
Univer sity of Amsterdam
Programming Research Group

Metric Denotational Semantics for BPPA

T.D. Vu

Report PRG0503 July 2005

T.D. Vu

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel. +31 20 525.7585
e-mail: tdvu@science.uva.nl

Programming Research Group Electronic Report Series

Metric denotational semantics for BPPA

Thuy Duong Vu

Programming Research Group, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, the Netherlands

tdvu@science.uva.nl

Abstract. Program algebra (PGA) is a basic and simple concept of a
programming language which has been formulated by Bergstra and Loots
in [9, 10]. Behaviors for programs in PGA can be given in the Basic Po-
larized Process Algebra (BPPA). Based on the theory of metric spaces as
introduced in [5], we give a denotational semantics for BPPA. Models of
BPPA are considered as complete metric spaces of a suitable mathemat-
ical structure. We show that a space consisting of projective sequences
is an appropriate model for BPPA. Furthermore, using Banach’s fixed
point theorem, we prove that the specification of a regular process in this
space has a unique solution. This result suggests a model consisting of
regular processes. We complete the paper by comparing several models
of BPPA.

1 Introduction

In [9, 10], Bergstra and Loots introduce the basic program algebra PGA (Pro-
Gram Algebra) as an algebraic framework for the study of sequential program-
ming. The primary application of PGA can be found in teaching because of its
simplicity and easy memorizability. The virtue of PGA is that it can be used to
answer the question “What is a programming language?” by providing simple
and general constructions. The reader is referred to [9, 10] for details.

The description of processes is necessary to give a formal semantics for PGA.
This description is based on Basic Polarized Process Algebra (BPPA) which
maps programs into behaviors (or processes) [10]. Finding a model for BPPA is
important because it helps to explain unexpected behaviors of programs. More-
over, it can help visualize processes. We shall employ the methodology of deno-
tational semantics [18, 16] to approach this issue, whereby processes are defined
as elements of some suitable mathematical structure.

In this paper, we will illustrate the technique taken from metric topology as
introduced in [5, 1, 3] to give a denotational semantics for BPPA. We show that
a metric space consisting of projective sequences is an appropriate model for
BPPA. Furthermore, we prove that the specification of a regular process deter-
mines a unique process by means of Banach’s fixed point theorem. This suggests
a model consisting of regular processes. We also show that the completion tech-
nique will give the same result as the approach based on complete partial orders
(cpo’s) [6]. Finally, we discuss extensions of some models with abstraction [2]
which is an important operator in process algebra.

The structure of this paper is as follows. Section 2 introduces the syntax of
PGA and the description of BPPA. Section 3 shows that BPPA can be modeled
as complete partial orders. In Section 4 we define models of BPPA as complete
metric spaces. In Section 5 we deal with the uniqueness of the solution of a
regular process specification. Section 6 compares the various models of BPPA.
The paper is ended with some concluding remarks in Section 7.

2 PGA and BPPA

In this section, we recall the concepts of PGA and the description of program
behaviors based on BPPA from [9, 10] .

2.1 The syntax of PGA

Let Σ be a set of basic instructions. Each basic instruction returns a boolean
value upon execution.

Definition 1. The collection of program objects in PGA over Σ, denoted by
PGAΣ, is generated by primitive instructions and two composition constructs.
These primitive instructions are defined by

– Basic instruction. All a ∈ Σ are basic instructions. By the execution of a
basic instruction, a boolean value is generated and a state may be modified.
After execution, a program has to execute its subsequent instruction. If that
instruction fails to exist, inaction occurs.

– Termination instruction, denoted by !, indicates termination of the pro-
gram. It does not modify the state and does not return a boolean value.

– Positive test instruction. For each a ∈ Σ, there is a positive test instruc-
tion denoted by +a. If +a is performed by a program, the state is affected
according to a. In case true is returned, the subsequent instruction is per-
formed. If there is no remaining instruction, inaction occurs. In case false
is returned, the next instruction is skipped and the execution continues with
the following instruction. If no such instruction exists, inaction occurs.

– Negative test instruction. For each a ∈ Σ, there also exists the negative
test instruction denoted by −a. If −a is performed by a program, the state is
affected according to a. In case false is returned, the subsequent instruction
is executed. If there is no subsequent instruction, inaction occurs. In case
true is returned, the next instruction is skipped and the execution proceeds
with the following instruction. If no such instruction exists, inaction occurs.

– Forward jump instruction. For any natural number k, there is an in-
struction #k which denotes a jump of length k. The number k is the counter
of the jump instruction.
• If k = 0, the jump is to itself (zero steps forward). In this case inaction

will result.
• If k = 1, the instruction is skipped. The subsequent instruction will be

executed next. If there is no such instruction, inaction will occur.

• If k > 1, the execution will skip itself and the next k−1 instructions. The
instruction after that will be performed. If there is no such instruction,
inaction will occur.

The two composition constructs are defined by

– Concatenation. The concatenation of two programs X and Y in PGAΣ,
denoted by X ; Y , is also in PGAΣ.

– Repetition. The repetition of a program X in PGAΣ, denoted by Xω, is
also in PGAΣ.

Table 1 presents program object equations that identify representations of the
same single pass instruction sequences (1-4), and structural congruence equa-
tions that take care of the simplification of chained jumps (5-8). Here X1 = X ,

Table 1. Program object equations and structural congruence equations

(X;Y); Z=X; (Y ; Z) (1)
(Xn)ω=X

ω (2)
X

ω; Y =X
ω (3)

(X;Y)ω=X; (Y ; X)ω (4)
#n + 1; u1; . . . ; un; #0=#0; u1; . . . ; un; #0 (5)
#n + 1; u1; . . . ; un; #m=#n + m + 1; u1; . . . ; un; #m (6)
(#n + k + 1; u1; . . . ; un)ω=(#k;u1; . . . ; un)ω (7)
X = u1; . . . ; un; (v1; . . . ; vm+1)

ω

→ #n + m + k + 2; X = #n + k + 1; X (8)

Xn+1 = X ; Xn, n is a positive integer.
By these program object equations, the unfolding identity of repetition can

be obtained: Xω = X ; Xω.

Definition 2. A program object is finite if it does not contain repetition, oth-
erwise it is infinite.

Example 1. Examples of program objects in PGA are

1. X = +a; #3; b; !; c,
2. Y = (a; b; #2)ω.

In the next section, the behaviors of these programs are determined by means
of BPPA.

2.2 Primitives of BPPA

The basic instructions in Σ are now also called actions.

Definition 3. BPPA is defined with the following meaning

– Termination, denoted by S, yields the terminating behavior.
– Inactive behavior, denoted by D, represents the inaction behavior.
– Postconditional composition: The process P � a � Q, where a ∈ Σ,

first performs a and then proceeds with P if true was returned or with Q
otherwise.

– Action prefix: For each a ∈ Σ and process P

a ◦ P = P � a � P.

2.3 Assigning a behavior in BPPA to a program object in PGA

The behavioral extraction operator | − | assigns a behavior to a program object.

Definition 4. For finite program objects the behavior is given by

|X | = |X ; (#0)ω|.

Definition 5. The behavior |X | of an (infinite) program object X is determined
recursively by the behavior extraction equations below:

|!; X | = S,
|a; X | = a ◦ |X |,

| + a; u; X | = |u; X | � a � |X |,
| − a; u; X | = |X | � a � |u; X |,

|#0; X | = D,
|#1; X | = |X |,

|#k + 2; u; X | = |#k + 1; X |.

By means of these equations, successive steps of the behavior of a program object
can be obtained. In the case that a program has a non-trivial loop in which
no actions occur, its behavior will be identified with D. Phrased differently: if
for a behavior |X | the behavior extraction equations fail to prove |X | = S or
|X | = P � a � Q for some a ∈ Σ and for some processes P and Q, then X = D.

Example 2. The behaviors of program X and Y given in Example 1 are defined
as follows.

1. |X | = c ◦ D � a � b ◦ S,
2. |Y | = a ◦ b ◦ b ◦ · · ·

3 Basic polarized process algebra as cpo’s

This section shows that polarized processes can be modeled as a complete partial
order (cpo).

To give a denotational semantics for BPPA, we consider a model of BPPA
as a solution of the following domain equation

P = {S, D}
⋃

(P � Σ � P). (1)

where X � Σ � Y = {x � a � y|x ∈ X, y ∈ Y, a ∈ Σ}.

Definition 6. BPPAΣ is a set consisting of all finite polarized processes which
are made from S and D by means of a finite number of applications of postcon-
ditional compositions.

Intuitively, it can be seen that

Proposition 1. BPPAΣ is a model of BPPA.

Proof. Omitted.

Polarized processes can be infinite. To model an infinite process we require a
sequence of its finite approximations.

In [6], a technique based on cpo’s is described to give a model for BPPA.
The main idea of this approach is to define a binary relation v, a partial order,
on processes. The expression P v Q means that P is an approximation of Q. To
model all infinite processes the domains of some models of BPPA are required
to be complete, meaning that every increasing chain in these domains has a
supremum. It is shown that the set of projective sequences is a cpo which contains
every finite process in BPPAΣ. Hence, by completion, every infinite process made
by an increasing chain of finite approximations is contained in this model. This
implies that the model consisting of projective sequences serves as a semantics
for BPPA in a natural way. We review the following definitions and a theorem
from [6, 17].

Definition 7.

1. The partial ordering v on BPPAΣ is generated by the clauses
(a) for all P ∈ BPPAΣ, D v P , and
(b) for all P, Q, X, Y ∈ BPPAΣ, a ∈ Σ,

P v X & Q v Y ⇒ P � a � Q v X � a � Y.

2. Let (Pn)n and (Qn)n be two sequences in BPPAΣ, then

(Pn)n v (Qn)n ⇔ ∀n ∈ N Pn v Qn.

Definition 8. An increasing chain (Pn)n in BPPAΣ is a sequence satisfying

P0 v P1 v · · · v Pn v Pn+1 v · · ·

Definition 9. A complete partial order (cpo) D = (D,v) is a partially
ordered set with a least element such that every increasing chain has a supremum
in D.

In order to define a projective sequence in BPPAΣ, an operator called approxi-
mation operator that finitely approximates every process is provided.

Definition 10. For every n ∈ N, the approximation operator

πn : BPPAΣ → BPPAΣ is defined inductively by

π0(P) = D,
πn+1(S) = S,
πn+1(D) = D,
πn+1(P � a � Q) = πn(P) � a � πn(Q),

A projective sequence is a sequence (Pn)n∈N
such that for each n ∈ N,

πn(Pn+1) = Pn.

This definition suggests the existence of a collection of cpo’s which are defined
as follows

Definition 11. For all n ∈ N, BPPAn
Σ = {πn(P)|P ∈ BPPAΣ}

Proposition 2. BPPAΣ =
⋃

n∈N
BPPAn

Σ.

Proof. See [6].

Definition 12.

BPPA∞
Σ = {(Pn)n∈N|Pn ∈ BPPAn

Σ & πn(Pn+1) = Pn}

Theorem 1. (BPPA∞
Σ ,v) is a cpo and BPPAΣ ⊆ BPPA∞

Σ .

Proof. See [6].

4 Basic polarized process algebra as complete

ultra-metric spaces

In this section we will illustrate an alternative approach to give a denotational
semantics for BPPA. This approach as introduced in [5] is based on the theory
of metric spaces. We will define models of BPPA as complete metric spaces and
show that a metric space consisting of projective sequences is an appropriate
model for BPPA.

We begin by reviewing a few basic concepts of the metric topology from [12].

Definition 13. A metric space is a pair (X, d) consisting of a set X and a
metric d on X. The metric d(x, y) defined for arbitrary x and y in X is a
nonnegative, real valued function satisfying the conditions:

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x),
3. d(x, y) + d(y, z) ≥ d(x, z).

(X, d) is said to be an ultra-metric space if d satisfies the strong triangle
inequality: For all x, y, z ∈ X, d(x, z) ≤ max{d(x, y), d(y, z)}. We note that for
all x, y, z ∈ X,

d(x, z) ≤ max{d(x, y), d(y, z)} ⇒ d(x, y) + d(y, z) ≥ d(x, z).

Definition 14. Metric spaces (X, dX) and (Y, dY) are said to be isometric if
there is a bijection f : X → Y such that dX(x, y) = dY (f(x), f(y)) for all
x, y ∈ X.

We shall identify isometric spaces.

Definition 15. (xn)n is a Cauchy sequence on the space (X, d) if

∀ε > 0 ∃N ∀n, m > N d(xn, xm) < ε.

Definition 16. If every Cauchy sequence in the metric space R converges to an
element in R, R is said to be complete.

Definition 17. An ε-neighborhood of a point x in the metric space (X, d) is
the set of all points y ∈ X which satisfy the condition d(x, y) < ε. The point x
is called a contact point of (X, d) if all its neighborhoods contain at least one
point of (X, d).

Definition 18. The set of all contact points of a metric space R is denoted by
[R] and is called the closure of R.

Definition 19. Let R be an arbitrary metric space. A complete metric space R∗

is said to be the completion of the space R if:

1. R is a subspace of R∗,
2. R is everywhere dense in R∗, i.e., [R] = R∗.

It is shown in [12] that the space containing R, together with all limits of its
Cauchy sequences is a completion of R, where the distance between the limit
points x∗ = limn→∞ xn and y∗ = limn→∞ yn of R is defined as d(x∗, y∗) =
limn→∞ d(xn, yn). Furthermore, all completions of R are isometric.

We will now define a distance between two processes in BPPAΣ.

Definition 20.

1. d(S, S) = 0, d(D, D) = 0,
d(P, P ′) = 1 if P ∈ {S, D} and P ′ 6= P with P ′ ∈ BPPAΣ or vice versa,

2. d(P1 � a1 � P2, Q1 � a2 � Q2) =
{

1 if a1 6= a2,
1

2
max{d(P1, Q1), d(P2, Q2)} otherwise

with P1, Q1, P2, Q2 ∈ BPPAΣ.

Proposition 3. For all n ∈ N, (BPPAn
Σ , d) is an ultra-metric space.

Proof. We employ induction on n. The case n = 0 is trivial. Assume that
(BPPAk

Σ , d) is an ultra-metric space for all k ≤ n. We will show that (BPPAn+1

Σ , d)
is also an ultra-metric space. Let P, Q ∈ BPPAn+1

Σ .

1. If P = Q then clearly d(P, Q) = 0. Suppose that d(P, Q) = 0, we will show
that P = Q. The case P ∈ {S, D} or Q ∈ {S, D} is trivial. If P = P1�a1�P2

and Q = Q1 � a2 � Q2 then P1, Q1, P2, Q2 ∈ BPPAn
Σ. Since d(P, Q) = 0,

a1 = a2. Thus,

d(P, Q) =
1

2
max{d(P1, Q1), d(P2, Q2)}.

This implies that d(P1, Q1) = d(P2, Q2) = 0. Applying the induction hy-
pothesis, we have P1 = Q1 and P2 = Q2. Therefore, P = Q.

2. d(P, Q) = d(Q, P) follows from the definition.
3. It will be shown that d(P, Q) ≤ max{d(P, R), d(R, Q)}. If P or Q or R

∈ {S, D}, this is trivial. If P = P1 � a1 � P2, Q = Q1 � a2 � Q2 and
R = R1 � a3 � R2, then P1, P2, Q1, Q2, R1, R2 ∈ BPPAn

Σ. There are two
cases for a1, a2 and a3:
(a) a3 6= a1 or a3 6= a2. Then the right-hand side equals 1. Hence it is always

greater or equal than the left-hand side.
(b) a1 = a2 = a3. Then it follows from the induction hypothesis that

max{d(P1, Q1), d(P2, Q2)} ≤
max{d(P1, R1), d(P2, R2), d(R1, Q1), d(R2, Q2}.

Thus d(P, Q) ≤ max{d(P, R), d(R, Q)}.

Therefore, (BPPAn
Σ , d) is an ultra-metric space.

Proposition 4. BPPAΣ is an ultra-metric space.

Proof. This follows from Proposition 2 and Proposition 3.

Since (BPPAΣ, d) is a metric space, it has a completion, say (BPPA∗
Σ , d), which

consists of all limits of Cauchy sequences in (BPPAΣ, d).

Definition 21. If P and Q are two processes which are represented by the
Cauchy sequences (Pn)n and (Qn)n in BPPAΣ then

d(P, Q) = lim
n→∞

d(Pn, Qn).

P and Q are said to be equivalent if d(P, Q) = 0.

It will be shown that (BPPA∗
Σ , d) is a solution of (1), i.e.,

Lemma 1.

BPPA∗
Σ = {S, D}

⋃

(BPPA∗
Σ � Σ � BPPA∗

Σ).

Proof.

1. (⊇): Since {S, D} ⊆ BPPAΣ , {S, D} ⊆ BPPA∗
Σ . We prove that if P, Q ∈

BPPA∗
Σ then (P �a�Q) ∈ BPPA∗

Σ . Since P, Q ∈ BPPA∗
Σ , P = limn→∞ Pn,

Q = limn→∞ Qn for some Cauchy sequences (Pn)n and (Qn)n. It is not hard
to see that (Pn � a � Qn)n is also a Cauchy sequence and P � a � Q =
limn→∞ Pn � a � Qn. Thus, P � a � Q ∈ BPPA∗

Σ .
2. (⊆): If P ∈ BPPA∗

Σ then P = S or P = D or P = Q � a � R, Q, R ∈
BPPA∗

Σ . We only consider the case P /∈ {S, D}. Since P ∈ BPPA∗
Σ , P =

limn→∞ Pn for some Cauchy sequence (Pn)n. Without lack of generality we
can assume that for all n, Pn = Qn � a � Rn. Since (Pn)n is a Cauchy
sequence and d(Pn, Pm) = 1

2
max{d(Qn, Qm), d(Rn, Rm)}, (Qn)n and (Rn)n

are also Cauchy sequences. Therefore, there exist Q and R in BPPA∗
Σ such

that Q = limn→∞ Qn, R = limn→∞ Rn. Hence P = Q � a � R.

Lemma 1 indicates that the completion (BPPA∗
Σ, d) of (BPPAΣ, d) is a model

for BPPA. The problem with this model is that each process in (BPPA∗
Σ, d) can

be represented by many equivalent Cauchy sequences. We will show that the
metric space (BPPA∞

Σ , d) achieves a model consisting of all representations from
equivalent Cauchy sequences in a unique way. First, we provide some supporting
results.

Lemma 2. For all P ∈ BPPAΣ and for all n ∈ N, πn(πn+1(P)) = πn(P).

Proof. This is proven by induction on n.

Lemma 3. For all (Pn)n ∈ BPPA∞
Σ , n ∈ N and for all k < n, Pk = πk(Pn).

Proof. We employ induction on n.

1. If n = 0 then it follows from Definition 12 that P0 = π0(P1).
2. n > 0. Assume that for all k < n, Pk = πk(Pn). It will be shown that for all

k < n + 1, Pk = πk(Pn+1). We distinguish three cases:
(a) If Pn+1 = D then for all k < n + 1, Pk = πk(D) = D.
(b) If Pn+1 = S then P0 = π0(S) = D and for all 0 < k < n + 1, Pk =

πk(S) = S.
(c) If Pn+1 = P1 � a � P2 then it follows from Definition 12 that

Pn = πn(Pn+1) = πn−1(P1) � a � πn−1(P2).

Therefore, Pn−1 = πn−2(πn−1(P1)) � a � πn−2(πn−1(P2)). Applying
Lemma 2, we have Pn−1 = πn−1(Pn+1) and so on. Thus, for all k < n+1,
Pk = πk(Pn+1).

Lemma 4. For all P, Q ∈ BPPAΣ and for all n ∈ N,

d(πn(P), πn(Q)) ≤ d(πn+1(P), πn+1(Q))

Proof. Omitted.

Proposition 5. For all (Pn)n, (Qn)n ∈ BPPA∞
Σ , d(Pn, Qn) is a non-decreasing

sequence. Therefore,

lim
n→∞

d(Pn, Qn) =
⊔

n∈N

d(Pn, Qn).

Proof. We show that for all n ∈ N, d(Pn, Qn) ≤ d(Pn+1, Qn+1). For each n, it
follows from Lemma 3 that there exist P, Q ∈ BPPAΣ such that for all k ≤ n+1,
Pk = πk(P), Qk = πk(Q). By Lemma 4,

d(Pn, Qn) = d(πn(P), πn(Q)) ≤ d(πn+1(P), πn+1(Q)) = d(Pn+1, Qn+1).

Lemma 5. Let P, Q ∈ BPPAΣ. Then for all n ∈ N,

d(P, Q) ≤
1

2n
⇔ πn(P) = πn(Q).

Proof. This is proven by induction on n.

Proposition 6. Every element of BPPA∞
Σ is a Cauchy sequence.

Proof. Let (Pn)n be a element in BPPA∞
Σ . By Lemma 3, for all m, n ∈ N, m >

n > 0, Pn−1 = πn−1(Pn) = πn−1(Pm). Therefore, by Lemma 5, d(Pn, Pm) ≤
1

2n−1 . This implies that (Pn)n is a Cauchy sequence.

Lemma 6. Let Q be an element in BPPA∗
Σ. Then there exists P in BPPA∞

Σ

such that P = Q.

Proof. Since Q is an element in BPPA∗
Σ, Q = limn→∞ Qn for some Cauchy

sequence (Qn)n. To see that there exists P ∈ BPPA∞
Σ such that P = Q, we will

choose a sequence of natural numbers N0, N1, . . . such that πn(πn+1(QNn+1
)) =

πn(QNn
). Let Pn = πn(QNn

) for all n ∈ N. Then P = (Pn)n is an element of
BPPA∞

Σ . We claim that d(P, Q) = 0.
Since (Qn)n is a Cauchy sequence, we have that

∀ε > 0 ∃N ∈ N ∀m, n > N d(Qm, Qn) < ε.

– Let ε = 1

20 . Then there exists N0 ∈ N such that for all m, n ≥ N0, d(Qm, Qn) <
1

20 . It follows from Lemma 5 that for all n ≥ N0,

Qn ∈ S0 = {Q ∈ BPPAΣ |π0(Q) = π0(QN0
)}.

– Let ε = 1

21 . Then there exists N1 ∈ N such that for all m, n ≥ N1, d(Qm, Qn) <
1

21 . Thus, for all n ≥ N1,

Qn ∈ S1 = {Q ∈ BPPAΣ |π1(Q) = π1(QN1
)}.

Since QN1
is also in S0, π0(QN1

) = π0(QN0
). By Lemma 2,

π0(π1(QN1
)) = π0(QN1

) = π0(QN0
).

In this way, we can choose a sequence of natural numbers N0, N1, . . . such that
πn(πn+1(QNn+1

)) = πn(QNn
). To see that d(P, Q) = 0, consider m, n ∈ N

such that m > max{Nn, n}. Then πn(Qm) = πn(QNn
) = Pn = πn(Pm). Thus,

d(Pm, Qm) < 1

2n
. Hence

limm→∞ d(Pm, Qm) = 0 or d(P, Q) = 0.

It follows from Proposition 6 and Lemma 6 that

Theorem 2. (BPPA∞
Σ , d) is the completion of (BPPAΣ , d).

In addition, pointwise equal processes in (BPPA∞
Σ , d) are identified. That is,

Proposition 7. For all P = (Pn)n, Q = (Qn)n in (BPPA∞
Σ , d),

P = Q ⇔ ∀n ∈ N Pn = Qn.

Proof. This follows from Proposition 5.

The previous results show that BPPA∞
Σ is an appropriate model for BPPA. We

call this model the projective limit model of BPPA.

5 The uniqueness of regular processes in BPPA

Regular processes are investigated in various concurrency theories [14, 13, 8].
In this section, based on Banach’s fixed point theorem, we will show that the
specification of regular processes as defined in [11] has a unique solution. This
suggests the existence of a model consisting of regular processes for BPPA.

Let us recall the definition of regular processes from [11] and a few basic
concepts of fixed points from [15].

Definition 22. Let Σ be a set of actions. A process P is regular over Σ if
P = E1, where E1 is defined by a finite system of the form (n ≥ 1):

{Ei = ti|1 ≤ i ≤ n, ti = S or ti = D or ti = Ei,r � ai � Ei,l}

with Ei,r , Ei,l ∈ {E1, . . . , En} and ai ∈ Σ.

Definition 23. An element x ∈ X is said to be a fixed point of a function
f : X → X if f(x) = x.

Definition 24. Let (X, d) be a metric space. A function f : X → X is a con-

traction mapping if there is a real number c < 1 such that d(f(x), f(y)) <
c · d(x, y) for each x, y ∈ X.

Theorem 3. (Banach) Every contraction mapping of a complete metric space
has a unique fixed point.

Proof. See [15].

We extend the metric on a set M to Mn (n ≥ 1) as follows

Definition 25. Let (M, d) be a metric space. Let X, Y ∈ Mn for some n ≥ 1,
X = [X1, . . . , Xn], Y = [Y1, . . . , Yn]. Then

d(X, Y) = max
i≤n

d(Xi, Yi).

Then, it is not hard to see that

Proposition 8. If (M, d) is complete then so is (Mn, d) for all n ≥ 1.

Proof. Omitted.

We will now consider a regular process as a component of the solution of the
equation X = T (X), where the definition of T is given as follows

Definition 26. Let T : (BPPA∞
Σ)n → (BPPA∞

Σ)n be defined such that

T = λX.[t1(X), . . . , tn(X)]

where
ti = λX1, . . . , Xn.S or
ti = λX1, . . . , Xn.D or
ti = λX1, . . . , Xn.Xi,l � ai � Xi,r

with Xi,l, Xi,r ∈ {X1, . . . , Xn}.

Theorem 4. T has a unique fixed point.

Proof. Let I be the set of all indexes i such that ti = Xi,l � ai � Xi,r. To show
uniqueness, let X, Y be elements of (BPPA∞

Σ)n . We note that d(ti(X), ti(Y)) =
0 if i /∈ I , since ti(X) is a constant, and
d(ti(X), ti(Y)) = 1

2
max{d(Xi,l, Yi,l), d(Xi,r , Yi,r)} otherwise. Then by Definition

25 we have

d(T (X), T (Y)) = maxi≤n d(ti(X), ti(Y))
= maxi∈I (

1

2
max{d(Xi,l, Yi,l), d(Xi,r, Yi,r)})

≤ 1

2
maxi≤n d(Xi, Yi) = 1

2
d(X, Y).

From Definition 24 it follows that T is a contraction mapping. Since BPPA∞
Σ

is complete, it follows from Proposition 8 that (BPPA∞
Σ)n is also complete. By

Banach’s fixed point theorem T has a unique solution.

The previous theorem implies that the specification of a regular process deter-
mines a unique process. This suggests the following definition.

Definition 27. BPPAr/= is the set of regular processes in BPPA∞
Σ modulo

equivalence.

Proposition 9. BPPAr/= is a model of BPPA.

Proof. Omitted.

6 Comparing the models of BPPA

In this section we compare several models of BPPA. First of all, the two mod-
els (BPPA∞

Σ ,v) and (BPPA∞
Σ , d) are compared by means of compatibility. Af-

ter that, we introduce another model, denoted by BPPAω
Σ, consisting of all

Cauchy sequences in BPPAΣ. The extensions of the metric spaces (BPPA∞
Σ , d)

and (BPPAω
Σ ,d) with the abstraction operator (see [2]) are discussed.

We use the following definition from [4].

Definition 28. A cpo (D,v) and a complete metric space (M, d) are said to
be compatible if D = M and

⊔

n xn = limn→∞ xn for each monotone Cauchy
sequence (xn)n.

Proposition 10. Let (Pn)n be an increasing chain in BPPAΣ. Then

∀n ∃N ∀m > N πn(Pm) = πn(PN).

Proof. We distinguish two cases. If for all m, Pm ∈ {D, S} then there exists
a minimal N such that for all m > N , Pm = PN . Thus, for all n, πn(Pm) =
πn(PN). The other case is that there exists a minimal N0 such that for all
m ≥ N0, Pm = Qm � a � Rm. It is not hard to see that (Qm)m and (Rm)m are
also increasing chains. We note that for all m < N0, Qm = Rm = D. We employ
induction on n.

1. If n = 0 then clearly N = 1.
2. If n > 0 then for all m ≥ N0, πn(Pm) = πn−1(Qm)�a�πn−1(Rm). Applying

the induction hypothesis, there exist N1 and N2 such that for all m > N1,
πn−1(Qm) = πn−1(QN1

) and for all m > N2, πn−1(Rm) = πn−1(RN2
). Let

N = max{N0, N1, N2}. Then for all m > N , πn(Pm) = πn(PN).

Therefore, for all n ∈ N, there exists N ∈ N such that for all m > N , πn(Pm) = πn(PN).

Lemma 7. Every increasing chain (Pn)n in BPPAΣ is a Cauchy sequence and
⊔

n Pn = limn→∞ Pn.

Proof. Let P =
⊔

n Pn. It follows from Proposition 10 and Lemma 5 that for all
n ∈ N, there exists N ∈ N such that for all m > N , d(Pm, P) < 1

2n
. This implies

that limn→∞ Pn = P . Therefore, (Pn)n is a Cauchy sequence and
⊔

n Pn =
limn→∞ Pn.

It follows that

Lemma 8. (BPPA∞
Σ ,v) and (BPPA∞

Σ , d) are compatible.

We now compare the two complete metric spaces (BPPA∞
Σ , d) and (BPPAω

Σ , d)
by investigating the continuity property of the abstraction operator in these
spaces.

Definition 29.

BPPAω
Σ = {(Pn)n∈N|(Pn)nis a Cauchy sequence in BPPAΣ}

By Proposition 6 and Lemma 6, we have that

Proposition 11. P ∈ (BPPA∞
Σ , d) ⇔ P ∈ (BPPAω

Σ , d).

Assume that there exists a basic internal action t ∈ Σ which does not have any
side effects and always replies true. This action can be abstracted by an operator
called abstraction operator which replaces occurrences of t by silent steps. We
recall the following definitions and a lemma of abstraction from [7].

Definition 30.

1. Let τ ◦ : BPPAΣ → BPPAΣ be defined by

τ ◦ P = P.

2. Let τt : BPPAΣ → BPPAΣ be defined by

τt(S) = S,
τt(D) = D,
τt(P � t � Q) = τ ◦ τt(P),
τt(P � a � Q) = τt(P) � a � τt(Q) (a 6= t ∈ Σ).

In [7], the authors show that the abstraction operator is monotone, i.e.,

Lemma 9. For all P, Q ∈ BPPAΣ,

P v Q ⇔ τt(P) v τt(Q).

Proof. See [7].

Definition 31. For P = (Pn)n∈N ∈ BPPA∞
Σ , let

τt(P) =
⊔

n

τt(Pn).

It will be shown that abstraction can be easily extended to the metric space
(BPPA∞

Σ , d), i.e.,

Proposition 12. For all elements P of the metric space BPPA∞
Σ ,

τt(P) ∈ (BPPA∞
Σ , d).

Proof. Let P = (Pn)n. Then for all n,

Pn = πn(Pn+1) v Pn+1.

By Lemma 9, (τt(Pn))n is an increasing chain. It follows from Lemma 7 that
τt(P) ∈ (BPPAω

Σ , d). By Proposition 11, τt(P) ∈ (BPPA∞
Σ , d).

This means that abstraction is continuous in (BPPA∞
Σ , d). We will now consider

the continuity property of this operator in (BPPAω
Σ, d).

Proposition 13. The abstraction operator is not continuous in
(BPPAω

Σ , d), i.e., there exists an element P = (Pn)n of (BPPAω
Σ, d) such that

limn→∞ τt(Pn) 6= τt(P).

Proof. Let (Pn)n be defined as follows

(Pn)n = D, t ◦ S, t2 ◦ D, . . . , t2n ◦ D, t2n+1 ◦ S, . . .

It is not hard to see that (Pn)n is a Cauchy sequence. Let P = (Pn)n. Then
P ∈ (BPPAω

Σ , d). Therefore, by Proposition 11 and Proposition 12, there exists
τt(P) in the space (BPPAω

Σ , d). However, the sequence

(τt(Pn))n = D, S, D, . . . , D, S, . . .

is not a Cauchy sequence. Thus, it does not have a limit in (BPPAω
Σ , d). There-

fore, limn→∞ τt(Pn) 6= τt(P).

7 Concluding remarks

In this paper, we have considered various issues in giving a denotational seman-
tics for BPPA, a formal semantics for PGA.

We have presented several models for BPPA. Based on the methodology of
[5], we have shown that the projective limit model BPPA∞

Σ is an appropriate
model for BPPA. The advantage of BPPA∞

Σ is that it comprises also infinite
processes in a unique way and can be easily extended with the abstraction oper-
ator. Furthermore, we have proved that the specification of a regular process has
a unique solution. This indicates the existence of the model BPPAr/= consist-
ing of regular processes modulo equivalence in BPPA∞

Σ . To compare the various
models of BPPA, it has been proved that (BPPA∞

Σ ,d) and the model based on
complete partial orders (BPPA∞

Σ ,v) are compatible. We also have shown that
the model consisting of Cauchy sequences BPPAω

Σ cannot be extended with the
abstraction operator in a natural way.

Finally, it should be noted that the model BPPAΣ is a submodel of BPPAr/=

while BPPAr/= , in turn, is a submodel of BPPA∞
Σ .

Acknowledgment

I thank Inge Bethke for her stimulating discussions and constructive comments.

References

1. P. America and J. Rutten. Solving recursive domain equations in a category of
complete metric spaces. J. Computer and System Sciences, 39 (3):343–375, 1989.

2. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theo-
retical Computer Science 18. Cambridge University Press, 1990.

3. C. Baier and M. Majster-Cederbaum. Denotational semantics in the cpo and metric
approach. Theoretical Computer Science, 135:171–220, 1994.

4. C. Baier and M. Majster-Cederbaum. The connection between initial and unique
solutions of domain equations in the partial order and metric approach. Formal
Aspects of Computing, 9:425–445, 1997.

5. J.W. Bakker and J.I. Zucker. Processes and the denotational semantics of concur-
rency. Information and Control, 54(1/2):70–120, 1982.

6. J.A. Bergstra and I. Bethke. Polarized process algebra and program equivalence.
ICALP, 2003.

7. J.A. Bergstra and I. Bethke. Polarized process algebra with reactive composition.
To appear.

8. J.A. Bergstra and J.W. Klop. The algebra of recursively defined processes and the
algebra of regular processes. ICALP, 11:82–95, 1984.

9. J.A. Bergstra and M.E. Loots. Program algebra for component code. Formal
Aspects of Computing, 12:1–17, 2000.

10. J.A. Bergstra and M.E. Loots. Program algebra for sequential code. J. Logic
Algebr. Programming, 51:125–156, 2002.

11. I. Bethke and A. Ponse. Programma-algebra, een inleiding tot de programmatuur
(in Dutch). Amsterdam University Press, Vossiuspers, 2003.

12. A.N. Kolmogorov and S.V. Fomin. Elements of the theory of functions and func-
tional analysis. Graylock press, Rochester, N.Y, 1957.

13. G.J. Milne. Abstraction and nondeterminism in concurrent systems. IEEE, 3:358–
364, 1982.

14. R. Milner. A calculus of communicating system. LNCS 92. Springer Verlag, Berlin,
1980.

15. G.E. Shilov. Elementary Functional Analysis II. The MIT Press, Cambridge,
Massachusetts and London, 1974.

16. M.B. Smyth and G.D. Plotkin. The category-theoretic solution of recursive equa-
tion. SIAM J. Comput., 11:761–783, 1982.

17. V. Stoltenberg-Hansen, I. Lindstrom, and E.R. Griffor. Mathematical Theory of
Domains. Cambridge Tracts in Theoretical Computer Science 22. Cambridge Uni-
versity Press, 1994.

18. J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Semantics. Cambridge University Press, Cambridge, Massachusetts,
1977.

Electronic Reports Series of the Programming Research Group

Within this series the following reports appeared.

[PRG0503] T.D. Vu, Metric Denotational Semantics for BPPA, Programming Research Group - University of
Amsterdam, 2005.

[PRG0502] J.A. Bergstra, I. Bethke, and A. Ponse, Decision Problems for Pushdown Threads, Programming
Research Group - University of Amsterdam, 2005.

[PRG0501] J.A. Bergstra and A. Ponse, A Bypass of Cohen’s Impossibility Result, Programming Research Group -
University of Amsterdam, 2005.

[PRG0405] J.A. Bergstra and I. Bethke, An Upper Bound for the Equational Specification of Finite State Services,
Programming Research Group - University of Amsterdam, 2004.

[PRG0404] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Strategic Interleaving, Programming
Research Group - University of Amsterdam, 2004.

[PRG0403] B. Diertens, A Compiler-projection from PGLEc.MSPio to Parrot, Programming Research Group -
University of Amsterdam, 2004.

[PRG0402] J.A. Bergstra and I. Bethke, Linear Projective Program Syntax, Programming Research Group -
University of Amsterdam, 2004.

[PRG0401] B. Diertens, Molecular Scripting Primitives, Programming Research Group - University of
Amsterdam, 2004.

[PRG0302] B. Diertens, A Toolset for PGA, Programming Research Group - University of Amsterdam, 2003.

[PRG0301] J.A. Bergstra and P. Walters, Projection Semantics for Multi-File Programs, Programming Research
Group - University of Amsterdam, 2003.

[PRG0201] I. Bethke and P. Walters, Molecule-oriented Java Programs for Cyclic Sequences, Programming
Research Group - University of Amsterdam, 2002.

The above reports and more are available through the website: www.science.uva.nl/research/prog/

Electronic Report Series

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

