level. The latter indicates that PSF with the ToolBus library can be used asan ADL. The animation facility
coupled with simulation gives a very good view of which processes are involved in certain
communications, much more than a visual inspection of the PSF specifi cation itself can provide. The
animation of the architecture is very useful for explaining the software system to stakeholders who have not
been involved in the software design process.

Although we have used the PSF ToolBus library in our specifi cation, an implementation does not
necessarily need to use the ToolBus. All the connections between processes in the ToolBus part of the
specifi cation can be implemented in numerous ways. These connections are abstract, and the ToolBus
provides an implementation.

In this paper, we have reported on the experience gained through reengineering a compiler that already
consisted of separately implemented components, but one should also acquire experience with starting at
the software architecture level and working towards an implementation. Here lies the use of the PSF
simulator. Thisis acomplex piece of software with integrated graphical user interface implemented in the
X Window System. The user interface could well be implemented as separate components in Tcl/Tk. In
this way, not only the interface can be changed easily, but also a simulator kernel for a different process
algebra notation can be used if that is preferable.
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