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Decision Problems for Pushdown Threads

Jan A. Bergstra!2, Inge Bethke!, and Alban Ponse!

! University of Amsterdam, Faculty of Science, Programming Research Group*
2 Utrecht University, Department of Philosophy, Applied Logic Group

Abstract. Threads as contained in a thread algebra emerge from the
behavioral abstraction from programs in an appropriate program alge-
bra. Threads may make use of services such as stacks, and a thread
using a single stack is called a pushdown thread. Equivalence of push-
down threads is shown decidable whereas pushdown thread inclusion is
undecidable. This is again an example of a borderline crossing where the
equivalence problem is decidable, whereas the inclusion problem is not.

1 Introduction

A challenging question in language theory is to decide whether the languages
accepted by two different machines in some given class are the same. This ques-
tion is called the equivalence problem. Another important question, known as
the inclusion problem, is that of determining whether one language is a subset of
another. The most obvious connection between these two problems is that the
latter implies the former, that is, that any algorithm that decides inclusion for
some family of languages can also be used to decide equivalence. The question
then arises whether the converse holds, i.e., whether there are natural examples
of language families with a decidable equivalence problem and an undecidable
inclusion problem.

In 1973, Bird [8] found that the languages accepted by two-tape Rabin and
Scott machines possess a decidable equivalence problem and an undecidable in-
clusion problem. Valiant explored this question further, finding two other families
exhibiting this feature: the languages accepted by deterministic finite-turn push-
down automata [23] and deterministic one-counter pushdown automata [24]. In
1976, Friedman [10] investigated another subclass of deterministic pushdown au-
tomata—simple machines that have only one state and operate in real-time—and
showed that these languages indeed have an undecidable inclusion problem. More
recently, e.g. erasing and nonerasing pattern languages [14, 18] and deterministic
context-free languages [9] have been added to this growing list.

In this paper we investigate yet another class: pushdown threads, a form of
processes describing sequential program behaviour and using the services offered
by a single stack. In this approach, threads as contained in a thread algebra
emerge from the behavioral abstraction of sequential programs. A basic thread

* www.science.uva.nl/~{janb, inge, alban}. We thank the organizers of the Logic
Colloquium 2005 in Athens for providing the opportunity to present this paper.



models a finite program behaviour to be controled by some execution environ-
ment: upon each action (e.g. a request for some service), a reply true or false
from the environment determines further execution. Any execution trace of a
basic thread ends either in the (successful) termination state or in the dead-
lock state. Both these states are modeled as special thread constants. Regular
threads extend basic threads by comprising loop behaviour, and are reminiscent
of flowcharts [15,11]. Threads may make use of services, i.e., devices that con-
trol (part of) their execution by consuming actions, providing the appropriate
reply, and suppressing observable activity. Regular threads using the service of
a single stack are called pushdown threads. Apart from the distinction between
deadlock and termination, pushdown threads are comparable to pushdown au-
tomata. We show that quivalence of pushdown threads is decidable, whereas
pushdown thread inclusion is undecidable.

The paper is structured as follows: in Section 2, we outline the fundamen-
tal properties of thread algebra. In Section 3, we show that equivalence between
pushdown threads is decidable by reducing the equivalence problem for determin-
istic pushdown automata [19, 21, 22] to our equivalence problem. In Section 4, we
prove that inclusion is undecidable for pushdown threads. Here we reduce the
halting problem for Minsky machines to the inclusion problem—an approach
also taken in Jancar et al. [13]. In Section 5 we shortly discuss a programming
notation for the specification of pushdown threads. The paper ends with some
conclusions in Section 6.

2 Threads and services

Basic thread algebra [6]%, BTA, is a form of process algebra which is tailored for
the description of sequential program behaviour. Based on a finite set of actions
A, it has the following constants and operators:

— the termination constant S,
— the deadlock or inaction constant D,
— for each a € A, a binary postconditional composition operator - <la D> _.

We use action prefizing a o P as an abbreviation for P < a > P and take o to
bind strongest. Furthermore, for n € N we define a” o P by a® o P = P and
a"tloP=aqo(a"o P).

The operational intuition behind this algebraic framework is that each action
represents a command which is to be processed by the execution environment
of the thread. More specifically, an action is taken as a command for a service
offered by the environment. The processing of a command may involve a change
of state of this environment. At completion of the processing of the command, the
service concerned produces a reply value. This reply is either true or false and is
returned to the thread under execution. The thread P <a > @ will then proceed

3 In [5], basic thread algebra is introduced under the name basic polarized process
algebra.



as P if the processing of a leads to the reply true indicating the successful
processing of a, and it will proceed as @ if the processing of a leads to the
unsuccessful reply false.

BTA can be equipped with a partial order and an approzimation operator in
the following way:

1. C is the partial ordering on BTA generated by the clauses
(a) for all P € BTA, D C P, and
(b) for all Pi,P>,Q1,Q2 € BTA, a € A,

PCQi&PCQR:=>PdalbPCQidal>Qs.

2. m : Nx BTA — BTA is the approximation operator determined by the
equations
(a) for all P € BTA, «(0,P) =D,
(b) foralln e N, 7(n+1,S) =S, n(n+1,D) =D, and
(c) for all P,Q € BTA;neN,

m(n+1,Pda> Q) =7(n,P) dal n(n,Q).
We further write m, (P) instead of 7(n, P).

The operator 7 finitely approximates every thread in BTA. That is, for all P €
BTA,

IneNmP)Em((P)C---Cmy(P) =mpp1(P)=---=P.

Every thread in BTA is finite in the sense that there is a finite upper bound
to the number of consecutive actions it can perform. Following the metric theory
of [1] in the form developed as the basis of the introduction of processes in [4],
BTA has a completion BTA* which comprises also the infinite threads. Standard
properties of the completion technique yield that we may take BTA™ as the cpo
consisting of all so-called projective sequences. That is,

BTA® = {(P,)nen | Vn € N (P, € BTA & 7,(Pny1) = P,)}

with
(PH)HEN E (Qn)nEN < Vn S N Pn E Qn

and
(Pn)neN = (Qn)neN <:> Vn E D\J P = Qn

For a detailed account of this construction see [2]. In this c¢po structure, finite
linear recursive specifications represent continuous operators having as unique
fixed points regular threads, i.e., threads which can only reach finitely many
states. A finite linear recursive specification over BTA™ is a set of equations

X; = t;(X)

for i € I with I some finite index set and all ¢;(X) of the form S, D, or X;, <
a; > Xir for i;,i, € I.



Ezample 1. We define the regular threads

1. a" oD,
2. a”oS and
3. a® (this informal notation will be often used in the sequel)

as the fixed points for X in the specifications

1. X1 =a0Xs,...,X.1=0a0X,,X, =D,
2. Xy =ao0Xo,...., X1 =0a0X,,X, =S5,
3. X1 = ao X1, respectively.

Both a™ oD and a™ oS are finite threads; a™ is the infinite thread corresponding
to the projective sequence (Pp,)nen with P = D and P,41 = a o P,. Observe
that e.g. a®” oD C a” oS, a” oD LC a* but a® oS I a*.

In reasoning with finite linear specifications, we shall from now on identify
variables and their fixed points. For example, we say that P is the regular thread
defined by P = ao P instead of stating that P equals the fixed point for X in the
finite linear specification X = a o X. Furthermore, in a finite linear specification

P = tl(P)a'--aPn = tn(P)a (1)

the threads P; will also be referred to as states. As another example following
this convention, we show that for regular threads P and @, P C @ is decidable
(recall that C is decidable for finite threads). Because one can always take the
disjoint union of two recursive specifications, it suffices to show that P; C P; is
decidable in (1) above. This follows with finite approximations from the following
assertion (the idea being that any loop has at most length n):

Vi,j <n mn(P) Emn(P) = P C P (2)
where m;(P,) is defined by m;(t;(P)). To prove (2), assume that n > 1 (otherwise
the implication follows trivially). Choose 4, j and assume that 7,(P;) C 7, (Pj).
Suppose P; Z P;. Then for some k > n, m(P;) & m(P;) while my_1(F;) C
mk—1(P;). So there exists a trace of length k from P; of the form

bfalse

P,vﬂ)Pi,—L..

that is not a trace of P;, while by the assumption the first n actions of this trace
are a trace of P;. These n actions are connected by n+1 states, and because
there are only n different states, a repetition occurs in this sequence of states.
So the trace witnessing 7y (P;) Z 7,(P;) can be made shorter, contradicting k’s
minimality and hence the supposition. Thus P; C P;. As a corollary, also P = @
is decidable for regular threads P and Q.



A service? is a pair (¥, F) consisting of a set X of special actions and a reply
function F'. The reply function F of a service (¥, F') is a mapping that gives for
each finite sequence of actions from X the reply produced by the service. This
reply is a Boolean value true or false.

Example 2. Services that will occur in Section 3 and 4 are

1. C = (X, F) with ¥ = {inc,dec} consisting of the increase and decrease
actions of a natural number counter and the reply function F' which always
replies true to increase actions and false to decrease actions if and only if
the counter is zero. We denote by C'(n) a counter with value n.

2. S = (X, F) with ¥ = {push:i, topeq:i,empty,pop | ¢ = 1,...,n} for some
n where push:¢ pushes ¢ onto the stack and yields reply true, the action
topeq:¢ tests whether 4 is on top of the stack, empty tests whether the stack
is empty, and pop pops the stack if it is non-empty with reply true and yields
false otherwise. We denote by S(a) a stack with contents a € {1,...,n}*.
Observe that counters can be seen as particular stacks (take n = 1).

In order to provide a specific description of the interaction between a thread and
a service, we will use for actions the general notation c.a where c is the so-called
channel and a is the so-called co-action. In particular, we will write e.g. c.inc to
denote the action which increases a counter via channel c and s.pop to denote
the action which pops a stack via channel s . For a service S = (¥, F) and a
finite thread P, the defining rules for P/c S (the thread P wusing the service S
via channel ¢) are:

SleS =5,

D/CS:Da
(PO abQ)feS=(P/eS)dcab (Qfed)ifc £,
(PLcal>Q)/cS=P/cS if a€ X and F(a) = true,
(PLcalQ)/cS=Q/). S if a€ X and F(a) = false,
(Pdcal>@)/cS=Difag X.

where 8’ = (¥, F') with F'(¢) = F(ao) for all co-action sequences o € X T. The
use operator is expanded to infinite threads P by stipulating

Ple § = (m(P)/c S)nen-

As a consequence, P/.S = D if for any n, 7, (P) /c S = D. Finally, repeated appli-
cations of the use operator bind to the left, thus P/co So/c1S1 = (P/c0 So)/c1 S1-

Ezample 8. We consider again the threads a” oD, a™ oS and a* from Example 1
but now in the versions c.a™ oD (short for (c.a)®oD), c.a” oS and c.a* for some
channel c and some service S = (¥, F) with a € X. Then (c.a” o D)/c S = D,
(c.a®0S)/c S =S but c.a®/c § = D. The last identity can also be retrieved as

* In [7] a service is called a state machine.



follows: if P = c.ao P, then P/c S = (c.ao P)/c S = P/c §'. In this way, the
computation will diverge, characterizing the rule: “If for a regular thread P the
defining rules for Plc S fail to prove P/c S =S or m(P/c 8) = boD for some
action b, then P/c S =D”.

In the next example we show that the use of services may turn regular threads
into irregular ones.

Ezample 4. Let a € A. Consider the following regular process P: °
P = (cO0.inco P)<al> ((P dc0.dec>D) dal> (D <cl0.dec> P)).
With the counter C' defined in Example 2, define for n € N the thread P,, by
Prn = Pleo C(n).
This definition yields the following infinite recursive specification:

Po= P <
Prt1 = Pry2 S

Now assume that P, C P,, for some n > m. Then, by definition of P,
(following the rightmost branches of <a>),

(,Pnfmfl dal D) C (D dab PO)

It is clear that C does not hold, thus we obtained a contradiction and Py, Z Ph,.
In the same way it follows that P, 2 Py, if n > m. We conclude that Py is not
regular: for each k € N, the state P, can be reached, and if n # m, then the
states P, and P,, are different. &

We call a regular thread that uses a stack or a counter as described in Ex-
ample 2 a pushdown thread (typically, any thread Py defined in Example 4 is a
pushdown thread).

3 Decidable equality

In this section we prove the decidability of P/s S(a) = Q/s S(8) for regular
threads P and (), and a stack S over some finite data type with contents «,
respectively 3. We first discuss deterministic pushdown automata (dpda’s) and
recall the decidability result establishing dpda-equivalence (Sénizergues [19, 21]).
We base our approach on Stirling’s account of this result in [22], as this is closer
to our setting. In the sequel we write € for the empty sequence over any alphabet.

5 Note that a linear recursive specification requires (at least) six equations in this
case.

6 Note that for all n, P, C o> (this follows from 74(Pxr) C 7 (a™) = a* o D for all k)
and P, £ S. We will use these properties in Section 4.



A pushdown automaton (pda) A is given by a finite set P of states, a finite
set S of stack symbols, a finite alphabet A, and a finite set of basic transitions
of the form

Pz % Qo

with P,Q € P,z €S, a € AU {e}, and o € S*. Expressions of the form Px are
further called source-configurations. A configuration of A is any expression Pa
whose behaviour is determined by the basic transitions and the prefix rule

if Px % Qo then Pxf -2 Qap.
The language accepted by a configuration Pa, notation
L(A, Pa),

is {w € A* | 3Q € P.Pa = Q} where the extended transitions for words are
defined as expected. Note that e-transitions are swallowed in the usual fashion
and that acceptance is by empty stack.

A deterministic pushdown automaton (dpda) .4’ has three restrictions on its
basic transitions:

— if Pr 23 Qo and Px -2 RS for a € A, then Q = R and a = f3,

— if Px — Qa and Px — R\ then a = ¢,

— if Pz — Qa then a = € (so e-transitions can only pop the stack; in [21]
this case is referred to as a normalized dpda).

Note that the language accepted by any configuration of a dpda A’ is prefix-free:
if w is accepted then no proper prefix of w is accepted. For dpda’s it is decidable
whether L(A', Pa) = L(A',QB) ([19,21]). With this decidability result we can
prove the main result of this section:

Theorem 1. For regular threads P and Q, and a stack S over a finite data type
it 4s decidable whether

Pfs S(a) = Q/s S(B);

where a, B represent the contents of S.
Proof. Let S be the (empty) stack controlled by the actions
{s.push:i, s.topeq:i, s.empty, s.pop | i = 1,...,n}

for some n > 1. We write S(«) if the stack contains the elements from sequence
a € {1,..,n}* with the leftmost element of o on top. Furthermore, s.push:
pushes ¢ onto the stack and yields reply true, the action s.topeq: tests whether
1 is on top of the stack, s.empty tests whether the stack is empty, and s.pop pops
the stack if it is non-empty (reply true) and yields false otherwise. Finally, we
assume that in P and () there are external actions ag, ..., an,, and that P and
Q) are given by a single finite linear specification. Using five transformations,
we reduce the dpda-equivalence problem as discussed above to the question

P/s S(a) = Q/s S(B)-



Adapting the stack contents. In order to use the dpda-equivalence result, the
stack should be empty upon termination and non-empty upon the start because
language acceptance is by empty stack, and defined on configurations with non-
empty stack. This can be achieved as follows:

— Extend the stack S to Sg as follows:

e in order to start with a non-empty stack, add an extra stack symbol 0
and extend all reply functions to actions over stack symbols {0, 1, ...,n}
in the obvious way, except for s.pop that leaves 0 on the stack and yields
in this case reply false,

o define a new action s.pop:all that pops any symbol in {0,1,...,n} from
the stack with reply true, and yields reply false if the stack is empty.

— In the specification of P and @,

e replace each occurrence of s.empty by s.topeq:0 (so, 0 acts as an empty
stack marker),

e replace any equation R =S by R = s.pop:all oS (where S is fresh),

e add the equation S = S < s.pop:all > S.

Call the resulting threads Py and (g, respectively, and assume these are given
by an appropriate adaptation of the linear specification of P and @ (note that
s.push:0 and s.empty do not occur in this specification). It follows straightfor-
wardly that for o, 8 € {1,...,n}*,

Pls S(a) = Q/s S(B) & Fo/s So(a0) = Qo/s So(50)

and that upon S (i.e., termination), the stack Sy is empty.

Replacement of D by explicit loops. In the specification of Py and @o, replace
each equation R = D by R = s.push:1 o L (where L is fresh) and add the
equation L = s.push:1 o L. Call the resulting threads P; and @), respectively,
for some appropriate adaptation to a linear recursive specification. Again it is
straightforward that for a, 8 € {1,...,n}*,

Py /s So(a0) = Qo/s So(B0) & Py /s So(a0) = Q1 /s So(50)

and that upon S, the stack Sy is empty.

Normalization of infinite traces. Let halt be a fresh external action. Replace in
P, and @4’s specification each equation R = R; < a > R, with a an external
action by R =S < halt> (R; < a > R,). Call the resulting threads P» and Qa,
respectively. Again it is straightforward that for a, 8 € {1,...,n}*,

P1/s So(a0) = Q1/s So(B0) & P2/s So(a0) = Q2/s So(50)

and that upon S, the stack Sy is empty. Moreover, each infinite sequence of
external actions in P; /s So(@0) or Q1 /s So(80) becomes after this transformation
interlarded with haltoS exits, so gives rise to an infinite number of (finite) traces.



Transformation to pda-equivalence. From the linearized specification of P, and
@2, construct a pda A; as follows: for P, the set of states, take those of the
linear specification; for S, the set of stack symbols, take {0, ...,n}; and for the
alphabet A take {Gtrue,@ra1se | @ an external action in P, or Q2}. As for the
basic transitions,

— for each state R = R; < a > R, with a an external action and ¢ € {1,...,n},
define transitions Ri —=3 R;i and Ri —22== R.i,

— for each state R = R; < s.push:j > R, and i € {1,...,n}, define transitions
Ri -5 R,.ji,

— for each state R = R; d's.topeq:j > R, and i € {0,1,...,n} \ {j}, define
transitions Rj — R;j, and define a transition Ri — R,1,

— for each state R = R, < s.pop > R, and i € {1,...,n}, define transitions
Ri — R, and R0 - R,0,

— for each state R = R;ds.pop:alll> R, and ¢ € {0, 1, ...,n}, define transitions
Ri - R,.

It follows immediately that for o, 5 € {1,...,n}*,
Py /s So(a0) = Q2/s So(f0) & L( A1, Pra0) = L( A1, Q200).

Note that A4;’s basic transitions with label € are very limited: either a push or a
pop, or they do not change the stack. Also, the transition relation is determin-
istic: for each source configuration Ri at most one transition is defined.

Transformation to dpda-equivalence. The only remaining problem is that 4; is
not normalized, i.e., may have e-transitions that do not pop the stack. How-
ever, the set of basic e-transitions can be transformed to one that contains only
popping e-transitions while preserving language acceptance. Not swallowing e-
transitions, each source-configuration Ri in 4; with an e-transition can be clas-
sified by tracing its consecutive transitions. Assume .4; has k states. Because A;
has n+1 stack symbols, it is sufficient to consider at most k(n+1)+1 consecutive
transitions. Let —» stand for at least 0 and at most k(n+1)—1 e-transitions,
then the following classes can be distinguished:

1. Ri = R'a < R"ad’ -2 R"' 3 where R"o' -2+ R"j3 is the first occurring
A-transition,

2. Ri = R'a = R"a’ =5 R" where R"a' — R is the first e-transition
from Ri that empties the stack,

3. Not 1 or 2, ie., Ri — R'ja = R"ma’ = R"IB and in the sequence of
associated source-configurations a repetition occurs (and no empty stack).

Now define a dpda A, with P, S and A as in A4;, and with basic transitions as
follows:

— in case 1, replace Ri -+ R'a by Ri -2 R"'j3,
— in case 2, replace Ri — R'a by Ri = R",
— in case 3, simply omit the e-transition from Ri,



— keep all basic transitions with a label in A from A;.

It is clear that L(A1, Ra) = L(As2, Ra). In As, language equivalence is decidable
as A satisfies the dpda-definition given above (which is taken from [22]; note
that the requirement in [22] that |a| < 3 in a basic transition Px -+ Qa can
be trivially fulfilled by introducing auxiliary stack symbols). O

We note that in the proof above, the transformation step Normalization of
infinite traces can be skipped if one considers bisimulation equivalence in the
transition graph of a normalized dpda, which is decidable as well (Sénizergues
[20]).

We conclude this section with a short comment. The restriction to a stack
over a finite data type is not essential for the decidability of equality between
pushdown threads: also for a stack Sy over the natural numbers N and regular
threads P and @ it holds that P/s Sn(a) = @/s Sn(fB) is decidable. This can
be seen by representing natural numbers in some unary notation and using a
second data element as a separator. For example,

011101101111

represents the stack containing 2,1,3 (so, the natural number n is represented
by n+1 pushes of 1). For any ¢ € N, the actions s.push: and s.topeq:i can be
expressed in this notation, be it a bit cumbersome. The action s.pop is easier
to define, and s.empty need not be redefined. Thus given regular threads P and
Q, there exists a transformation ¢ (depending on the stack-actions in P and Q)
such that

Pls Su(a) = Q/s Sn(B) & 6(P)/s S@) = 6(Q)/s S(B)

where S is the stack over symbols {0, 1} and @ transforms a sequence of natural
numbers as indicated above.

Successor and predecessor for Sy can be easily defined using the represen-
tation discussed here. This is not the case for any action controlling Sy. For
instance, an action swap that exchanges the two top-elements of Sy is not defin-
able because with this action the functionality of a Minsky machine is obtained
(using the even stack positions to hold the values of the first counter, and the
odd positions for those of the second counter). So with swap equality is not de-
cidable. Neither is equality of the two top-elements a definable action. Of course,
both these actions are definable for stacks over a finite data type.

4 Undecidable inclusion
The Minsky machine is a universal model of computation first used in [16,17]. It

is a simple imperative program consisting of a sequence of instructions labelled
by natural numbers from 1 to some L. It starts from the instruction labelled 1,

10



halts if stop is reached and operates with two natural number counters co, and
ci. The instruction set consists of three types of instructions:

1. 1:¢c; :=c; + 1;goto 1’
2. 1:if ¢; = 0 then goto 1’ else c; :=c; — 1;goto 1"
3. 1:stop

where i € {0,1} and 1,1’,1"” € {1,...,L}. It should be clear that the execution
process is deterministic and has no failure. Any such process is either finished by
the execution of the stop instruction or lasts forever. As expected, the halting
problem for Minsky machines is undecidable:

Theorem 2. ([16, 17]) It is undecidable whether a Minsky machine halts when
both counter values are initially zero.

In our setting, a counter C is a service (X, F') with increase and decrease ac-
tions X' = {inc,dec} and a reply function F' which always replies true to inc
and false to dec if and only if the counter value is zero. A Minsky machine
canonically defines the equations of a specification of a regular thread:

l:c;:=c;+1;gotol’ —  M;=ci.inco My

1:if ¢c; =0 then goto 1’ —~  M;= My dci.dec> My
else c; :=c; — 1;goto 1"

1:stop = M =S.

We call a thread M; as defined above a Minsky thread, thus a regular thread over
S and the counter actions c0.inc, c0.dec, cl.inc, cl.dec where the channels cO
and c1 refer to the two internal counters Cy and C, respectively. © The halting
problem for Minsky machines can now be rephrased to

Theorem 3. It is undecidable whether for a Minsky thread M it holds that
M/eo Co(0)/c1 C1(0) = S.

(Of course, if M/c.o Co(0)/c1 C1(0) # S, it equals D.) The undecidability proof
that follows consists of a reduction from the above halting problem to the inclu-
sion problem for the use of a single internal counter—and thus to the inclusion
problem for the use of a single internal stack.

For technical purposes we introduce the norm of a Minsky thread operating
on counters Cp(n) and C1(m) as the number of counter actions until termination
occurs (possibly oo). The norm is formally defined with help of a transformation
0 of finite linear recursive specifications.

Definition 1 (norm). Let M; be a Minsky thread defined by a finite linear
recursive specification E = {M,, = t,(M) | n = 1,....k} (for some k > 0) and
let a be some action. Define 8(E) = {0(M,) = 0(t,(M)) | n = 1,....k} and
define (t,(M)) by

" We do not have to disambiguate these counters because of the different channel
names; however, we do this to enhance readability.
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1. 6(S) =S
2. Fori € {0,1} and b € {inc,dec},

O(M; <Qcibl> M,) =aof(M;) <cibl>aob(M,).

For n,m € N define the norm ||My,n,m| € NU {oco} by ||M1,n,m| = 0 if
0(M;) =S € 8(E), and for k >0,

n.mll =k i Tr+1(0(M1) /o Co(n) /1 C1(m)) = aF oS and
|M1,m,m|| = k if {M(G(Ml)/co Co(o)on Calm)) = a1 oD,

Forn,m € N, ||M1,n,m|| = oo if for no k € N, ||M1,n,m| =

Note that
|1M,n,m|| € N & M/co Co(n)/c1 C1(m) =S. (3)

So the question whether ||M,n,m|| € N is undecidable.

We now introduce a transformation ¢ of Minsky threads which replaces spe-
cific runs with the second counter C4(0) by regular threads where the C;-actions
are simulated by a single external action a in such a way that termination be-
haviour is preserved. Moreover, Cy-actions are preceded by the simulation of a
cl.inc o cl.dec-prefix. The reason for this is that divergence on Cy-actions (as
in ¢0.inc®) then also yields an infinite sequence of a-actions, which enables us
to use a smooth proof strategy.

Definition 2 (simulation). Let M be a Minsky thread defined by a finite lin-
ear recursive specification E = {M,, = t,(M) | n = 1,...,k} (for some k > 0).
Define Y(E) = {¢(M,,) = ¢t (M)) | n=1,...,k} and define ¥(t,(M)) by

1.4(S) =

2. Y(M; <1c11ncl>M) Y(M;) <a>a™

5. $(M; 4 cl.dec > M) = a® da > (W(M;) D ab p(M;))
4. h(M; 9cOb> M) =

[a® <a>ao (p(M;) D

A

Q
O
o
v
=
g
IA

)
A4

)
8

for b € {inc,dec}.

We note that a® /0 Co(n) = a™ and therefore we omit any such use-application
in reasoning about (M) /co Co(n).

In order to prove undecidability of inclusion we use the family Py, (k € N) of
pushdown threads discussed in Example 4:

Definition 3. For n € N, define P, = P/co Co(n) by

P =(cO0.inco P)dal> ((P dc0.dec>D) dal> (D <cl0.dec> P)).
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This definition yields the following infinite recursive specification:
Po= P1 dab(DDal>Po)
Prt1 = Pry2 Ja b (P, Ja>D) for k € N.

Note that for all n, P, C a® (see Example 4) and P,, IZ S. For future reference
we derive the following identities:

Po=[P2dal (Poda>D)]dal (D dablPo) (4)
and for m > 0,
P = [Pms2 da (P da>D)] <al (Pn_y dabD) (5)
We shall prove that for any Minsky thread M,
M/co Co(0)/c1 C1(0) =S & Po £ (M) /co Co(0).

We first prove this equivalence for Minsky threads that use counters with arbi-
trary initial values (Corollaries 1 and 2, respectively). To enhance readability we
shall write in proofs often

M/n/m for M/co Co(n)/c1 Ci(m) , and
$(M)/n for p(M)/co Co(n).

Lemma 1. Let k € N. For all Minsky threads M and for all n,m € N,
|M,n,m|| =k = Pp, £ H(M)/co C(n). (6)

Proof. By induction on k using case ramification, i.e., considering all possible
forms of the equation specifying M.

o k=0.If |M,n,m| = 0, then M =S must be M’s defining equation and (6)
follows immediately.

e k> 0.1If ||M,n,m|| = k, there are four possible forms for the equation speci-
fying M:

a) M = M; <c0.inc > M;. Then ||M;,n+1,m|| = k—1 and
B(M)/n = (@ dab aop(M;)/n+1) Jab a*. (7)

By induction P,, Z ¥(M;)/n+1. Assume P,, C ¥)(M)/n. Then by (4) or (5)
and (7), Pm, C (M;)/n+1, contradicting the induction hypothesis. Hence P, £
Y(M)/n.

b) M = M;<c0.dect>M;. This case is proved similarly, making a case distinction
between n = 0 and n > 0.

c) M = M; dcl.inc > M;. Then |M;,n,m+1|| = k—1 and
P(M)/n =(M;)/ndal>a*. (8)

13



By induction Ppy41 Z ©(M;)/ n. Assume Pp, C 1(M)/n. Then by definition of
P and (8), Pmt1 C 9(M;)/ n, contradicting the induction hypothesis. Hence

Prm L Y(M)/n.
d) M = M; dcl.dec> M;. Then

$(M)/n=a® da W(M)/n<ab¢(M;/n). )

Let m = 0. Then ||[M;,n,0|| = k—1 and by induction Py Z ¢(M;)/n. Assume
Po C ¢(M)/n. Then by definition of Py and (9), Py C ¢(M;)/n, contradicting
the induction hypothesis. Hence Py Z ¥(M)/n.

Let m > 0. Then ||M;,n,m—1|| = k—1 and by induction Pp,_1 Z ¥(M;)/ n.
Assume P, C ¢(M)/n. Then by definition of P,, and (9), Pp—1 C ¥(M;)/n,
contradicting the induction hypothesis. Hence P, Z ¥ (M)/n. O

Combining (3) and Lemma 1 immediately yields

Corollary 1. For all Minsky threads M and for all n,m € N,

M/co Co(n)/c1 C1(m) =S = P (M) /co Co(n).

The next result is about the inclusion of finite approximations.
Lemma 2. For all k € N, Minsky threads M and n,m € N,
M/co Co(n)/c1 Ci(m) = D = 75 (Pm) E 7 ((M)/co Co(n)). (10)

Proof. By induction on k with base cases £ =0 and k = 1.
If £ = 0 then (10) follows trivially.

If k=1and M/n/m =D, then M =S is not M’s defining equation. Therefore,
w1 (Y(M)/n) = aoD = 71 (Py,), which proves (10). (Note that already in this case
it is essential that ¢ introduces a-actions in the transformation of c0-equations.)

Assume k£ > 2 and M/n/m = D. Again, M = S can not be M’s defining
equation. Consider the remaining four possibilities for M’s defining equation:

a) M = M; 4c0.inc > M;. Then M;/n+1/m =D and
me(p(M)/n) = [mp-2(a™) La B mp_z(a o P(M;)/n+1)] La B mp_1(a™).
By induction, m (Py,) E m(¢(M;)/n+1) for | < k. Assume m = 0. Then by (4)

a7 o(Poda>D)]da>mp 1(Dda>Po)
almp_s(aop(M;)/n+1)] Jab m_1(a>)

14



Assume m > 0. Then by (5)

Tk (Pm) = [Tr—2(Pma2) La> mp_2(Pp Ja>D)] dab mp_1(Pr_1 Ja>D)
C [mr—2(a®) da > mp_2(aop(M;)/n+1)] Qa > m_1(a*)
= (Y(M)/n).

b) M = M; < c0.dec> M;. Assume n = 0. Then M;/0/m =D and
T (Y(M)/0) = [my—2(a>) Qa > m_2(a o yp(M;)/0)] <a b mp_1(a™).

By induction, m;(Pp) C m(¢(M;)/0) for | < k. As in case a), it follows that
both for m = 0 and m > 0,

Tk (Pm) T [mh—2(a™) da > mp_z(ao0¢(M;)/0)] dal m_1(a*)
= me(Y(M)/n).

The case n > 0 is proved similarly.

c¢) M = M; <dcl.inc> M;. Then M;/n/m+1 =D and
(M) /n) = 1 (P(M;i)/n) Da b m—1(a™).
By induction, m (Pm+1) E m (v (M;)/0) for I < k. Assume m = 0. Then

7k (Po) = mp—1(P1) <

Tk (Pm) = 7Tk71(7)m+1) <al 7Tk71(7)m71 <al D)
C mr—1(¥(My)/n) dat mp_1(a™)
= m(P(M)/n)
d) M = M; dcl.dec> M;. This case can be proved in a similar style, again
making a case distinction between m = 0 and m > 0. O

In the proof above, the cases a) and b) clearly motivate v’s definition on c0-
terms: the simulation of a “cl.incocl.dec-prefix” generates in the case of diver-
gence on Cj the thread a®, which is needed to include P,,. Lemma 2 immediately
extends to the inclusion of infinite threads:

Corollary 2. For all Minsky threads M and for all n,m € N,
M/co Co(n)/c1 C1(m) =D = Pp, C (M) /co Co(n).

Corollary 1 and Corollary 2 connect the halting problem for Minsky machines
and inclusion between certain pushdown threads:
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Corollary 3. Let M be a Minsky thread. Then
M/co Co(0)/e1 C1(0) =S & Po Z (M) /co Co(0).

Since counters can be seen as particular stacks, we can by Corollary 3 sum-
marize the reduction from the halting problem for Minsky machines to

Theorem 4. It is undecidable whether for a stack S and regular threads P and
Q it holds that
P/s S(a) EQ/s S(B).

5 Programming regular threads

Program Algebra [5], or PGA for short, is a program notation for regular threads.
On PGA a hierarchy of program notations is founded, comprising languages that
contain more and more sophisticated programming features, but that are all
equally expressive. We will show that PGA exactly describes the class of regular
threads.

Based on a finite set A of basic instructions, PGA has the binary operators
“concatenation” and “repetition”, and five kinds of instructions:

Concatenation, notation _;_. If X and Y are PGA-terms, so is X;Y.
Repetition, notation (1)¢. If X is a PGA-term, so is X%.

Basic instruction a € A. It is assumed that upon the execution of a basic in-
struction, the (executing) environment provides an answer true or false.
However, in the case of a basic instruction, this answer is not used for pro-
gram control. After execution of a basic instruction, the next instruction
(if any) will be executed; if there is no next instruction, inaction (i.e., the
thread D) will occur.

Positive test instruction +a for a € A. The instruction +a executes like the
basic instruction a. Upon false, the program skips its next instruction and
continues with the instruction thereafter; upon true the program executes
its next instruction. If there is no subsequent instruction to be executed,
inaction occurs.

Negative test instruction —a for a € A. The instruction —a executes like the
basic instruction a. Upon true, the program skips its next instruction and
continues with the instruction thereafter; upon false the program executes
its next instruction. If there is no subsequent instruction to be executed,
inaction occurs.

Termination instruction !. This instruction prescribes successful termination (it
defines the thread S).

Jump instruction #k (k € N). This instruction prescribes execution of the pro-
gram to jump k instructions forward; if there is no such instruction, inaction
occurs. In the special case that & = 0, this prescribes a jump to the instruc-
tion itself and inaction occurs, in the case that & = 1 this jump acts as a
skip and the next instruction is executed. In the case that the prescribed
instruction is not available, inaction occurs.
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Instruction sequence congruence for PGA-terms is axiomatized by the axioms
PGA1-4 in Table 1. Here PGA2 is an axiom-scheme that is parametric in n
where in PGA, X! = X and X! = X; X,

(X;Y);Z = X;(Y; 2) (PGAT1) X¥Y = X¥ (PGA3)
(XM =X* forn>0 (PGA2) (X;Y)¥ = X;(V;X)*  (PGA4)

Table 1. Axioms for PGA’s instruction sequence congruence

With the axioms PGA1-4 one easily derives unfolding, i.e., X% = X; X*.

Each closed PGA-term is considered a program of which the behaviour is a
regular thread in BTA®, viewing A as the set of actions. The thread extraction
operator | X | assigns a thread to a closed term X . Thread extraction is defined by
the thirteen equations in Table 2, where a € A and w is an arbitrary instruction.

=S X =S |#k| = D
la| =aoD la; X| = ao|X]| |#0; X| =D
|[+a| =aoD |+a; X| = |X| Qa B |#2; X| |#1; X| = | X|
|-al =aoD |—a; X| = |#2; X| Qa > |X]| |#k +2;u| =D

[#k + 25u; X| = |[#k + 1; X]|

Table 2. Equations for thread extraction on PGA

Two examples:

L |(#0)“] = |#0; (#0)*| = D,

2. |—a;bicl = |[#2;bicl S [bic]
= |#1;c|<al>boc|
=|c|<dalbocoD
=coD<dal>bocoD.

In some cases, the equations in Table 2 can be applied from left to right yielding
equations of the form |X| = |Y| = ... = |X| and no behaviour, e.g.,

[(#1)2] = [#1; (#1)°| = |[(#1)“],
[(#2;0)°] = [#2; a5 (#2;0)°| = |#1;(#2;0)*| = |(#2;0)“|.

In such cases, the extracted thread is defined as D.
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In all other cases, thread extraction yields a finite (linear) recursive specifi-
cation, and thus a regular thread.

Ezample 5. Let P = |(a; +b; #3; —b; #4)“|. Then

P:aOQ
Q=P<b>R
R=P<b>R.

From the above considerations it is clear that any PGA-program defines a
regular thread. Conversely, each regular thread can be described as the thread
extraction of a PGA term. We here only sketch why this is the case. First S = ||
and D = |#0|. Without loss of generality one can assume that every other thread
P satisfies 71 (P) = a o D for some a, and solves X7 in a finite linear recursive
specification X; = X; < a > X; in which S and D occur only in the last two
equations. In Example 5, P is a fixed point for X; in the tailored specification

X1 =Xodal> X,
Xo=X; Jb> X3
X3=X;Jb> X3
X4=S
X5 =D.
(Note that each fixed point for X; — X3 does not refer to the equations for X,

and X5.) One can transform any such tailored specification to a program of the
form (u1;...;ug)” in the following way:

X=X, Qa1 > Xy, = (Fag;#c(1,0); #c(1,r);

Xi=Xiida; > X, +ag; #c(i,1); (i, r);
X,=S !
Xn+1 = D #0)‘”

If each value (4, j) is chosen such that the jump is to the position in the program

that matches the transformation of X;; = t;;(X), thread extraction yields the
same recursive specification. Returning to Example 5,

X1 =X,dal> X, = (4a #2#1

Xo =X, 40> X3 +b; #7; #1;
X3=X1Jdb> X3 +b; #4; #9;
X4=S I

X5 =D #0)“.

Clearly, |(a; +b; #3; —b; #4)“| = |(+a; #2; #1; +b; #7; #1; +b; #4; #9; 1, #0)“.
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6 Conclusions

Pushdown threads can be used in program algebra based semantics of sequen-
tial or object-oriented programming, for instance as described in [3]. In that
approach, a single stack is used to store the arguments of a method call. Fur-
thermore, pushdown threads are important for the theoretical foundation of
program algebra itself, for instance admitting easy definitions of programming
notations in which recursion can be expressed. This explains our interest in the
decidability result proved in Section 3.

The undecidability of inclusion for pushdown threads is proved using a con-
struction in which one of the counters is “weakly simulated”. This method of
Jancar is recorded first in 1994 [12], where it is used to prove various undecid-
ability results for Petri nets. In 1999, Jancar et al. [13] used the same idea to
prove the undecidability of simulation preorder for processes generated by one-
counter machines, and this is most comparable to our approach. However, in the
case of pushdown threads the inclusion relation itself is a little more complex
than in process simulation or language theory because D C P for any thread
P. Moreover, threads have restricted branching, and therefore transforming a
regular (control) thread into one that simulates one of the counters of a Minsky
machine is more complex than in the related approaches referred to above. Also,
the particular thread Py used to prove our undecidability result (Corollary 3)
has to be much more structured than the related nets/processes in [12,13].
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