University of Amsterdam
Programming Research Group

An Upper Bound for the Equational
Specification of Finite State Services

J.A. Bergstra
|. Bethke

Report PRG0405 September 2004

J.A. Bergstra

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel. +31 20 525.7591
e-mail: janb@science.uva.nl

|. Bethke

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel. +31 20 525.7583
e-mail: inge@science.uva.nl

Programming Research Group Electronic Report Series

An upper bound for the equational
specification of finite state services

J.A. Bergstra®"! I. Bethke 2

aUtrecht University, Department of Philosophy, Applied Logic Group

b University of Amsterdam, Faculty of Science, Programming Research Group

Key words: client-server composition, equational specification, finite data types,
boundedness properties.

1 Introduction

The communication mechanism between client and server tasks can be mod-
elled by a simple rendezvous model. The intuition here is that a process—the
client—when executed places its requests into a request buffer. These requests
are taken from the buffer by another process—the server. After some process-
ing, prescribed by actions of the server, the server returns a Boolean reply
indicating success or failure of the request.

In this note in the honour of John-Jules Meyer’s 50th birthday we shall de-
scribe the algebra of state services which corresponds to the server side of the
communication model. We shall prove a theorem concerning the boundedness
of the number of equations needed to specify finite minimal state services
within the mathematical framework of the initial algebra semantics for data
types. This theorem is inspired by earlier results on boundedness properties of
equational specifications by the first author and John-Jules Meyer in [3] and
[4]. For general considerations on this subject we refer to [2].

! E-mail: Jan.Bergstra@phil.uu.nl
2 E-mail: inge@science.uva.nl

2 Equational specification of services

State service algebras are algebras with three domains: S (services), St (states)
and B (Booleans). There are five constants 0,¢ € S (deadlock and the empty
service), T, F' € B and the initial state Sq € St, a unary service function
S : St — S, two binary functions <+ ,-: S xS — S (preferential choice
and sequential composition), and a ternary function - < > _: Sx B Xx S
(if b then S else S'). The rest of the signature is generated by a set A of
actions: there are constants a+,a— € S denoting the service consisting of
the processing of action a followed by a positive or negative reply, a unary
mapping effect, : St — St turning a state into the state obtained after the
execution of a, and a unary function reply, : St — B assigning to each state
the Boolean reply returned after the action a is carried out. More formally,

Definition 2.1 Let A be a set of actions.

(1) The signature of state service algebras is ¥4 = (5,Q4) with the set of
sorts S = {5, St, B} and the set of operations

Qq ={0,e:S,T,F:B,S, : St}
U{S:5t—=S5«+ ,-:SxS—=5, _<_p>_:SxBxS}
U{a+,a— : S, effect, : St — St,reply, : St - B | a € A}

Notice that the reduct ({St,B},{Sy : St} U {effect, : St — St,reply, :
St — B | a € A} is a particular two-sorted monoid which was coined
process algebra in [3]. In later work of the first author, e.g. [1], this term
is used in a different setting.

(2) A state service algebra 8 is a ¥4 algebra satisfying the axioms

e- X=X
X-e=X
0-X =9
o+ X=X
X+ 0=9

X+ Vet Z=X« (Y &+ 2)
(X-Y)-Z=X-(Y-2)
X+ V) Z=(X-2)« (Y-2)
X<aT>Z=X
X<aF>Z=2

at+ X 4+ at+ Y =a+-X
at+t- X4+ a—-Y=a+ X
a—- X+ at+-Y=a—-X
a—- X+ a—-Y=a—-X
aZb=at+ - X+ b+-Y=b+-Y <+ a+-X
aFb=a+- X+ b—-Y=b—-Y 4 a+-X
atb=a— - X+ b+ Y=0+-Y &+ a— X
a#tb=a— X+ b—-Y=0—-Y+ a—- X

Note that the preferential choice is deterministic on services performing
the same action. We say that 8 is finite if St is finite, and minimal if St
is generated by the initial state Sy and the functions effect, with a € A.

We give three examples of state service algebras.
Examples 2.2

(1) The first example is the finite state service of a single boolean value that
can be set and read. We let §_bool be the state service algebra with the
two states 0 and 1 and A = {set : 0,set : 1,eq:0,eq: 1} and

S(0) = set : 0+ -5(0) <+ set:1+4-S(1) «+ eq:0+4+-5(0) + eq:1—-5(0)
S(1) = set : 0+ - 5(0) <+ set:14-S(1) «+ eq:0—-S5(1) ++ eq:1+-5(1)

(2) As a second example we consider the infinite natural number counter
with a test on 0 and increment and decrement actions. Here we have the
states 0,1,2,..., A ={eq : 0,inc, dec} and

S(0) =eq:0+-5(0) + inct+-S(1) <+ dec— - S(0)
Sn+1)=eq:0—-S(n+1) 4 inct-S(n+2)«+ dect-S(n)

(3) Our last example specifies a stack of Booleans with a test on emptiness
and the top value, and push and pop actions. Here St = {o | 0 € {0,1}*},
A = {isempty, push : 0, push : 1, pop,topeq : 0,topeq : 1} and

S(<>) = isempty+ - S(<>) <+ push: 0+ - S(0) ++ push:1+-S(1)
“+ pop— - S(<>) «+ topeq: 0— - S(<>) «+ topeq:1—-S(<>)
S(00) = isempty— - S(00) ++ push : 0+ - S(c00) <+ push : 1+ - S(c01)
“ pop+ - S(o) ++ topeq : 0+ - S(00) <+ topeq : 1—- S(00)
S(ol) = isempty— - S(ol) <+ push: 0+ - S(c10) <+ push : 1+-S(o11)
“+ pop+ - S(o) «+ topeq: 0— - S(ol) + topeq: 1+ -S(ol)

3 The theorem

Our theorem gives an upper bound for the number of equations needed to
specify the service function for finite minimal service algebras in terms of the
number of its actions.

Theorem 3.1 Let A = {ay,...,ax} be a set of k£ actions and 8§ be a finite
minimal state service algebra. Then S can be specified involving at most 1442k
auxiliary unary functions and 92 + 5k equations.

Proof. Let A" = {a | a € A & reply; ' (T) # O # reply; ' (F)}. Choose for
every a € A’ functions t, : St — reply; '(T) and f, : St — reply, ' (F) such
that

o YV € reply, }(T) t,(z) = z, and
o YV € reply, ' (F) f.(x) = =x.

Note that we then have

o Vx reply,(z) =T & t,(x) = x, and
o Vx reply,(z) = F & fu.(x) = .

By the theorem in [3] we can specify the unoid
(St, {So} U {effect, | a € A} U {ta, fu | a € A})

by 12 hidden individual constants, 13 hidden unary functions and 90 + (1 +
k + 2 x |A']) equations. We replace the individual constants by an unary
enumeration function. We can now specify the reply function by the equations

reply,(x) =T if reply,(St) = {T'}
reply,(x) = F if reply,(St) = {F'}
reply,(to(z)) =T ifae A
reply,(fo(x)) = Fifae A

This amounts to another [A — A’| + 2 x |A’| equations. The last equation is

S(z) = a1+ - S(effect,, (x)) < reply,, (x) > a1— - S(effect,,)
(-'- P

(-*_ ..
 arpt - S(effect,, (x)) < replyq, (v) > ap— - S(effect,, (x))

Adding up we arrive at

N+1+k+|A-A|+4x|A[+1<92+5k

equations. O

Remark 3.2 In a process algebra setting such as in [1] the specification of
the service function S can be given in a slightly more compact way by

S(x) = r(ay) - s(reply,,) - S(effect,, (x))
+ “ ..

+ “ ..
+r(ax) - s(replya,) - S(effect,, (z))

with read and send actions r(ay),...,r(ax), s(replyas,), ..., s(reply,,). Here,
however, choice will be non-deterministic.

References

[1] J.A. Bergstra and J.W. Klop. Process algebra for synchronous
communication. Information and Control, 60(1/3):109-137, 1984.

2] J.A. Bergstra, S. Mauw and F. Wiedijk. Uniform Algebraic Specifications
of Finite Sets with Equality. International Journal of Foundations of
Computer Science, 2(1):43-65, 1991.

[3] J.A. Bergstra and J.-J.CH. Meyer. On Aziomatising Finite Data
Structures. Rapport No. 80-18, Institute of Applied Mathematics and
Computer Science, University of Leiden, Leiden, The Netherlands, 1980.

[4] J.A. Bergstra and J.-J.CH. Meyer. The Equational Specification of

Finite Minimal Unoids Using Only Unary Hidden Functions. Fundamenta
Informaticae, 2:143-170, 1982.

Electronic Reports Series of the Programming Research Group

Within this series the following reports appeared.

[PRG0405]

[PRG0404]

[PRG0403]

[PRG0402]

[PRG0401]

[PRG0302]
[PRG0301]

[PRG0201]

JA. Bergstraand |. Bethke, An Upper Bound for the Equational Specification of Finite State Services,
Programming Research Group - University of Amsterdam, 2004.

JA. Bergstra and C.A. Middelburg, Thread Algebra for Strategic Interleaving, Programming
Research Group - University of Amsterdam, 2004.

B. Diertens, A Compiler-projection from PGLEc.MSPio to Parrot, Programming Research Group -
University of Amsterdam, 2004.

JA. Bergstra and |. Bethke, Linear Projective Program Syntax, Programming Research Group -
University of Amsterdam, 2004.

B. Diertens, Molecular Scripting Primitives, Programming Research Group - University of
Amsterdam, 2004.

B. Diertens, A Toolset for PGA, Programming Research Group - University of Amsterdam, 2003.

J.A. Bergstra and P. Walters, Projection Semantics for Multi-File Programs, Programming Research
Group - University of Amsterdam, 2003.

|. Bethke and P. Walters, Molecule-oriented Java Programs for Cyclic Sequences, Programming
Research Group - University of Amsterdam, 2002.

The above reports and more are available through the website: www.science.uva.nl/research/prog/

Electronic Report Series

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

