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We investigate a free functor con​struction on arbitrary many-sorted algebras, and the ex​tent to which it solves the problem of ﬁnding an initial algebra interpretation for the module algebra of Berg​stra, Heering and Klint.

Sat cito si sat bene.

1. Introduction

The natural tendency to construct algebraic data type speciﬁca​tions piece​wise has led to various high-level views of the semantics of the constructions in​volved. We mention three. The most general of these is the theory of in​sti​tu​tions of Goguen and Burstall [GB]. A very speciﬁc view, on the other hand, is the conception of para​metrized speciﬁcations as free module functors that one ﬁnds in [EM]. A para​metrized speciﬁcation, according to Ehrig and Mahr, is a func​tor F determined by two equational theories A and B; F takes any model M of A to a free model of B, in such a way that a natural homomorphism M exists from M to the A-reduct of FM. (Abstract formulations in the institu​tions framework are known: e.g. cf. [EGRW].) The third view, and the one we will be closely concerned with, is the module algebra of Bergstra, Heering and Klint. In [BHK], they present an algebraic speciﬁcation of some key mo​du​lari​za​tion concepts.

The approach taken by Bergstra c.s. is classical: isolate the con​cepts that you want to analyze, and consider which combinations are equivalent. For ex​am​ple, take ‘module’ and ‘import’. If we have two modules M and N, should it matter if we take N as the body of a combined module and import M, or the other way round? On the ground that modularization is a matter of layout, and mo​dularized speciﬁca​tions are in essence no more than readable presentations of ﬂat or nearly ﬂat speciﬁ​ca​tions, Bergstra c.s. answer no, and state this as an axiom:

M + N = N + M.
(C1)

Having constructed a list of such intuitively plausible statements, they look for es​tab​lished forms of mathematical reality that satisfy them. They come up with vari​ous kinds of classes of many-sorted algebras and ﬁrst order the​o​ries.

These models are perfectly sufﬁcient proof that the axiomatics of [BHK] make sense. Still, they are not the preferred semantics for algebraic speci​ﬁca​tions. With regard to the initial al​gebra semantics, Bergstra c.s. only sug​gested a rather simple-mind​ed derivative of the model class in​ter​pre​ta​tion, which they immedi​ate​ly showed to be unten​able.

To understand the problem, and eventually the solution, we must take a closer look at the import operation. Suppose we have two speciﬁcations, A0, con​sist​ing in the declaration of a sin​gle constant a of sort A, and B0, just de​clar​ing an​other con​stant b of the same sort. Combining the texts of A0 and B0 we get a ﬂat speci​ﬁca​tion A0 + B0, the initial model of which is simply the union, under natural precau​tions, of the initial models of A0 and B0. So there is no se​man​ti​cal problem thus far. Also, if we wanted to modularize A0 + B0, we could import A0 in B0 just as well as the other way round.

The situation is different if instead of B0 we consider a larger speciﬁcation B1 which has an additional unary operation f subject to the axiom f(f(x)) = f(x). The in​i​tial model M of A0 + B1 is obtained by adding elements f(a) and f(b) to the initial model of A0 + B0. Now M can also be constructed from the in​itial model A0 of A0 in a way that follows natu​rally from B1. To wit, add to A0 a constant b and elements fa and fb.

This case seems to furnish a argument for an asymmetric import opera​tion. For, suppose we try to construct the model for A0 + B1 the other way round, starting from the initial model B of B1. The universe of B consists of b and fb; on the strength of A0 we may add a, and that is all. Except of course that we want the operation f to be total, so we add fa, ffa, fffa,… as well, and since A0 says nothing about f, these are all distinct.

The argument loses force, however, as soon as we make the example just a little less simple. Suppose that A1 declares, apart from a, a unary operation g, and re​quires g(g(y)) = y. We shall not get the initial model of A1 + B1 in one step, whether we use B1 on an initial model A of A1, or A1 on B. If we start from B, ap​plying A1 results in an algebra A1 the universe of which consists of distinct ele​ments

a, gfqa,
[image: image1.wmf], b, gfqb,
[image: image2.wmf],

with q ≥ 0, p ≥ 0, k ≥ 1, and mi ≥ 1 for all i from 1 through k. If we now apply B1 to A1, the sequences of several applications of f collapse to one applica​tion. But the re​sult​ing algebra B2 also contains many newly constructed ele​ments, formed by preﬁxing elements inherited from A1 with sequences of g’s of arbitrary length, sepa​rated by single f’s. We can go on forever in this way, and at every step we shall fail to satisfy either A1 or B1. Now note that we have an embedding of B into a reduct of A1; and a homomorphism from A1 into B2; and so on, from every algebra in the chain to the next. Since the axi​oms are enforced with a delay of at most one step, the limit of this chain of ho​momorphisms is a model of A1 + B1. It is easily seen to be initial. And here import is symmetric again, for the alternative chain, starting from A by ap​plying B1, has the same limit. (To be precise: the limits are iso​morphic.)

It is a fair objection that examples such as we have just seen do not arise in the prac​tice of data type speciﬁcation, or if they do, do so by accident. At the in​tro​duc​tion of a sort, all its elements should be introduced; and imports ought to be persis​tent. Still, though it may be of interest to study modularization un​der the assumption that such maxims are adhered to, enforcing them is non​triv​ial in general; and in any case a description of nature unrestrained will be of value.

The construction of a free algebra for the union of equational theories from free constructions for the constituent theories, as exempliﬁed above, is well-known in prin​ci​ple: a form of it is to be found in [Ba]; Pigozzi gave a per​spicu​ous description in [P].

Special attention is due to the atomic step of the construction, from one ele​ment of a chain to the next. It consists in the application of a functor F, deter​mined by a speci​ﬁcation, to an arbitrary algebra A. (This A is arbitrary since any speciﬁcation module may be imported.) From A to FA, or its reduct, runs a natural homomor​phism A — natural in the precise categorical sense that it is a component of a natural transformation from an identity functor to (more or less) F. All this is very much like, and naturally encouraged by, the seman​tics of parametrized speciﬁcation proposed by Ehrig and Mahr. There are a few differences, which it may be as well to point out in advance.

First, we will work in a single category of algebras, which we hope will sim​plify matters enough to make the other complications supportable.

Secondly, Bergstra c.s. reduce parameter passing to import. Here we go on to base import on parameter passing, but unlike Ehrig and Mahr we do not al​low for re​stric​tions on parameters. A priori, the restriction to models of an equa​tional theory  seems odd: we might as well add the equations to the im​port​ing speciﬁcation if we want them to hold in FA. Interestingly, we shall ﬁnd eventually that we do need re​stric​tions of a certain kind. Since these are ne​cessi​tated by a fundamental and some​what controversial problem, we will de​velop our theory without them, to show how far we get and to set off the dif​ﬁculty.

Outline of the sequel. Sections 2-6 are mostly of a preliminary nature. §2 re​calls some notation concerning natural transformations, and a theorem on co​lim​its. §3 is an epitome of the speciﬁcation of signatures and renamings in [BHK]. §4 deﬁnes the syntactical structures — equations and equational theo​ries  arising from signa​tures. §5 lists the axioms of module al​ge​bra, with a de​ri​va​tion of a convenient form of the second export distribution axiom. §6 sketches the elements of many-sorted algebra; in particular, term algebras over arbitrary algebras, and free algebras. The double limit construction leading to the initial model of A1 + B1, sketched in the last of the examples above, is de​vel​oped in sufﬁcient generality in §7. We use it later on to deﬁne the symmet​ric import operation. Export is dealt with in §8. Finally, in §9, we investigate the extent to which these constructions verify the axioms of module algebra. In §10 we evaluate the results and discuss further investigations.

2. Natural transformations

We follow Mac Lane in our notation for natural transformations. For ‘ is a natu​ral trans​formation from F to G’ we write:

: F a·  G.

Natural transformations may be regarded as arrows in two dis​tinct categories.

a) The objects are functors, the domain of : F a·  G is F and the codomain G. The composite




(we do not forbid ourselves to use the ordinary arrow notation) is deﬁned by

(• )(c) = c  c.

An identity element 1F (usually written F) assigns to ev​ery object c in the do​main of F the iden​tity arrow 1Fc (= F(1c)). The category of all func​tors from C to D as ob​tained by this deﬁnition is denoted by DC.

b) The objects are categories, if F and G are functors from C to D the domain of : F a·  G is C and the codomain D, and if : D a E is a natural trans​for​ma​tion from K to L, the composite    is the natural transformation from KF to LG (with do​main C and codomain E) deﬁned by (  )(c) = Gc  K(c) (or equi​va​lent​ly: (  )(c) = L(c)  Fc). The identity arrows are the identi​cal trans​for​ma​tions of the identity functors; thus idc assigns 1c to every ob​ject c of C, and this as​sign​ment is a natu​ral transformation 1C a·  1C.

The two compositions • and  are related by the exchange law:

(• )  (• ) = (  ) • (  ).

The exchange law im​plies among other things that

(• )  F = (• )  (F • F) = (  F) • (  F).

We sometimes omit the composition symbol ; • is never omitted.

A cone is a natural transformation from a constant functor (mapping all ar​rows in its domain to the same identity arrow); a cocone is a cone in the dual cat​e​gory. In our notation for cocones, we simply use ‘x’ to denote a constant func​tor to the ob​ject x: in : L a·  x, the x represents the constant functor with the same domain as L.

We shall use the dual of a theorem from [L, V§3]. Let J, P and X be cate​go​ries. For any object p in P we deﬁne the evaluation functor Ep: XPa X by Ep(H) = H(p) and Ep() = p. By x.(x) we denote the operation that as​signs (x) to every x in some given domain.

Proposition. Suppose that T: J a XP is a functor with the property that for each object p of P the composite Ep  T: J a X has a colimit 
[image: image3.wmf] with colimit cone p. Then there is precisely one functor K: P a X such that for each ob​ject p of P,

(i) K(p) = 
[image: image4.wmf];

(ii) the assignment : j A p.p(j) is a cocone from T to the object K of XP.

Moreover,  is a colimit cone for T.

An ordering of a set X is a binary relation on X that is transitive, reﬂexive and an​ti​symmetric. An order is a set with an ordering. An order I, ≤ is di​rected if for all i, j  I there exists k ≥ i, j. Any order I, ≤ may be viewed as a cat​e​gory; we write i  j for the unique arrow from i to j that exists if i ≤ j. A direct limit is a colimit of a functor from a directed order. 
3. Signatures and renamings

Bergstra c.s. give in [BHK] a complete initial algebra speciﬁcation of sig​na​tures and everything that pertains to them. The essentials are as follows.

Fix a countably inﬁnite set N of names. Let N+ be the set of all ﬁnite non​void sequences of elements of N. The setFd of func​tion de​cla​ra​tions is N N+. The ﬁrst e​le​men​t is the name, the second element the type of the func​tion being declared. As​sume that N  Fd = . A declaration is either a name or a func​tion de​cla​ra​tion.

A signature is a ﬁnite set  of de​cla​ra​tions satisfying

n0, n1…nki(0 < i ≤ k  ni ).

We deﬁne Sas and F as 

A renaming is a transposition of names, or a pair of such a transposition and a type. Renamings act on declarations as follows:

if r = (mn), then for k  N, r·k = r(k), and for d = n0, n1…nkFd, r·d = 
n0, r·n1…r·nk;

if r = (mn), p, then for k  N, r·k = k, and for d = k, qFd, r·d = 
(mn)(k), q if q = p, and d otherwise.

More extensive name changes may be effected by applying several re​nam​ings in suc​cession. In this way, the renamings generate a group of renaming com​plexes, act​ing on declarations by the rules

1·d = d, for the void complex (product of zero renamings) 1 and any decla​ra​tion d;

(r·s)·d = r·(s·d), for any complexes r and s.

Observe that in general the inverse of a product r = r0·…·rn–1 of renamings is the pro​duct in inverse order, rn–1·…·r0.

Let  be a signature and r a renaming complex. We deﬁne  / r as

{d  r·d = d};

 / r is a signature. If  / r = , we say  is ﬁxed under r.

The sort displacement SD(r) of a renaming complex r is the set of all names n such that r·n ≠ n. The function displacement FD(r) is the set of all func​tion de​clara​tions d such that d and r·d have different ﬁrst elements. The dis​placement D(r) is SD(r)  FD(r). Observe that D(r) is ﬁnite, and a signa​ture  is ﬁxed under r if and only if D(r) = .

4. Equations

Equations are constructed, and renamings act on them, as you probably would ex​pect. For the record:

Let Var be a countably inﬁnite set disjoint with N. A variable declaration for a sig​nature  is a pair x, s with x  Var and s  S. Terms of signature  over a set X of variable declarations are con​struc​ted as follows: (i) if x = x, s X, then x is a -term over X, of sort s; (ii) if f = n, s0…sn, and ti, for 1 ≤ i ≤ n, is a -term over X of sort si, then ft1…tn is a -term over X of sort s0.

An equation of signature  is a triple X, s, t of a set X of variable de​clara​tions and -terms s and t over X of the same sort. We typically write an equa​tion X, s, t as s ≈X t. We omit the subscript to ≈ when it does not matter, or variable dependen​cies of s and t are displayed.

A equational theory is a pair A = , A of a signature  and a set A of equa​tions of signature ; the signature A of A is .

The action of renaming complexes is extended to variable declarations, terms, equa​tions and the​o​ries as follows. Let r be a renaming complex. For a vari​able de​cla​ration x = x, s, r·x = x, r·s. For a term t = ft1…tn, r·t = (r·f)(r·t1)…(r·tn). For an equation  = (s ≈ t), r· = (r·s ≈ r·t). For any set Q, we put

r·Q = {r·q | q  Q};

ﬁnally, for an equa​tional theory A = , A, r·A = r·, r·A.

The equational theories form a semilattice with the textual composition op​era​tion + de​ﬁ​ned by , A + , B = , A B.

5. Module algebra

In this section an equational theory bma[eql] of mod​ules is described. It dif​fers from the theory bma[fol] of Bergstra c.s. in the ﬁrst place by the para​me​ter eql: in​stead of ﬁrst order sentences, we have ﬁnite equational theories for constants. Finite equational theories may be equated with universal clo​sures of conjunctions of equa​tions, so eql is a special case of fol. In the sec​ond place, thanks to progress in the mean​time we have been able to replace the one conditional in the old formulation by an equation, thus getting a com​plete​ly equational theory.

We will be concerned with three sorts: the sort sig of signatures (with va​ri​a​bles x, y and z), the sort ren of renamings (variable r) and the sort m of mod​ules (with variables x, y and z). We import a speciﬁcation of SIG and the action of REN upon it. It speciﬁes the following operations:

injections of names and function declarations into SIG; we write the SIG-term resulting from injecting the declaration d as {d}

a constant  of sort sig (the void signature)

sig  sig a sig
(union)

ren · sig a sig
(action of renaming)

sig / ren a sig
(unaffected part of signature)

sig  sig a sig
(intersection)

It implies

(s1)
sig, , ,  is a distributive lattice with least element 
(s2)
(x / r) / r = x / r
(s3)
(x / r)  x = x
(s4)
(x  y) / r = (x / r)  ( y / r)
(s5)
(x  y) / r = (x / r)  ( y / r)

The importing speciﬁcation has

a constant ‹A› of sort m for each ﬁnite equational theory A

and further operations

 : m a sig
(signature)

T : sig a M
(injection)

ren · m a m
(action of renaming)

m + m a m
(combination)

sig  m a m
(export/reduction)

The axioms of bma[eql] are listed below. Unary o​pe​ra​to​rs bind more strong​ly than binary, and  binds more strongly than +. The items marked with º are axi​om schemes. In (R1º), q is any ground term (term in which no variables occur) of sort REN.

(S1º)
‹A› = A
(S2)
Tx = x

(S3)
(X + Y) = X Y
(S4)
(x  Y) = x Y

(S5)
(r·Y) = r·Y
(R1º)
q·‹A› = ‹q·A›

(R2)
r·Tx = T(r·x)
(R3)
r·(X + Y) = r·X +r·Y
(R4)
r·(x  Y) = r·x  r·Y

(R5)
r·(r·X) = X
(R6)
r·((y / r)  X) = (y / r)  X
(C1)
X + Y = Y + X
(C2)
(X + Y) + Z = X + (Y + Z)

(C3)
T(x y) = Tx + Ty

(C4)
X + TX = X

(C5)
X + (y  X) = X

(C6º)
‹A› + ‹B› = ‹A + B›
(E1)
X  X = X

(E2)
x  (y  Z) = (x y)  Z

(E3)
x  (T(y) + Z) = T(x y) + (x  Z)

(E4)
X  (X + Y) = X + X  Y

For terms s and t of sort Sig, s = s t may be abbreviated to s t.

Our axi​oms (S1º), (R6) and (E4) differ from the axioms of the same names in [BHK]; fur​ther​more we have an extra schema (C6º). The deviation in (R6) is a mat​ter of no​tation. The devia​tion in (E4) on the other hand has some substance. Let us call the version of Berg​stra c.s. (E4i) (i for im​plica​tive). We shall prove that against the back​ground of the rest of bma[eql], (E4) and (E4i) are equi​valent. One di​rection is sim​ple: (E4) is a special case of (E4i) [BHK, 3.1(7)].

The common export operator [bhk, §3.3] is deﬁned by

(CE)
X  Y = ((X) (Y))  (X + Y) ,

and the matching export distribution axiom is

(E4*)
X  Y  (Y)  X + (X)  Y.

5.1 Theorem (Van Glabbeek). (E4*) holds in every module algebra.

Proof. We calculate:


X  Y = ((X) (Y))  (X + Y)

by deﬁnition (CE)
= ((X) (Y))  ((X)  (X + Y))
(s1) and (E2)
= ((X) (Y))  (X + (X)  Y)  
(E4)
= ((X) (Y))  (X + ((X) (Y))  Y)
(E1) and (E2)
= ((X) (Y))  X + ((X) (Y))  Y  
(E4) and (C1)
= Y  X + X  Y
by (s1), (E2) and (E1).


In [BHK, §3.3] one ﬁnds a derivation of (E4i) from the other axioms and (E4*). We conclude that (E4i) holds in all module alge​bras:

5.2 Theorem. In every module algebra

(E4i)
X Y x    x  (X + Y) = x  X + x  Y.

For BMA[eql] the normal form theorem of [BHK, §3.2] becomes:

5.3 Proposition. Every ground module expression is equivalent to an ex​pres​sion of the form   ‹A›, for a signature  and an equational theory A.

6. Algebras

We ﬁx notation and terminology with respect to many-sorted algebras, and state a few key theorems.

Let  be a signature. A -algebra (algebra of signature ) is an assign​ment A of a set (sort) sA (sometimes written A(s)) to each s S and a func​tion fA: A(s1) …A(sn) a A(s0) (or A(f), or just f if A is understood) to each f = f, s1,…, sn, s0 in F. In particular, for  =  we have the unique void algebra .

An algebra is a -algebra for some signature . Let A be an al​ge​bra; then A, the signature of A, is the (unique) signature  such that A is a -al​ge​bra. For any sig​nature , the -reduct A of A is the (A)-alge​bra B de​ﬁ​ned by dB = dA for all d A.

Let  be a signature. A -sorted set is an assignment A of a set As (again called a sort) to each s S. In particular, an S-algebra is a -sorted set; with reference to a -algebra A, we habitually use the letter A for AS, the uni​verse or car​rier of A, with As = sA.

Many no​tions and con​struc​tions relating to sets have immediate com​po​nentwise ge​neralisa​tions to sorted sets. For instance, if A and B are both -sorted, then

A B = As Bs | s S,

and A B if and only if As Bs for all s S. A useful related notion is: a -sorted set A, where SS is a reduced sub​set of a -sorted set B,if As Bs for all s S. A sorted function from a -sorted set A to a -sorted set B, with SS, is a family f = fs | s S of functions fs: As a Bs. If f: A a B is a sorted func​tion, and X ≤ A (say X is -sorted) the restriction fX is the family 


[image: image5.wmf]
of restrictions of components of f to sorts of X. The -sorted set X that has Xs =  for all s S will be denoted by . An e​qui​va​lence re​la​tion on an -sorted set X is a fa​mily  = s | s S of e​qui​va​lence rela​tions s on Xs. For example, ∆X, the diagonal of X, associating to s S the set

{x, x| x Xs}

is such a relation. Usually the index will be sup​pressed: given x, y Xs we write x, y, xy or x y (mod ) instead of x, ys and such.
 The equi​​va​len​ce clas​s of x Xs is the set x/s = {y Xs | ysx}.

Let A be an algebra. A subuniverse of A is a A-sorted sub​set of A that is closed under the operations of A. Clearly, an intersection of sub​uni​verses of A is again a sub​uni​verse of A. Hence for any sorted X ≤ A, A has a least sub​uni​verse con​taining X, the subuniverse SgAX generated by X.

Let A and B be algebras. Then A is a subalgebra of B, notation A B, if A is a sub​​uni​verse of B, A = B, and

for all f =f, s1,…, sn, s0  FA, fA = fB|A(s1)…A(sn
In particular, for any X  B, B has a subalgebra SgBX generated by X.

An algebra A is a subreduct of an algebra B, and B a superexpansion of A, nota​tion A ≤ B, if A is a subalgebra of a reduct of B.

The algebra of -terms over a set X of variables is the -algebra T(X) that has for elements of sort s the -terms of sort s over X, with func​tions

t1,…, tn A ft1…tn.

Instead of T({x1,…, xn}) — here we assume that x1,…,xn are all dis​tinct — we write T(x1,…, xn).

This construction can be generalized. Let A be any algebra. Then T(A) is a super​expansion T ≥ A of signature A with the property that if f  A, or x0, …, xn–AnthenfT(x0, …, xn–1)  A, and fT(x0, …, xn–1) = gT(x0, …, xm–1) only if m = n, xi = yi for all i < n, and f = g.

Let A and B be algebras, with A  B. A homomorphism from A to B is a sorted func​tion :AaB that commutes with the operations of A, i.e. such that

(gA(a1,…, an)) = gB((a1),…, (an))

for all g A and all a1,…,an A that come into consideration. If A is an al​ge​bra and : B a A a homomorphism, then (B) is the subalgebra of A|B with universe (B). By our deﬁnitions, if A ≤ C, a homomorphism into A is also a homomor​phism into C. If there exists a homomorphism from B into A, we say A is a succe​dent of B; if A = SgA(B), A is generated by ; and if

A = SgA
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for a set of homomorphisms, A is generated by . Algebras and homo​mor​phisms form a (large) cate​gory, which we shall denote by Alg. In this cate​gory, every homomorphism that generates its codomain is an epimorphism. The full sub​cat​e​gory determined by the -algebras is written Alg; and the full subcategory de​ter​mined by the expansions of -al​gebras Alg().

Let A be a -algebra, X a set of variables for , and a: X a A a sorted func​tion. One can prove that there exists precisely one homomorphism –a: T(X) a A that ex​tends a. Instead of –a(t) one usually writes tA(a) — the in​ter​pretation of t in A un​der the assignment a; in case X = {x1,…, xn} and a(xi) = ai, 1 ≤ i ≤ n, we write tA(a1,…, an). In particular, there exists pre​cise​ly one homomorphism from T() into A. This is easily strengthened to: T() is initial in Alg().

The term operations of an algebra A are the operations tA induced over A by terms over ﬁnitely many variables.

6.1 Proposition. (i) Let A be an algebra and B . The subuniverse of A gen​er​ated by B is the closure of B under the term operations of A. In symbols, SgAB is the sorted set

s A {tA(b)| for some ﬁnite X, t  TA(X)s and b: X a B}.

(ii) Homomorphisms commute with term operations: if : A a D is a homo​mor​phism, and a1,…, an Dom(tA), then

(tA(a1,…, an)) = tD((a1),…, (an)).

Let  = (s ≈X t) be an equation over a signature , and A a -algebra. An in​stance of  in A is a pair sA(a), tA(a) for some assignment a: X a A. We denote the set of all instances of  by A. The equation  is valid in A, no​ta​tion A • , if A  ∆A. For a set E of equations, EA = {A|  E}. The no​ta​tions A • B (for a set B of equa​tions), K •  (for a class K of al​gebras and an equa​tion ) and K • B have their usual meanings. For  as above, we write A • (a) if sA(a) = tA(a).

Corollary. Let : A a D be a homo​mor​phism. Then
(i) A • (a) implies D • (a);
(ii) if A is a model of an equational theory B, then so is (A).

6.2 Deﬁnition. Let B = , B be an equational theory.
(i) An algebra A is a model of B if A  and A • B. The model class de​ter​mined by B, written Mod(B), is the class of all models of B.

Let K be a class of al​ge​bras,  A and F algebras, and : A a F a ho​mo​mor​phism. Then F is free with respect to K o​ver  if for any K  K and homo​mor​phism : A a K, there exists exactly one homomorphism : F a K such that  =   . If more​over F  K, we say F is free in K. We noted above that the algebra T(X) of -terms over X is free in the class Alg of all -algebras, over the injection of X.

Let A be an algebra. A congruence of A is an equivalence relation  on A that re​spects the operations of A, in the sense that

a0, b0,…, an–1, bn–1 implies fA(a0,…, an–1fA(b0,…, bn–1

for all f and all tuples for which fA is deﬁned. Clearly, an intersection of con​gru​ences of A is again a con​gru​ence of A. Hence for any sorted binary re​lation X on A, A has a least con​gru​ence con​taining X, the con​gru​ence CgAX generated by X.

6.3 Deﬁnition. Let B = , B be an equational the​ory, and A an algebra with A. The con​gru​ence induced by B on A is CgABA.

6.4 Deﬁnition (free succedent). Let B = , B be an equational the​ory, and A an ar​bi​trary algebra. Take T = T(A). We de​ﬁne FB(A) as T/CgTBT, and

B,A: A a FB(A)

as the ho​momor​phism that maps every a  A to its equivalence class over CgTBT.

6.5 Proposition. For any equational theory B = , B, FB(A) is free in Mod(B) over B,A.

In particular, writing ,A for the identical embedding of A into T(A), we have
Corollary. For any signature , T(A) is free in Alg() over ,A.

The operation FB on algebras may be extended to an endofunctor of Alg by de​ﬁning FB(), for : A a D, as the unique : FB(A) a FB(D) satis​fy​ing   B,A = B,D  . Then the operation B that assigns to any algebra X the homomor​phism B,X is a natural transformation from 1Alg to FB.

Suppose A = FB(C). We denote the unique : FB(A) a A satisfying   B,A = 1A by B,C; we will show that B is a natural transformation from FB  FB to FB.

6.6 Proposition. Let B be any, F = FB and = B. Then

(i) every component A is an epimorphism;

(ii) F has a left in​verse;

(iii) F = F.

Proof. (i) Let f, g: F(A) a D be homomorphisms such that f  A = g  A. Let x be any element of F(A). Since A generates F(A), there exist a term t over A and a0,…, an–1  A such that x = tFA(A(a0),…, A(an–1)). Hence

f(x) = tD(f(A(a0)),…, f(A(an–1))) =





tD(g(A(a0)),…, g(A(an–1))) = g(x).

So f = g.

(ii) Put  = B. Na​turality is seen as follows. Suppose : A a D. By na​tural​ity of  and by de​ﬁnition of ,

D  FF  FA = D  FD  F = F = F A  FA.
Since FFA is free over FA, this im​pli​es D  FF = F  A.

(iii) By deﬁnition FA is the unique : FA a FFA such that FA  A =   A; so FA = FA.

6.7 Deﬁnition. Let a signature.
(i) Let A be any algebra, and B ≤ A. Put A= A|B. Then  B A is the sub​algebra SgAB of ASgAB.
(ii) Let K be a class of algebras. Then   K = { B A| B ≤ A  K}.

If B is the image of some homomorphism , them we also write   A in​stead of  B A.

6.8 Proposition. Let B = , B be an equational the​ory,  a signature, A an ar​bi​trary algebra, and  = B,A. Then   FB(A) is free in   Mod(B) over .

Proof. Suppose : A a  D E is a homomorphism, and E  Mod(B). Then  is also a homomorphism into E, so there is a unique : FB(A) a E such that    = . The situation is as shown below.

A

 D E  ≤  E







  FB(A) ≤ FB(A)

Let us abbreviate  D E to E, and   FB(A) to F. Let x be an ele​ment of F. Since F is generated by , there exist a (term t and a sequence a0,…, an–1 of ele​ments of A such that x = tF((a0),…, (an–1)). So

(x) = (tF((a0),…, (an–1))) = tE(((a0)),…, ((an–1)))

 = tE((a0),…, (an–1)).

But, since : A a E, (a0),…, (an–1)  E, and A  D, so t is a (D)-term, and hence (x)  E. So |F is a homomorphism from F in​to E. It is uniquely determined by the condition |F   = , since  gen​er​ates F.


Below we shall use the operation  _ as a basis for the semantics of ex​port.

6.9 Definition. Let r be a renaming, and A an algebra. Then r*(A) is the al​ge​bra de​ﬁned by: dr*(A) = (r·d)A, for d A.
If we identify r with its action on names and function declarations, then r*(A) = A  r. We generalize to complexes by

(i) 1*(A) = A;

(ii) (q·r)*(A) = q*(r*(A)).

In this way, we obtain dr*(A) = (r–1·d)A, for d r·A, and r*(A) = A  r–1.

6.10 Proposition. (a) (r*(A)) = r·A.
(b) For any term t over r·A, tr*(A) = (r–1·t)A.
(c) For any term s over A, (r·s)r*(A) = sA.
(d) For any equation  over A, A •  if and only if r*(A) • r·.

Proof of (b). Use induction on terms.

If t is a variable t, r·s, with s  SA, r–1·t = t, s. Since (r·s)r*(A) = sA, the iden​tity functions tr*(A) and (r–1·t)A have the same domain.

If t = ft1…tn, and a is a ﬁtting assignment,

tr*(A)(a) = fr*(A)(t1r*(A)(a),…, tnr*(A)(a))

= (r–1·f)A((r–1·t1)A(a),…, (r–1·tn)A(a)) = (r–1·t)A(a),

by induction hypothesis and the relation dr*(A) = (r–1·d)A.


Let  be a homomorphism from A to B. Deﬁne a (r·A)-sorted mapping r*() by: (r*())s = r·s. Then r*() is a ho​mo​mor​phism from r*(A) to r*(B); and r* is an automorphism of Alg. Indeed, r*  r* = 1. A fortiori, a re​nam​ing complex r de​ter​mines an automorphism r* of Alg, not necessarily in​vo​lu​tive, turning : A a B into an (r·A)-sorted map​ping r*() with (r*())s = r-1·s.

Direct limits. Let I = I, ≤ be a directed order, and L: I a Alg a functor. Write Ai in​stead of Li, and ij for L(i  j). Assume i(Li) is ﬁnite. It is well known (it may be found in [MeiT]) that the direct limit of L may be construc​ted as follows. First take the disjoint union U of the universes Ai; that is, for any sort symbol s belong​ing to the signature of any algebra Ai, Us is the dis​joint union

+{sAi| s Ai}.

Now the sorted relation  deﬁned on U by

a1  a2 () iff there are i1, i2, j  I such that 
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is an equivalence relation. Put A = U/. Expand A to an algebra A of signa​ture  = {Ai| i  I}: if f = n, s0…sm, and ak  Ask, for 1 ≤ k ≤ m, take an in​dex i such that Ai contains a representative uk  ak for every k from 1 to m, and put

fA(a1,…, an) = fAi(u1,…, un)/.

Finally, deﬁne i: Ai a A, for each i  I, by i(u) = u/. Then every i is a ho​mo​mor​phism, and , that is, the assignment i A i, is a colimit cone.

Equations are preserved under direct limits. Indeed,

6.11 Lemma. Let I = I, ≤ be a directed order, L: I a Alg a functor, with di​rect limit A, and  an equation. If for every i  I there exists j ≥ i such that Li • , then A • .

Below we shall need a rather special lemma about direct limits of sub​re​ducts.

6.12 Lemma. Let I = I, ≤ be a directed order; L, M, N: I a Alg functors; and  a signature, such that for every i  I, Mi =  Li Ni. Let C be a direct limit of N. Then there are direct limits A of L and B of M such that

B =  A C.

Proof. Construct limits of L, M and N in the way described above. The limits of L and M have canonical embeddings into the limit of N; modulo these em​bed​dings, the limits stand to each other as required.


7. Enhancements

Modules will be interpreted as isomorphism classes of constructions of al​ge​bras of a certain kind. We shall see that such constructions, in as far as they do not de​pend on a notion of sig​na​ture, may be deﬁned in any category. This abs​tract descrip​tion is suf​ﬁcient for a deﬁnition of import. The abstraction will help to keep things as sim​ple as pos​si​ble.

7.1 Deﬁnition. An enhancement in a category C is a natural trans​for​ma​tion  from the identity func​tor 1C to an endofunctor F of C that preserves direct limits, such that

(i) every compo​nent of  is an epimorphism,

(ii) F has a left inverse for •.

The following lemma shows that an enhancement is a simple sort of monad.

7.2 Lemma. Let C be a category, and : 1C a·  F an enhancement in C; let  be a left in​verse of F. Then

(a) F = F;

(b) is also a right inverse of F, so FF F;

(c) F = F.

Proof. (a) Let c be an object of C. Since  is natural, Fcc = Fcc. But c is an epimorphism, hence Fc = Fc.

(b) Suppose • F = F. Then

F •  = F• FF
by naturality of  (cf. diagram 7.1)

= F• FF = F  (• F) = FF.
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(c) By repeated use of the exchange law:

F = F• FFF = F• ((F • )  F) = F• FF • F = F• FF • F

= (F (• F)) • F = FF • F = F .

7.3 Examples

7.3.1. In any category C, the identical transformation 1C: 1C a·  1C is an en​hance​ment.

7.3.2. Let  be a signature. Then T is an en​do​func​tor of Alg, and  is a natu​ral trans​formation from the identity functor to T, if we use the Corollary to 6.5 to de​ﬁne T(f), for f: A a B, to be the unique g: T(A) a T(B) such that g  ,A = ,B  f. Since for any algebra A, ,A generates T(A), the com​po​nents of  are epimorphisms. Moreover, T(T(A)) = T(A), so   T trivially has a left in​verse.

Let I = , ≤ be a directed order, and L: I a Alg a functor. Sup​pose : L a·  A is a co​li​mit cone. We have a cocone T: TL a·  TA; let : TL a·  D be an​other. We are go​ing to show that  factorizes over T, and that it does so in ex​act​ly one way.

Observe that  • L is a cocone from L to D. Since  is a colimit cone, there is a unique h: A a D such that h •  =  • L. Now observe that D  ; so by the Corol​lary to 6.5, there is a unique homomorphism k: TA a D such that k  ,A = h. We want to show that k uniquely satis​ﬁes the condition g • F = .

Since  is natural, for any i I,

k  Fi  ,Li = k  ,A  i = h  i = i   ,Li.

Since the compo​nents of , hence in particular those of L, are epimor​phisms, we conclude k  Fi = i. As for unicity, if k • F = , then since  is natural, k • ,A •  = k • F • L =   • L = h • . Since  is a limit cone, it follows that k  ,A = h. Since h factorizes unique​ly over ,A, k = k.

We have shown that T preserves limits; so  is an enhancement.

7.3.3. Let B = , B be an equational theory, F = FB and = B. Then F is an en​do​func​tor of Alg, and :1 a·   F, as noted under Proposition 6.5. More​over, the com​po​nents of  are epimorphisms, and F has a left in​verse, by Pro​position 6.6.

As before, let I = , ≤ be a directed order, and L: I a Alg a functor, with a co​li​mit cone : L a·  A. Let : FL a•  D be a cocone. We shall prove that  fac​torizes uniquely over F: FL a·  FA.

Again,  • L factorizes uniquely over the colimit cone , say h •  =  • L. Now the subre​duct h(A) ≤ D  is a model of B. For, let (x0,…, xn–1) be any axiom of B, and d0,…, dn–1 a se​quence of elements of h(A) of the type of x0,…, xn–1. Since h •  =  • L, every dj (j < n) belongs to the range of some i. Therefore, since I is directed, there exists i0  I such that d0,…, dn–1 all belong to the range of i0. Now FL(i0) is a model of B; it fol​lows that D • (d0,…, dn–1). So h(A) is a model of B. By Pro​position 6.5, h factorizes uniquely over A, say as g  A. We want to show that g uniquely satis​ﬁes the condition g • F = .

Since  is natural, g • F • L = g • A •  = h •  =   • L. Since the com​po​nents of , hence in particular those of L, are epimorphisms, we con​clude g • F = . Unicity too is proved as in the previous example.

So FB preserves limits; and B is an enhancement.

7.3.4. Let C be a category, and : 1C a·   F an enhancement in C. Let F2 = F  F, 2 =    etc. Then 2: 1C a·   F2 is an enhancement. In particular, if  is the inver​se of F,

2 • F22 = 2 • (F F) = (• F)  (• F) = F2.

7.3.5. Let r be a renaming. Since r* is an automorphism of Alg, r* preserves di​rect lim​its. Suppose : 1Alg a·   F is an enhancement in Alg. Deﬁne r·X as r*  X  r*, for a func​tor or natu​ral transformation X. Then r·F, as a com​po​si​tion of limit-pre​serv​ing func​tors, pre​serves direct limits. Furthermore r*  1Alg  r* = 1Alg, so r·: 1Alg a·  r·F. Again, since r* is an iso​mor​phism, every component of r· is an epimorphism.

By easy calculations, renaming may be seen to distribute over composition:

Proposition. Let r be a renaming, and X, Y properly composable func​tors or natu​ral transformations in Alg. Let  be either  or •; then

r·(X Y) = (r·X) (r·Y).

In particular, if  is the left inverse of F,

(r·) • ((r·F)  (r·)) = r·(• F) = r·1 = 1.

So r· is an enhancement. A fortiori, by a renaming complex r, we get an en​hance​ment r·.

7.4 Deﬁnition. Let : 1C a·   F and : 1C a·   G be enhancements in a catego​ry C. A mor​phism from  to  is a na​tural trans​formation : F a·  G with the prop​erty that  = • .

The ca​te​go​ry of enhancements in a category C obtained in this way — a full sub​cate​gory of the comma category 1 CC — will be de​noted by Enh(C).

7.5 Examples. Let : 1C a·   F be an enhancement.

7.5.1. Observe that  is a morphism from 1Cto  in Enh(C). It is evident that  is the only mor​phism from 1 to . So 1C is initial in Enh(C).

7.5.2. Let : F2 a·  F be the inverse transformation of F. Then

: F2, 2 a F, ,

for 2 = (F • )  (• 1C) = F• , hence • 2 = • F•  = F •  = . Indeed,  and F are inverses in Enh(C).

7.5.3. In Enh(Alg),  ,.

The naturality requirement in 7.4 actually comes for free. 

7.6 Lemma. Let : 1C a·   F and : 1C a·   G be enhancements in a category C, and  an as​sign​ment of an arrow : Fc a Gcto every object c of C such that for every c,  =  . Then  is a mor​phism from  to .

Proof. Let f: a a b be any arrow in C. Then since  and  are natural,

b Ff  a = b  b f = b f = Gf  a = Gf  a a.

Since a is an epimorphism, this implies b Ff = Gf  a.


7.7 Theorem. The action of a renaming on enhancement morphisms is an in​vo​lution of Enh(Alg).

Proof. Let r be a renaming. We saw already that the action of r maps en​hance​ments to enhancements. Since the action distributes over composition (7.3.5), :  a  im​plies r·: r· a r·. It is easy to see that r·1 = 1r·, and that r·r· = .


7.8 Proposition. Let r be a renaming.

(i) For any signature , r·  r·.

(ii) Let A = , A be an equational theory. Then r·A  r·A.

Proof. (i) We must construct a natural isomorphism : r·T a·  Tr· with the addi​tional property that  • r· = r·.

Let B be any algebra. Since ,r*(B) is a homomorphism from r*(B) to T(r*(B)), and r* is a functor, (r·)B = r*(,r*(B)) is a homomorphism from B = r*(r*(B)) to (r·T)(B) = r*(T(r*(B))). Since T(r*(B))) , by Pro​position 6.10, r*(T(r*(B)))) r·. So by the Corollary to 6.5, there is a unique homo​mor​phism B: Tr·(B) a r*(T(r*(B))) such that B  r·,B = (r·)B. Similarly, r*(r·,B) is a homomorphism from r*(B) to r*(Tr·(B)), and r*(Tr·(B)) , so there is a unique homomorphism B: T(r*(B)) a r*(Tr·(B)) such that B  ,r*(B) = r*(r·,B). Take B = r*(B). Now B  B  r·,B = B  (r·)B = r*(B  ,r*(B)) = r·,B; so by unique fac​torization over r·,B, B  B = 1. Since r* is an iso​mor​phism of Alg, by the same token B  B = 1. By Lemma 6, the assignment : B A B is a natural trans​for​ma​tion from r·T to Tr·.

(ii) The construction of a natural isomorphism : r·FA a·  Fr·A such that  • r·A = r·A is quite similar. For any algebra B, (r·A)B = r*(A,r*(B)) is a ho​mo​morphism from B = r*(r*(B)) to (r·FA)(B) = r*(FA(r*(B))). Since FA(r*(B))  Mod(A) (Pro​position 6.5), by Pro​position 6.10, r*(FA(r*(B)))  Mod(r·A). Hence by 6.5 again, there is a unique homomorphism B: Fr·A(B) a r*(FA(r*(B))) such that B  r·A,B = (r·A)B.  Likewise,

r*(r·A,B): r*(B) a r*(Fr·A(B))  Mod(A),

so there is a unique B: FA(r*(B)) a r*(Fr·A(B)) such that B  A,r*(B) = r*(r·A,B). Take B = r*(B).

Corollary. Let r be a renaming complex.

(i) For any signature , r·  r·.

(ii) Let A = , A be an equational theory. Then r·A  r·A.

7.9 Deﬁnition. Let : 1C a·  F and : 1C a·  G be enhancements in a catego​ry C.  Let P  {0,1}* be the set of those sequences of zeroes and ones in which ad​join​ing digits are distinct, and P the or​de​r P, ≤ in which p < q if and only if |p| < |q| (see Dia​gram 7.2; the symbol  denotes the empty sequence). 


0 a 10 a 010 a 1010 a 01010 a 101010 a 0101010 a …









1 a 01 a 101 a 0101 a 10101 a 010101 a 1010101 a …  (7.2)

 Fix an object c in C. For any p P we deﬁne an object cp in C as follows:

c = c; cp = Fcp, cp = Gcp.

If q covers p in P (notation q ›– p), then we deﬁne an arrow pq (actually pq(c), but for the time being we can suppress the dependence on c) in C as fol​lows:

if q = 1p, then pq = (cp); if q = 0p, then pq = (cp);

if p = 0r and q = 0s, then pq = F(r,s); if p = 1r and q = 1s, then

pq = G(r,s).

We now check that the assignment of pq to p  q determines a functor from P to C. Suppose p, q, r, s P; q and r cover p, and s covers q and r. We want to show that qs  pq = rs  pr.

Proof. There are two kinds of cases, occurring in diagram 7.2 as par​allelo​grams and tri​angles re​spec​tively.

(Parallelograms) Let q = 1p and s = 1r; then

qs  pq = Gpr  (cp) = (cr)  pr = rs  pr
by naturality of . The case of leading zeroes is symmetric.

(Triangles) There are a number of symmetric cases; consider the situation in dia​gram 7.3.

 
0
F  
10   GF
010 FGF
1010 
01010 a  …


      
F
GF
  GFG


 


    
G
FG



(7.3)
1   G 
01 FG
101 
0101  
10101 a …
       
First take p = 0, q = 10 (so r = 01 and s = 010). Then since parallelograms com​mute,

rs  pr  c = FGc  c1  c = c10  Gc  c = qs  pq  c;

since c is an epimorphism, we conclude rs  pr = qs  pq. Likewise with 0 and 1 in​terchanged. For the rest we use induction on the length of p. Assume p = 1t, q = 0p, s = 1q, and r = 1u. Then since parallelograms com​mute,

rs  pr  tp = rs  ur  tu = qs  uq  tu;

since t is shorter than p,

qs  uq  tu = qs  pq  tp;

and since tp is a component of , hence an epimorphism, rs  pr = qs  pq.

We conclude that we may deﬁne pq for arbitrary p < q as a com​position


[image: image10.wmf],

with p0 = p, pn = q and pk –‹ pk+1 for 0 ≤ k < n; we put pp = 1cp. Then the as​sign​​ment of pq to p  q is a functor R(, , c) (Rc when  and  are under​stood) from P to C. Note in particular that p may be constructed as a com​po​sition of com​ponents of  and , hence is an epimorphism.

For f: a a b in C and p P, still assuming  and  as in 7.9, we deﬁne fp: Ra(p) a Rb(p) by induction on p: f= f, f0p = Ffp, f1p = Gfp. This deter​mines a func​tor L(, , p), or Lp for short, from C to C. Observe that Lp(c) = Rc(p), for any ob​ject c of C.

7.10 Lemma. Let : 1C a·  F and : 1C a·  G be enhancements in a catego​ry C, and P the order deﬁned in 7.9. There exists a bifunctor S =

S(, ): C  P a C,

such that for any objects c in C and p in the category determined by P, and ar​rows f in C and p  q in P, S(f, p) = Lp(f) and S(c, p  q) = Rc(p  q).

Proof. By [L, II§3, Prop. 1] we must show that for any p, q  P and f: a a b in C,

Rb(p  q)  Lp(f) = Lq(f)  Ra(p  q);
(*)

then S(f, p  q) will equal either side of (*). It will sufﬁce to prove (*) for q ›– p. If q = 0p,

Rb(p  q)  Lp(f) = bp  Lp(f) = FLp(f)  ap = Lq(f)  Ra(p  q)

by naturality of ; likewise if q = 1p. For the case that q = 0s and p = 0r, and sym​met​ri​cally q = 1s and p = 1r, we use in​duction on r. If r = , s = 1,

Rb(p  q)  Lp(f) = Fb  Ff = F(b  f) = F(Gf  a) = Lq(f)  Ra(p  q)

by naturality of . Induction step:

Rb(p  q)  Lp(f) = FRb(r  s)  FLr(f) = F(Rb(r  s)  Lr(f))

= F(Ls(f)  Ra(r  s))
by induction hypothesis

= Lq(f)  Ra(p  q).



Let  and  be as above, I a directed order, M: I a C a func​tor, and : M a·   c a co​limit cone. Consider the composite Lp  M: I a C (where Lp = L(, , p)). We want to prove that Lp  M has colimit Lp(c).

We proceed inductively. For a start, L  M = M and L(c) = c; so , which is the same as L  , is a colimit cone for L  M. Now take p = 0q, and sup​pose Lq  : Lq  M a·  Lq(c) is a co​li​mit cone. Since for all i I, Lp(Mi) = F(Lq(Mi)), and like​wise for arrows i  j in I, we have

Lp  M = F  Lq  M.

But F pre​serves di​rect lim​its, so Lp   = F  Lq  : Lp  M a·  Lp(c) is a co​limit cone. Likewise for p = 1q.

The enhancements  and  determine a ‘braid functor’  # : C a CP, by

( # )(f)(p  q) = S(, )(f, p  q).

With M as above, put T = ( # )  M, and consider the composite Ep  T with the evalua​tion functor, for any p  P. Since Ep  T = Lp  M, Lp   is a co​limit cone for Ep  T. So by the Proposition in §2, there is a unique functor K: P a C such that for every p  P, K(p) = Lp(c), and the assignment

: i A p. Lp(i)

is a co​limit cone from T to the object K of CP. Since the category P is deter​mined by an order, and K coincides with ( # )(c) on objects, K = ( # )(c) over all. More​over, (i)(p) = S(i, p) = ( # )(i)(p), so  = ( # )  . We have proved:

7.11 Proposition. If  and  are enhancements in a cate​gory C, then  #  pre​serves direct limits.

7.12 Deﬁnition. Let i: 1C a·  Fi and i: 1C a·  Gi (i = 0, 1) be en​hance​ments in a cat​e​gory C, and : 0 a 1 and : 0a 1. Let S0 = S(0, 0) and S1 = S(1, 1) be deﬁned as in the proof of Lemma 7.10. We deﬁne an as​sign​ment = S(of arrows in C to pairs c, pof an object of C and an ele​ment of P as fol​lows:

(c, ) = 1c;

(c, 0q) = F1((c, q))  (S0(c, q));

(c, 1q) = G1((c, q))  (S0(c, q)).

We now show that  is a natural transformation from S0 to S1. It sufﬁces to prove  natu​ral​ity in p and c separately [L, II§3, Prop. 2], i.e., to prove that for any object c of C,

(c, -) = p.(c, p): R(0, 0, c) a·  R(1, 1, c),

and for any p  P,

(-, p) = c.(c, p): L(0, 0, p) a·  L(1, 1, p).

Naturality in p: We consider two representative cases.

— (c, 0q)  S0(c, q  0q) = (c, 0q)  0(S0(c, q))
by the deﬁnition of S0

= F1((c, q))  (S0(c, q))  0(S0(c, q))
by the deﬁnition of 

= F1((c, q))  1(S0(c, q))
since  • 0 = 1

= 1(S1(c, q))  (c, q)
since 1 is natural

= S1(c, q  0q)  (c, q)
by the deﬁnition of S1.

— Suppose 0q ›- 0p, and (c, q)  S0(c, p  q) = S1(c, p  q)  (c, p). Then

(c, 0q)  S0(c, 0p  0q) = F1((c, q))  (S0(c, q))  F0(S0(c, p  q))






by the deﬁnitions of  and S0

= (S1(c, q))  F0((c, q))  F0(S0(c, p  q))
since : F0 a·  F1

= (S1(c, q))  F0((c, q)  S0(c, p  q))

= F1((c, q)  S0(c, p  q))  (S0(c, p))
since : F0 a·  F1

= F1(S1(c, p  q)  (c, p))  (S0(c, p))
by supposition

= F1(S1(c, p  q))  F1((c, p))  (S0(c, p))

= S1(c, 0p  0q)  (c, 0p) by the deﬁnitions of S1 and .

By composing such cases, we see that (c, -) is natural.

Naturality in c: suppose g: a a b in C. We must show that for every p P,

(*)
(b, p)  S0(g, p) = S1(g, p)  (a, p).

For p = , this is trivial. For the rest we consider one representative case. As​sume that (*) holds for a certain p P; say that 0p P as well. Then

(b, 0p)  S0(g, 0p) = F1((b, p))  (S0(b, p))  F0(S0(g, p))
by deﬁnition

= F1((b, p))  F1(S0(g, p))  (S0(a, p))
since : F0 a·  F1

= F1((b, p)  S0(g, p))  (S0(a, p))

= F1(S1(g, p)  (a, p))  (S0(a, p))
by assumption

= F1(S1(g, p))  F1((a, p))  (S0(a, p))

= S1(g, 0p)  (a, 0p)
by deﬁnition.
— We have established that  is a natural transformation from S0 to S1.

Now let i: 1C a·  Fi and i: 1C a·  Gi (i = 0, 1, 2) be enhancements in C, and : 0 a 1, : 0a 1, : 1a 2 and : 1a 2 morphisms of Enh(C). We are going to show that S(, ) • S(, ) = S(• ,  • ), i.e.

(*)
S(, )(c, p)  S(, )(c, p) = S(• ,  • )(c, p)
for each object c in C and p P. For p =  this is trivial. Next suppose (*) holds for a certain p P; and say that 0p P. As before, we abbreviate S(i, i) to Si. Then by naturality of ,

S(, )(c, 0p)  S(, )(c, 0p) =


F2(S(, )(c, p))  (S1(c, p))  F1(S(, )(c, p))  (S0(c, p))

= F2(S(, )(c, p))  F2(S(, )(c, p))  (S0(c, p))  (S0(c, p))

= F2(S(• , • )(c, p))  (• )(S0(c, p))

= S(• , • )(c, 0p).

The case of 1p is similar.

We conclude:

7.13 Lemma. The operation S deﬁned above is a functor from 







Enh(C) Enh(C) to CPC.

Let  = :CPC a (CP)C and  = :CPC a (CC)P be the stan​dard isomorphisms (natural in P and C). The braid functor  #  of Pro​po​sition 11, for enhancements  and  in C, is (S(, )); we write  *  to de​note its twin (S(, )). For morphisms : 0 a 1 and : 0a 1 we deﬁne:

 #  = (S(, ));  *  = (S(, )).

Corollary. The operations # and * are functors from Enh(C) Enh(C), to (CP)C and (CC)P respectively.

For the rest if this section, we assume that all functors ( # )(c) have co​limits.
For every object c, choose a co​li​mit Imp(, )(c) of ( # )(c); and for f: a a b in C, let Imp(, )(f) be the unique g: Imp(, )(a) a Imp(, )(b) such that for the colimit cones (a): ( # )(a) a·  Imp(, )(a) and (b): ( # )(b) a·  Imp(, )(b), g • (a) = (b)• ( # )(f). Then Imp(, ) is a func​tor from C to C, and the as​sign​ment p A p(a) is a colimit cone from  *  to Imp(, ). Fur​ther​more, if : 0 a 1 and : 0 a 1 are en​hance​ment mor​phisms, and we have co​li​mit cones : 0 * 0 a·   Imp(0, 0) and  : 1 * 1 a·   Imp(1, 1), we de​ﬁ​ne +  to be the unique :

Imp(0, 0) a Imp(1, 1)

such that  •  = • (* ). We conclude:

7.14 Lemma. The assignment

,  A + 
is a functor from Enh(C)  Enh(C) to CC.
Let : 1C a·  F and : 1C a·  G be enhancements in C. Let  be the co​li​mit cone from  *  to Imp(, ). As was noted above (7.3.1), 1C is an en​hance​ment, and (7.5.1) : 1C a  and : 1C a . It is easy to see that (1C * 1C)(f) = 1C for each arrow f of P, and we may take Imp(1C, 1C) = 1C. As a con​sequence we have

(1)
+ : 1C a·  Imp(, ),

and (+ ) • p.1C = • (* ). Applying this to  P we obtain:

+  = • (* ) = .

Now let c be an object of C, and suppose f  (c) = g  (c). Take any p  P; (c) = p(c)  p(c), so we get f  p(c)  p(c) = g  p(c)  p(c). But, as noted a little above Lemma 10, p(c) is an epimorphism; hence f  p(c) = g  p(c). Since p was arbitrary, and (c) is a colimit cone, we get that f = g; and that (c) is an epi​mor​phism. Generaliz​ing:

(2)
the components of +  are epimorphisms.

Let I be a directed order, L: I a C a functor, and : L a·  c a co​limit cone. Let : Imp(, )  L a·  d be any cocone. We want to prove that there is pre​cise​ly one f: Imp(, )(c) a d such that  = f • Imp(, ).

By 7.11, ( # )(c) is a co​li​mit of ( # )L, with colimit cone ( # )  . For every i  I we have a colimit cone

i: ( # )(Li) a·  Imp(, )(Li).

Composing these cocones with the components of , we obtain a cocone

• : ( # )  L a·  d.

This factors uniquely over ( # )  , say •  =  • ( # ). Let  be the co​​li​mit cone from ( # )(c) to Imp(, )(c). There is a unique f:

Imp(, )(c) a d
such that f • = . Moreover, by the deﬁnition of Imp(, ) we have, for all i I and p P,

(• ( # ))ip = (• ( # )(i))p = p  ( # )(i)p

= Imp(, )(i) ip = (Imp(, )(i) • i)p = ((Imp(, ) ) • )ip.


 ( # )L
( # )


( # )(c)







Imp(, )L
Imp(, )

Imp(, )(c)
f
 d    (7.4)
So diagram 7.4 commutes, hence f • Imp(, )•  = • ( # ) = • ; unique fac​to​ri​za​tion over the colimit cones i then implies that f • Imp(, ) = . The last iden​tity de​ter​mines f uniquely: if

g • Imp(, )•  = • ( # ),

then g • • ( # ) = • ( # ), so g • = , so g = f. We have proved:

(3)
Imp(, ) preserves direct limits.

7.15 Proposition. If  and  are enhancements in C, then so is  + .

Proof. Put M := Imp(, ). By Lemma 14, M is an endofunctor of C. By (1), +  is a natural trans​formation from 1C to M, and by (2) all its components are epimor​phisms. By (3), M preserves direct limits. It remains to show that (+ ) M is in​vertible. It is sufﬁcient to prove that all its components are iso​morphisms.

Take an arbitrary object c of C. We begin by showing

(4)
Mc: M(c)  FM(c).

Let : ( # )(c) a·  M(c) be the colimit cone, and cp = ( # )(c)(p), as be​fore. Let 0P be the substructure of P on the ele​ments starting with 0, and J the em​bed​ding of the category determined by 0P into the category de​ter​mined by P. It is easy to see (cf. [L, IX§3]; 0P is coﬁnal in P, hence J is ﬁnal) that

 = 0P: ( # )(c)  J a·  M(c)

is a colimit cone. Since F preserves di​rected limits, so is

F: F  ( # )(c)  J a·  FM(c).

Now for any p  P, Mc  p = Fp  (cp), since  is natural. Moreover, if p be​gins with 0, (cp) is an isomorphism; hence Mc is an isomorphism.


cp
p
M(c)





Fcp
Fp
FM(c)

By a symmetric argument,

(5)
Mc: M(c)  GM(c).

Put d = M(c); let : ( # )(d) a·  M(d) be the colimit cone, dp = ( # )(d)(p), and pq = ( # )(d)(p  q). For any p  P,

(*)


( + )d  1d =  = p  p .

But every arrow p is an isomorphism, since by (4) and (5) (cf. Diagram 7.3) it may be obtained as a composition of isomorphisms. So by the con​nec​tion between the colimit cones 1d: (1C # 1C)(d) a·  d and  exhibited in (*), ( + )d is an iso​mor​phism.


dp
p
M(d)


  p 
( + )d

 d
1
d


Let i: 1C a·  Fi and i: 1C a·  Gi (i = 0, 1) be enhancements in C, and : 0 a 1 and : 0a 1 morphisms of Enh(C). Then in particular • 0 = 1 and • 0 = 1, so by Lem​ma 7.14, (+ ) • (0 + 0) = 1 + 1, so + : 0 + 0a 1 + 1 in Enh(C). That is,

7.16 Theorem. The operation + is a functor from Enh(C) Enh(C) to Enh(C).

By (4) above, we have

Corollary. Let : 1C a·  Fbe an enhancement; then

  Imp(, ): Imp(, ) F  Imp(, ).

Let I = be a directed preorder, and L a functor from the category de​ter​mined by I to an ar​bi​trary category A. We call i  I stationary with respect to L if for all j  i, L(i  j) is an isomorphism.

7.17 Lemma. If i  I is stationary with respect to L: I a A, then Li is a co​limit of L.

Proof. Let i be stationary. Write L(j  k), for any j, k  I, as jk. For any j  I, we determine an arrow j: Lj a Li as follows.

— If j  i, j = ji.

— If j  i, j = (ij)–1.

— Otherwise, ﬁnd a common upper bound k of i and j, and put j = k  jk.

Let : L a·  a be any cocone. Then if j  i, j = i  ji = i  j. If j  i, i = j  ij = j  j–1, hence j = i  j. Otherwise, let k be the upper bound of i and j used to ﬁx j; then j = k  jk = i  k  jk = i  j. So  = i • . Moreover this factorization is unique: if  = f • , then in particular i = f • i = f.
 

Corollary 1. If  in the proof above is a colimit cone, then i is invertible.

Proof. If  is a colimit cone, the arrow f such that  = f •  isan isomorphism. 

Corollary 2. For any enhancement ,  +   .

Proof. Suppose : 1C a·  FBy Lemma 2, F is an isomorphism, so for all q ≥ p >  in P, ( * )(p  q) is an isomorphism. Let :  *  a·  Imp(, ) be the stan​dard co​limit cone, and :  *  a·  F a colimit cone as constructed in the proof of the lemma. Since both  and  are colimit cones, there must be an isomorphism  such that  •  = . In particular,  • (+) =  •  =  = .

7.18 Theorem. Let  and  be enhancements in a category C. Then  +  is a co​pro​duct of  and  in Enh(C).

Proof. Let : 1C a·  F, : 1C a·  G and : 1C a·  H be enhancements, with :  a  and :  a ; let  be the co​limit cone from  *  to Imp(, ),  that from  *  to Imp(, ). We shall prove that there exists exactly one :  +  a  with the prop​er​ty that • 0 =  and • 1 = ; i.e. that  +  is a co​pro​duct of  and , with in​jec​tions 0 and 1.

By the ﬁrst corollary of Lemma 17, 0 is invertible; and by the deﬁnition of + , (+ ) • 0 = 0 • . So

(1)
(0)–1 • (+ ) • 0 =  .

Since 1 = 0, likewise

(2)
(0)–1 • (+ ) • 1 =  .

So (0)–1 • (+ ) meets the requirements on .

Unicity will be considerably harder. Suppose :  +  a  with  • 0 =  and  • 1 = . We shall prove that 0 •  = +  (and hence  = 0‑1 • (+ )).

By the deﬁnition of +  it will sufﬁce to prove that for every p P,

0 • • p = p • (* )p .

We have 0 • • 0 = 0 •  = 0 • (* )0, analogously 0 • • 1 = 1 • (* )1, and therefore

0 • •  = 0 • • 0 •  = 0 • •  = 0 • =  0 • 0=  

= • (* ).

Now let q = 0p  P, and suppose 0 • • p = p • (* )p; we want to prove that 0 • • q = q • (* )q. If we succeed, we are done, by in​duc​tion and sym​metry. Since   Imp(, ) is invertible (corollary to 7.16), it is suf​ﬁcient to show that

(  Imp(, )) • 0 • • q = (  Imp(, )) • q • (* )q.

By naturality of : 1 a·  H,

(3)
(  Imp(, )) • 0 = H0 • H,
(4)
H •  = H• (  Imp(, )) .

Observe that, since F = F, and ( * )(q) = (F  ( * ))(p),

(5) Fp = Fq • (F  ( * )(p)) = Fq • (  ( * )(q))

= (  Imp(, )) • q.

Since = • , and hence   Imp(, ) = (  Imp(, )) • (  Imp(, )); and since : F a·  H and ( * )(q) = (F  ( * ))(p) — (5) implies

(6)
(  Imp(, )) • q = Hp • (  ( * )(p)).

From (3), (4) and (6) we get

(7)
(  Imp(, )) • 0 • • q = (H  (0 • • p)) • (  ( * )(p)).

The type of q is ( * )(q) a·  Imp(, ). By naturality of ,
(8)
(  Imp(, )) • q = Hq • (  ( * )(q)),

and again, with * :  *  a·   * ,

(9)
(  ( * )(q)) • (* )(q) = (H  (* )(q)) • (  ( * )(q)) .

By deﬁnition, (* )(q) = H  ((* )(p) • (  ( * )(p)). Using this, and once more the natural​ity of , we see

(10)
(H  (* )(q)) • (  ( * )(q)) =


(H2  (* )(p)) • (H  ( * )(p)) • (  ( * )(p))

and taking into consideration that H = H,

(11) (H2  (* )(p)) • (H  ( * )(p)) =

(H  ( * )(p)) • (H  (* )(p)).

By (8)-(11), since q • (  ( * )(p)) = p,
(12) (  Imp(, )) • q • (* )(q) =

H  (p • (* )(p)) • (  ( * )(p));

now by (7) and the induction hypothesis we are done.

Given a coproduct diagram

[image: image11.wmf](7.5)
the unique h: a + b a c such that h = f and h= g is denoted by [f, g]; and if c hap​pens to be a coproduct as well, say with injections  and , [k, l] is ab​bre​​vi​ated to k + l. Our sum notation agrees with this convention: if : a  and :  a , and  is the colimit cone associated with Imp(, ),  the colimit cone as​so​ciated with Imp(, ), then

(+ )  i = i  (* )
(i = 0, 1)

by deﬁnition, so +  = [0  , 1  ].

8. Regular enhancements in the category of algebras

Enhancements in Alg increase the signature, in the sense that, if F,  is an en​hance​ment in Alg, FA A for every algebra A. Mod​ules have a sig​na​ture; they affect algebras through that signature exclusively, and they behave regu​lar​ly under renam​ing.

8.1 Deﬁnition. An en​hance​ment : 1Alg a·  F in Alg is regular if a sig​na​ture  ex​ists such that
(i) for each algebra A, FA = A ; and
(ii) if  is ﬁxed under some renaming complex r, then r· .

It is easy to see that the signature  in the deﬁnition is uniquely deter​mined. We shall refer to it as . Condition (ii) is equivalent to: if r1 and r2 are re​nam​ing com​plexes such that r1| = r2|, r1· r2·. The regular en​hance​ments de​ter​mine a full subcate​gory Rnh of Enh(Alg).

8.2 Examples

8.2.1. Trivially, 1Alg is regular. The signature 1Alg is .

8.2.2. Let  be a signature.

Take any al​gebra A. By deﬁnition, (T(A)) = A . Now suppose  is ﬁxed un​der a renaming complex r, i.e. r· = . Hence by the Corollary to Pro​po​sition 7.8, r·  .

So , which is an enhancement by 7.3.2, is regular; its signature is .

8.2.3. Let E = , E be an equational theory, F = FE and = E.

For any al​gebra A, by deﬁnition, FA = A . If  is ﬁxed un​der a re​nam​ing complex r, then r·E = E, so by the Corollary to Proposition 7.8,

r·E  r·E = E.

So E, an enhancement by 7.3.3, is regular; its signature is E.

8.2.4. Let : 1 a·  F and : 1 a·  G be regular enhancements in Alg,  = ,  = . Then for any algebra A and p  P (P = P, ≤as in Deﬁnition 7.9), p > 0, (( # )(A)(p)) = A . Since there are homomorphisms from these al​gebras to the limit Imp(, )(A), (Imp(, )(A))  A . In fact, the in​clu​sion must be identity, since we can factor through the embedding of the re​duct Imp(, )(A)A. If r is a renaming complex that ﬁxes , then r·( # )  # , and hence r·( + )   . So    is a regu​lar en​hance​ment, and ( + ) = .
8.2.5. Let : 1 a·  F be a regular enhancement in Alg,  = and s a renam​ing. Then for any algebra A, ((s·F)(A)) = s·A. Now let q and r be re​nam​ing com​plexes with iden​ti​cal action on s·. Then q·s = r·s, so q·s·  r·s·. In view of 7.3.5, we con​clude that s· is a regular enhancement.

​8.3 Deﬁnition. Let : 1 a·  F be a regular enhancement with signature , and  any signature. Let C = C(be the full subcategory of Alg determined by the al​gebras A such that A  , and Ithe embedding of C into Alg. We de​ﬁne a functor F,): C a Alg, and a natu​ral transformation : I a·  F, as follows: for any algebra A  C,

F) =  A F(A);

A is A, except that the codomain is F);

and for a homomorphism : A a B in C, F() is the restriction of F() to F), with codo​main F).

The deﬁnition of F() is correct: any element x of F) can be writ​ten in the form tF(A)(A(a0),…, A(an–1)), for a term t over A ; since  is natu​ral, F()(x) = tF(B)(B((a0)),…, B((an–1))), which belongs to F). It is clear at once that F is a functor, and that  is a natu​ral trans​formation from I to F. Since A generates F), A is an epi​mor​phism. By Lemma 6.12, preservation of limits for F im​plies preservation of lim​its for F.

Observe that

(1)
for every object A ofC, F) = A.

By construction, F is a subreduct of FA. Let A: F m FA be the canoni​cal (identical) embedding. Then  is a natural transformation from F to FC, and by de​ﬁnition,

(2)
 •  = C.

Now let  be the inverse of F. Deﬁne A on the universe of FF by

A(x) = A(FA(FA(x))).

Any element of FF may be written in the form

x = tFF(FA(y0), …, FA(ym–1)),

for a term t over F) and elements y0,…, ym–1 of F. Since by (1) FF = F), and FA is a homomorphism, we have

x = FA(tF(y0, …, ym–1)).

So FA is onto. Now

A  FA  FA  FA = A  FA  FA A
since  is natural

= A  FA  A
by (2)

= A.

This allows us to set the codomain of A as F, and then A  FA = 1FA.

8.4 Proposition. Let : 1 a·  F be a regular enhancement, and  a signature; set  = . Let r and q be re​nam​ing complexes with r = q, and A an alge​bra such that (r–1)*A and (q–1)*A are objects of C(, ). Then there exists an iso​morphism : (r·Red(,))A (q·Red(,))A such that

  (r·())A = (q·())A.

Proof. Let  = . We further abbreviate:

= D(r) D(q)   ((r–1)*A) ((q–1)*A).

Suppose n0, …, nk–1 are all the (pairwise distinct) names n in  for which r·n ≠ q·n. Pick dis​tinct names m0, …, mk–1 outside , and put

s0 = (n0m0)·…·(nk–1mk–1).

Next, let nk, p0,…, nl–1, pl–k–1 be all the (pairwise distinct) function de​cla​ra​tions d in  for which r·s0·d ≠ q·s0·d. Note that this inequality can hold only if s0·d = d. Pick dis​tinct names mk, …, ml–1 in such a way that mk, p0, …, ml–1, pl–k–1, and put

s1 = (nkmk), p0·…·(nl–1ml–1), pl–k–1.

We de​ﬁne: s = s1·s0.

Since the pairs n0, m0,…, nk–1, mk–1 no elements in common, the or​der of the renamings that make up s0 is irrelevant; so in particular, s0–1 = s0. A similar condition applies to s1: if pi = pj, with i < j < l – k –1, nk+i, mk+i and nk+j, mk+j have no elements in common, so the order of the factors of s1 makes no difference, and s1–1 = s1. So s–1 = s0·s1. In fact, for every de​cla​ra​tion d we get, since s1·s0·d = s0·d if s0·d ≠ d, and s0·s1·d = s1·d if s1·d ≠ d, that s–1·d = s·d.

If n  S ((r–1)*A), then n , hence r·n = q·n, therefore s·n = s0·n = n, and ((s–1)*((r–1)*A))(n) = ((r–1)*A)(s·n) = ((r–1)*A)(n).

If d = n, p F ((r–1)*A), then d , hence s0·d = d and r·s0·d = r·d = q·d = q·s0·d, there​fore s·d = s1·s0·d = d, and

((s–1)*((r–1)*A))(d) = ((r–1)*A)(d).

By the choice of m0, …, ml–1 (in such a way as to obtain declarations outside ), s·d = d for d ((r–1)*A) – .

The same ar​gu​ment works with r and q interchanged; so

(1)
(s–1)*((r–1)*A) = (r–1)*A and (s–1)*((q–1)*A) = (q–1)*A.

In the process, we have proved that  is ﬁxed under s; and since (r–1)*A and (q–1)*A belong to C(, ), ((r–1)*A) and ((q–1)*A) are ﬁxed under s as well. Let F = Red(,) and . Since

(F((r–1)*A)) = ((r–1)*A) and (F((q–1)*A)) = ((q–1)*A),

(2)
s*(F((r–1)*A)) = F((r–1)*A) and s*(F((q–1)*A)) = F((q–1)*A).

Take any d . If s·d ≠ d, then s·d  D(r) D(q), so q·s·d = r·s·d. If s·d = d, then by construction r·d = q·d. In all, q·s = r·s. By regularity, there is an iso​morphism : r·s·  q·s·.

Any element x of (r·F)A may be written in the form

x = t(r·F)A((r·)A(a0),…, (r·)A(an–1)),

with t a term over r·a0,…, an–1  A. By (1) and (2), (r·F)A = (r·s·F)A. Let : F a F be the natural embedding: the domain of (r·s·A is (r·F)A. Then

(3)
A((r·s·A(x)) =


t(q·s·F)A(A((r·s·A((r·)A(a0))),…, A((r·s·A((r·)A(an–1)))).

Since (r·F)A = (r·s·F)A, (r·)A = (r·s·)A. So

(r·s·A  (r·)A = (r·s·)A.

Now A  (r·s·)A = (q·s·)A; and since, by (1) and (2), (q·F)A = (q·s·F)A, (q·s·)A = (q·s·A  (q·)A. In this way (3) becomes

(4)
A((r·s·A(x)) =


t(q·s·F)A((q·s·A((q·)A(a0)),…, (q·s·A((q·)A(an–1))).

Since r·q·t is a term over q·, and therefore A((r·s·A(x)) is an ele​ment of (q·F)A. In fact, the universe of (q·F)A equals the range of A (r·s·A, so : 

t(r·F)A((r·)A(a0),…, (r·)A(an–1)) A

t(q·F)A((q·)A(a0),…, (q·)A(an–1))

is an isomorphism. The condition   (r·)A = (q·)A is obvious.


8.5 Proposition. Let : 1 a·  F be a regular enhancement, and  a signature; r and q re​nam​ing com​plexes with r = q, A and B alge​bras such that (r–1)*A and (q–1)*B are ob​jects of C(, ), and f: A a B a homomor​phism. Then there exists pre​cise​ly one homo​morphism g:

(r·Red(,))A a(q·Red(,)B
such that g  (r·())A = (q·())B  f.

Proof. That there is at most one such g is immediate, since (r·())A is an epi​morphism. Let  := .

It is easy to construct a renaming complex s such that s = r (= q), and both (s–1)*A and (s–1)*B belong to C(, ). By the previous propo​si​tion, there ex​ist isomorphisms

: (r·Red(,))A (s·Red(,))A and : (s·Red(,))B (q·Red(,))B
such that   (r·())A = (s·())A and   (s·())B = (q·())B. De​ﬁne g as   (s·Red(,))(f)  . Then since  is natural,


g  (r·())A =   (s·(Red(,))(f)    (r·())A

 =   (s·Red(,))(f)  (s·())A

 =   (s·())B  f = (q·())B  f.

Taking A = B and f = 1A, we see

Corollary. The isomorphism  in Proposition 8.4 is unique.

8.6 Deﬁnition. Let : 1 a·  F be a regular enhancement, and  a signature. For every al​ge​bra A, pick a re​nam​ing complex rA that ﬁxes and is such that (rA–1)*A is an ob​ject of C(, ). Deﬁne F– = Exp(,) by:

Exp(,)(A) = (rA·Red(,))A,

and (  )A as (rA·())A. For any homo​morphism f: A a B, F–(f) is the unique g: F–(A) a F–(B) such that g  (  )A = (  )B  f.

Observe that the renaming complexes rA may be chosen in such a way that rB = rC if ()B = ()C.

Proposition 8.5 implies that Exp(,) is an en​do​functor of Alg. By deﬁni​tion,    is a natural transformation from 1Alg to Exp(,), and its compo​nents are epi​morphisms.

8.7 Lemma. Let : 1 a·  F be a regular enhancement,  a signature,  r a renam​ing complex that ﬁxes , and D = r*(C(, )), the subcategory of Alg that is the image of C(, ) under r*. Then Exp(,)D  r·Red(,).

Proof. Put F– = Exp(,). By 8.4, and the corollary to 8.5, for every object A of D there is a unique isomorphism A: F–(A) (r·Red(,))A such that

A  (  )A = (r·())A.
()

To prove naturality, suppose f: A a B in D. Then

  F–(f)  (  )A =    (  )B  f
since    is natural


= (r·())B  f


by ()


= (r·Red(,))(f)  (r·())A since r·() is natural


= (r·Red(,))(f)  A  (  )A
by ().
Since (  )A is an epimorphism, it follows that


  F–(f) = (r·Red(,))(f)  A.

8.8 Corollary. Let : 1 a·  F be a regular enhancement, and  a signature. Then Exp(,) preserves direct limits.

Proof. Put F– = Exp(,). Let I = , ≤ be a directed order, and L: I a Alg a func​tor, with co​li​mit cone : L a·  U. Then for all i  I, (Li)  U; hence a re​nam​ing complex r may be found that ﬁxes  and that is such that (r–1)*(U) as well as all (r–1)*(Li) are ob​jects of C(, ). Put

D = r*(C(, )),

as before; and F = r·Red(,). The range of L, and the colimit U, belong to D. Since Red(,) preserves di​rect limits, so does F. By the Lemma, there ex​ists an iso​morphism : F–D  F.

Let : F–L a·  A be any cocone. Then  • –1L: FL a·  A factors uniquely through F, say  • –1L = f • F, with f: FU a A. Then

 = f • F • L = (f  U) • F–,

since  is natural. The factorization through  f  U is unique: if  = g • F–, then  • –1L = g • F– • –1L = (g  U–1) • F since –1 is natural, so g  U–1 = f by unique factorization, and g = f  U. So F– is indeed a colimit cone.


As we noted under Deﬁnition 8.6, we may assume that the choice of rA de​pends only on A (). As a consequence, if F– = Exp(,) and F = Red(,), rA =  rF–(A), and F–F–A = (rA·F)2A. Let  be the inverse of ()  F. Then

(rA·) • ((rA·())  (rA·F)) = rA·( • (()  F)) = rA·F,

so if we deﬁne –A as (rA·)A, – is a left inverse of (  )F–.

8.9 Theorem. If : 1 a·  F is a regular enhancement, and  a signature, then    is a regular enhancement, with signature .

Proof. By an observation above Lemma 8.7, combined with Corollary 8.8 and the deﬁnition of – that we just saw,    is an enhancement in Alg. By con​struc​tion, for any algebra A, (Exp(, )A) = A  ().

Let r be a renaming complex that ﬁxes  := . For any algebra A, ab​bre​vi​ate (r–1)*(A) to A; then

(r·Exp(, ))A = (r*  (rA)*  Red(, )  (rA–1)*  (r–1)*)(A).

Since r, rA and rA all leave  ﬁxed, hence r·rA = rA, by Proposition 4 there exists an iso​mor​phism A: r·rA·Red(, )A  rA·Red(, )A such that

A  (r·rA·())A = (rA·())A.
()

By deﬁnition, () is the same as

A  (r·())A = ()A.
()

By Lemma 7.6, this is sufﬁcient proof that  is a morphism from r·() to .


8.10 Remark. Let : 1 a·  F be a regular enhancement,  a sig​na​ture, and for every al​gebra A, A the identical embedding of Exp(, )A into FA. It is easily seen to fol​low from the deﬁnitions that the assignment : A A A is a natural trans​formation of Exp(, ) into F, and  • (  ) = . So  is an en​hance​ment mor​phism, from    to .

8.11 Deﬁnition. Let : 1 a·   F and : 1 a·   G be regular enhancements,  a sig​na​ture, and :  a  an enhancement morphism. Let : Exp(, ) a F and : Exp(, ) a G be the respective natural embeddings. We deﬁne    by

 • (  ) =  • .

Indeed, put F– = Exp(, ) and G– = Exp(, ). For every algebra A, the con​di​tion A  f = A  A determines a unique homomorphism f = (  )A, map​ping each ele​ment tF–A((  )A(a0),…, (  )A(an–1)) of F–A to

tG–A((  )A(a0),…, (  )A(an–1))

in G–A. The as​sign​ment A A (  )A is a natural transformation from F– to  G–: let : F– a·  F and : G– a·  G be the natural embeddings, then for a homomor​phism f: A a B,

B  (  )B  F–f = B  B  F–f
by deﬁnition

  = B  Ff  A
since  is natural

  = Gf  A  A
since  is natural

  = Gf  A  (  )A
by deﬁnition

  = B  G–f  (  )A
since  is natural;

and since B is a monomorphism, (  )B  F–f = G–f  (  )A.

Let : 1 a·   F, : 1 a·   G, and : 1 a·  H be regular enhancements,  a sig​na​ture, and
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enhancement morphisms. Let : Exp(, ) a F, : Exp(, ) a G, and : Exp(, ) a H be the respective natural embeddings. Then

 • (  ) • (  ) =  •  • (  )
by the deﬁnition of   

=  •  • 
by the deﬁnition of   

=  • (  ( • )) by the deﬁnition of   ( • ).

Since the components of  are monomorphisms, we get

  ( • ) = (  ) • (  ).

In particular, taking  = 1Alg and  = , we ﬁnd

   =   ( • ) = (  ) • (  ).

Clearly also also   1 = 1. We have shown:

8.12 Lemma. Let  be a sig​na​ture. The operation  A    is an endo​func​tor of Rnh.

The inclusion ordering on the signatures induces a category Sig. Let   be sig​natures; there is then a unique arrow    from  to . Let : 1 a·   F be a regu​lar en​hancement and A any algebra; set F = Exp(,) and F = Exp(,). The map​ping

tFA((  )A(a0),…, (  )A(an–1)) A

tFA((  )A(a0),…, (  )A(an–1))

is a homomorphism ((   )A from FA to FA. The de​ﬁ​ni​tion implies

((   )A  (  )A = (  )A.
(*)

So by Lemma 7.6 the assignment (    of homomorphisms to alge​bras is a mor​phism from    to   . Clearly 1  = 1. If  are sig​na​tures, then by (*), 

((   ) • (  ) =    = ((   ) • (  )

  = ((   ) • ((   ) • (  ),

which implies, since the components of    are epimorphisms, that

(    = ((   ) • ((   ).

We have shown:

8.13 Lemma. Let  be a regular en​hancement. The operation

(    A  (    
is a func​tor from Sig into Rnh.

8.14 Theorem. The assignment

  ,  A (  )   := (  ) • ((  )  )

to signature inclusions  and enhance​ment morphisms  a  is a func​tor from Sig  Rnh into Rnh.

Proof. By [L, II§3] and by the lemmas 12 and 13 above, it will sufﬁce to show that (  ) • ((  )  ) = ((  )  ) • (  ). Suppose : 1 a·   F and : 1 a·   G.

Let  be the natural embedding of Exp(, ) into F, and  that of Exp(, ) into F; likewise we have natural embeddings : Exp(, ) m G and : Exp(, ) m G. It is immediate from the deﬁnitions that

 • ((  )  ) =  and  • ((  )  ) = .

Now  • (  ) =  •  by Deﬁnition 11. So  • (  ) • ((  )  ) =  • . By Deﬁnition 11 again,

 •  =  • (  ) =  • ((  )  ) • (  ).

Since the components of  are monomorphisms, we are done.


9. Modules

Modules will be the isomorphism classes of the category Rnh of regular en​hancements in the category Alg of algebras. We are going to deﬁne an al​ge​bra M for which we check the axioms listed in §5, and for which these mod​ules constitute the (large) M-sort. The sorts SIGM and REGM consist, re​spec​tive​ly, of the signatures and the renamings as we deﬁned them in §4.

If : 1 a·  F and : 1 a·  G are isomorphic regular enhancements, F  G; so iso​morphic regular enhancements have the same signature, and sig​na​tures may be ascribed to mod​ules by putting M(/) = . We shall omit the super​script M that marks operations of M where the context allows.

By 8.2.3, the following is admissible:

9.1 Deﬁnition. Let A = , A be an equational theory; then

‹A›M = A/.

It is clear that with these deﬁnitions M satisﬁes axiom scheme (S1):

(I)
M • ‹A› = A.

9.2 Deﬁnition. Let  be a signature; then TM() = .

Since   ‹, ›M, axiom (S2) is valid as a special case of (I):

(II)
M • Tx = x.

It is an immediate consequence of Theorem 7.16 that, if i and i, i = 0, 1, are enhancements in any category C, and 0  1 and 0  1, that is, 0, 0 1, 1 in Enh(C)  Enh(C), 0 + 01 + 1. This jus​ti​ﬁes:

9.3 Deﬁnition. Let  and  be regular enhancements. Then

(/) +M (/) = ( + )/.

By 8.2.4 we have

(III)
M • (X + Y) = X Y.

By Lemma 8.12, if  and  are isomorphic regular enhancements, and  is a signature, then   . So the following is allowed:

9.4 Deﬁnition. Let  be a regular enhancement, and  a signature. Then

M/) = ()/.

By Theorem 8.9,

(IV)
M • (x  Y) = x Y.

Let : 1 a·  F be a regular enhancement, and r a renaming. By Example 8.2.5, r· is a regular renaming, and (r·) = r·. Now suppose   , for a regular enhancement : 1 a·   G; there must then be a natural isomorphism : F  G satis​fy​ing  •  = . Then r·: r·F  r·G; and by 7.3.5,

(r·) • (r·) = r·( • ) = r·.

So r·  r·. This proves the admissibility of:

9.5 Deﬁnition. Let  be a regular enhancement, and r a renaming. Then

r·M/ = (r·)/.

In the process we have shown:

(V)
M • (r·Y) = r·Y.

As an immediate consequence of Proposition 7.8, for any renaming r and any equational theory A,

(VI)
M • r·‹A› = ‹r·A›;

and in particular,

(VII)
M • r·Tx = T(r·x).

By Theorem 7.7, the action of a renaming on Enh(Alg) is an involution. Since coproducts in a category are unique modulo isomorphism, by Theo​rem 7.18, for any renaming r and enhancements  and  in Alg, r·( + )  r· + r·. So

(VIII)
M • r·(X + Y) = r·X +r·Y.

9.6 Proposition. Let : 1 a·  F be a regular enhancement, r a renaming, and  a signature. Then r·()  (r·)  (r·).

Proof. Set F– = Exp(,, and 
[image: image13.wmf]= Exp(r·, r·). Take any algebra A. Put  :=  and  :=  .

Let us ﬁrst consider a particularly simple special case. Assume A belongs to the category C(r·, r·), and hence r*(A) be​longs to C(, ). By deﬁ​ni​tion, (  )r*A is the same as r*A, except that its co​domain is not F(r*(A)), but the subalgebra of F(r*(A))r·A gener​ated by r*A. A for​ti​o​ri (r·(  ))A, that is r*((  )r*A), is the same as (r·)A, that is r*(r*A), ex​cept that its codomain is not (r·F)A, but the sub​al​gebra of (r·F)Ar·A gen​erated by (r·)A. But this is precisely the de​ﬁni​tion of ((r·)  (r·))A.

In general, (  )r*A is deﬁned as s*((  )(s–1)*r*A, where s is a re​nam​ing complex that ﬁxes  and (s–1)*(r*A) an object of C(, ), and (r·F–)A = r*(s·Red(,)(r*A)); ((r·)  (r·))A = q*(((r·)  (r·))(q–1)*A, for a re​nam​ing complex q that ﬁxes r· r·that is, r·, with (q–1)*A an ob​ject of C(r·, r·), and 
[image: image14.wmf]A = (q·Red(r·, r·))A.

We deﬁne two other renaming complexes s and q, as fol​lows. Ab​bre​vi​ate:  := A  D(r). Let n0, …, nk–1 be an enumeration without re​pe​ti​tions of S(A) – . Pick dis​tinct names m0, …, mk–1 outside , and put s0 = (n0m0)·…·(nk–1mk–1), and q0 = (r·n0, m0)·…·(r·nk–1, mk–1). We ob​serve that the conditions q0·r·d = r·d and s0·d = d are equivalent. Now let nk, p0,…, nl–1, pl–k–1 be an enumeration without re​pe​ti​tions of all the func​tion declarations d (A) –  for which s0·d = d. Pick distinct names mk, …, ml–1 not occurring in , and let

s1 = (nkmk), p0·…·(nl–1ml–1), pl–k–1

and, if nj, r·pj–k = r·nj, pj–k for all j from k to l –1,

q1 = (nkmk), r·p0·…·(nl–1ml–1), r·pl–k–1.

We put s := s1·s0 and q := q1·q0. As in the proof of Proposition 8.4, (s)–1 = s, and (q)–1 = q.

Since r· is ﬁxed under both q and q, and (q–1)*A and ((q)–1)*A are ob​jects of C(r·, r·), by Proposition 8.4,

(1) there exists : (q·Red(r·, r·))A (q·Red(r·, r·))A such that




  (q·((r·)  (r·)))A = (q·((r·)  (r·)))A.

Likewise, since  is ﬁxed under both s and s, and ((s)–1)*A and (s–1)*A are ob​jects of C(, ),

(2) there exists : (s·Red(, ))A (s·Red(, ))A such that






 (s·())A = (s·())A.

A fortiori we have

(3) r·: (r·s·Red(, ))A (r·s·Red(, ))A with





(r·) (r·s·())A = (r·s·())A.

Finally, simple calculations show that q·r = r·s. So since  is regu​lar,

(4) 
there exists an isomorphism : q·r· r·s·.

Let : Red(, ) m F and : Red(r·, r·) m r·F be the respective natural em​bed​dings. Deﬁne : (q·Red(r·, r·))A a (r·s·Red(, ))A by

(r·s·)A   = A  (q·)A.

Then (r·s·)A   (q·((r·)  (r·)))A = A  (q·)A (q·((r·)  (r·)))A


= A  (q·r·)A = (r·s·)A

= (r·s·)A  (r·s·())A.

Since (r·s·)A is a monomorphism, it follows that

 (q·((r·)  (r·)))A = (r·s·())A.

So the entire diagram below commutes; and in particular,

(r·)      (r·r·)A = (r·(  ))A.


    A
 A
 A
   A
(r·r·)A
 (q·((r·)  (r·)))A
 (r·s·())A
 (r·(  ))A
(q·Red(r·, r·))A
[image: image15.wmf](q·…)A
 
(r·s·…)A
[image: image16.wmf](r·s·Red(,))A

(q·)A

 (r·s·)A

(q·r·F)A

A
(r·s·F)A

The algebra A was arbitrary. Thus, putting A := (r·)    , for every al​ge​bra A we have an isomorphism A such that

(*)
A  (r·r·)A = (r·(  ))A.

The assignment : A A A is the required isomorphism from (r·)  (r·F) to r·(F); naturality follows by 7.6.

An immediate consequence of this Proposition is

(IX)
M • r·(x  Y) = (r·x) r·Y).

The functor r* induced by a renaming r is an involution of Alg. Hence, for any regular enhancement , r·r· = . So

(X)
M • r·r·X = X.

Let  be a signature, and r a renaming. Recall that  / r was deﬁned as the sub​signature {d  r·d = d}. Let  be a regular enhancement. By Theorem 8.9, ( / r)   is a regular enhancement, with signature ( / r) . Since ( / r))  is ﬁxed under r, by regularity, r·(( / r)) ) ( / r)) . So

(XI)
M • r·((y / r)  X) = (y / r)  X.

The formation of coproducts is commutative and associative modulo iso​mor​phism. So by Theorem 7.18,

(XII)
M • X + Y = Y + X;

(XIII)
M • (X + Y) + Z = X + (Y + Z).

9.7 Proposition. Let  be a regular enhancement, and  a signature. Then

 +   .

Proof. We show that  is a coproduct of  and . We take t natural in​jection :  m  and the identity 1 as the co​product in​jec​tions into .

Let be a regular enhancement, and :  a  and :  a  en​hance​ment morphisms. We must show that  • ( ) = .


 
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






We calculate:  •  • ( ) =  •  =  =  • ( ). Since the compo​nents of   are epimorphisms, we are done.


In other words,

(XVI)
M • X + (y  X) = X.

derives from [P], and ultimately from [Ba].

9.8 Proposition. Let A and B be equational theories. Then

A+B  A + B.

Proof. Let K be the codomain of the natual transformation A + B. Take any al​gebra C. Since FA+BC  Mod(A), there exists a homo​mor​phism C: FAC a FA+BC such that C  A,C = A+B,C. Generalizing, by lemma 7.6, we have a morphism : A a A+B. In the same way we obtain a mor​phism : B a A+B. By Theorem 7.18, we have coproduct injections

0: A a A + B and 1: B a A + B.

A 
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0


1

A + B
Since KC, for any algebra C, is deﬁned as a colimit of models of A and B, by Lemma 6.11, KC  Mod(A + B). So by Proposition 6.5, there exists C: FA+BC a KC such that C  A+B,C = (A + B)C. Generalizing over C we get a mor​phism : A+B a A + B. In the opposite direction, by the co​product prop​erty of 0 and 1, there exists an enhancement morphism  such that  • 0 =  and  • 1 = .

Now  •  • (A + B) =  • A+B = A + B, so  •  = 1 since A + B is an epimorphism. Similarly,  •  = 1. So  is the required isomorphism. 



(XVII)
M • ‹A› + ‹B› = ‹A + B›.

As special casesby Example 7.5.3, we obtain

(XIV)
M • T(x y) = Tx + Ty.

(XV)
M • X + TX = X.

It is a straightforward consequence of the deﬁnitions that for any en​hance​ment ,    = . So

(XVIII)
M • X  X = X.

9.9 Proposition. Let  be a regular enhancement, and  and  signatures. Then  ()  ( ).

Proof. Say : 1 a·  F, and abbreviate

Exp(, Exp(,)) =: G, and Exp( ,) =: H.

Let :  a , :  () a , and : ( ) a  be the natu​ral embeddings. For any algebra A, deﬁne, for every term t over A  ():

A(tGA(( ())A(a0),…, ( ())A(an–1))) =

tHA((( ))A(a0),…, (( ))A(an–1)).

Then A is an isomorphism between GA and HA, since

 •  •  =  =  • (( )),

GA is generated by ( ())A and HA by (( ))A, GA = HA, and ( •  )A and A are em​beddings.


In other words,

(XIX)
M • x  (y  Z) = (x y)  Z.

9.10 Example. (i) Consider the equational theory E =

{s0, s1, g: s1 a s0}, {y = gx},

and the signatures  = {s0, s1, g: s1 a s0, a:s0, b:s0} (a and b distinct) and  =  {c:s1}. Let

: 1 a·   F be (  ) + E and : 1 a·   G =   ( + E).

Then F and G have signature ; s1 is void; but in F the constants a and b are distinct, whereas in G they are identical. So F   G.

(ii) Take : 1 a·   F to be (  ) + ( + E) and deﬁne : 1 a·   G as   ( + ( + E)). Then F F and G G, so F   G.

The example shows that the distribution axioms (E3) and (E4) do not hold in M.

10. Reckoning and problems

We have developed semantics for some major, arguably the major, mecha​nisms of modularization. The deﬁnitions make sense intuitively from the view​point of initial algebra speciﬁcation. In particular, our construction of import seems unavoidable as long as we do not want to assume that modu​lariza​tions are well-structured in some sense. Our construction of ex​port follows from the conception of hidden signature as no more than a means to circumscribe reachable things. Our point of departure is the classi​cal many-sorted algebra of Goguen and Messeguer [GM].

Nonetheless, our machinery jars with approximately 10% of the axio​ma​ti​za​tion of [BHK]. What should we make of this? There are several direc​tions we could take.

10.1 We could simply go for the quotient of M over SgM((E3)M  (E4)M). Un​less we can discover something important about the congruence in​volved, this is of no interest.

10.2 Draw the conclusion that (E3) and (E4) are mistaken. This touches on a rather deep intuition. These axioms are at the basis of the normal form theo​rem 5.3, which says, more or less, that modularization is about struc​tur​ing speci​ﬁcations, and does not lead to increased expressivity. After all, every semi-computable algebra has an initial speciﬁcation of the form   ‹E› [BT]; we should not desire more. Hence the following problems arise:

(a) Reﬁne the notion of regular enhancement: there are characteristics of the in​terpretations of ground module expressions that have not been taken into ac​count yet.

(b) Can we ﬁnd suitable axioms, according with these characteristics, to re​place (E3) and (E4)?

(c) Do these axioms admit some kind of normal form theorem?

10.3 Another departure from ﬁrst intuitions to be considered concerns the ex​port operation.What if we do not discard unreachable elements? This in​volves a recon​sid​era​tion of the status of exported signature. Example 9.10 would break down, since the element c remains, namelessly, to trigger the axiom of E. Can we save the normal form theorem in this way? What axi​oms become invalid? Can they be saved by some intelligible identiﬁcation?

10.4 A more fundamental objection to example 9.10 is that  and  are com​pared in a context where sorts remain void. Void sorts, one might say, are just a byproduct of gen​eral theory: if we do not specify elements of some sort, it is because we expect the context to provide them. At least as fun​da​men​tal, but of a more philosophical nature, is the objection that the axiom y = gx as it is used in 9.10 is essentially conditional: if there are things of sort s1, sort s0 col​lapses. Such traps are not algebra. This con​sid​era​tion sug​gests the following problems:

(a) Sketch a theory of many-sorted algebras without void sorts.

(b) Generalize the concept of enhancement to make allowance for the domain to be a subcategory. Apply this in Alg to preclude the introduction of void sorts.

(c) The same as 10.2(a).

(d) Verify the axioms of module algebra for the outcome of (c).

10.5 An important virtue of the approach taken in the preceding is the extent to which the role of signature is played down. Traditionally, signature ﬁgures higher in the hierarchy of classes of algebras than the satisfaction of equa​tions; and algebras of the same category are expected to have the same sig​na​ture. Presumably this is a legacy of universal algebra. In data type speci​ﬁca​tion, however, signature is manipulated as freely as axiomatics.

There are at least two radically different directions in which this de​velop​ment can be developed further.

(a) Develop module algebra without a distinct sort SIG, in which signa​tures can only be dealt with by means of modules.

(b) Develop speciﬁcation theory on the basis of a broader logic, in which re​la​tions (including sorts) are on a par with operations.

10.6 Can clause (ii) of Deﬁnition 8.1 be simpliﬁed to ‘if  is ﬁxed under some renaming r, then r· ’?

references
[Ba]
T.M. Baranovicˇ, Free decompositions in the intersection of primitive classes of algebras. Soviet Mathematics 5 (1964) 473-6.

[bhk]
J.A. Bergstra, J. Heering, P. Klint, Module algebra, Journal of the As​so​ci​a​tion for Com​puting Machinery 37 (1990) 335-72.

[BT]
J.A. Bergstra and J.V.Tucker, Algebraic specifications of comput​able and semicomputable data types. Theoretical Computer Science 15 (1987) 137-81.
[EGRW]  H. Ehrig, M. Große-Rhode & U. Wolter, On the role of category theory in the area of algebraic speci​ﬁcations. In Recent trends in data type speciﬁcation 11, Magne Haveraaen, Olaf Owe & Ole-Johan Dahl eds. LNCS 1130: 17-48 (1995).

[em]
H. Ehrig and B. Mahr, Fundamentals of algebraic speciﬁcation, Berlin 1986 and 1990.

[GB]
Joseph A. Goguen & rod m. burstall, Institutions: Abstract model theory for speciﬁcation and pro​gramming. j. of the acm 39:95-146 (1992).

[gm]
J.A. Goguen, J. Meseguer, Completeness of many-sorted equa​tio​nal logic, Houston Journal of Mathe​matics 11 (1985), 307-334.

[L]
Saunders Mac Lane: Categories for the working mathematician. Sprin​ger, New York etc., 1971.

[MeiT]
K. Meinke & j.v. tucker: Universal Algebra. In: S. Abramsky, D. Gabbay & t.s.e. Maibaum: Handbook of Logic in Computer Science, Ox​ford up, 189-411. A4, A
[P]
Don Pigozzi, The join of equational theories. Colloquium Mathema​ti​cum xxx (1974) 15-25.

�In principle, this notation is ambiguous, because we have not ruled out that x, y  Xs Xt, with s ≠ t, x, ys and x, yt. When we say x and y are e�quivalent modulo , we must as�sume we have a deﬁnite sort in mind that x and y belong to. 
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