
Univer sity of Amsterdam
Programming Research Group

A Compiler-projection from PGLEc.MSPio
to Parrot

B. Diertens

Report PRG0403 October 2004

B. Diertens

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel. +31 20 525.7593
e-mail: bobd@science.uva.nl

Programming Research Group Electronic Report Series

A Compiler-projection from PGLEc.MSPio to Parrot

Bob Diertens

Programming Research Group, Faculty of Science, University of Amsterdam

ABSTRACT

To gain an insight to projecting a Program Algebra based language to an executable form,
we developed a compiler-projection. We used a language with simple control flow and
actions based on molecular dynamics as starting point, and a virtual machine as target.
To be able to interact with the environment we extended our language with a simple input
and output system. In this article, we describe the compiler-projection process.

Ke ywords: program algebra, code generation

1. Introduction

In program algebra description of language features and mappings to languages with other features are
studied. A language is built up from a primitive instruction set (for control flow) with as parameter a basic
instruction set (the actions), which return a boolean value upon which a primitive instruction may act. A
hierarchy of primitive instruction sets has been developed for which projection (a mapping from an ’higher’
to a ’lower’ instruction set) and embeddings (a mapping from a ’lower’ to an ’higher’ instruction set) exist.
Sometimes such a mapping is done with the use of a basic instruction set to be able to build the necessary
datastructure.

Although a programming language can be used for purely theoretical purposes, i.e. to express a solution to
a problem, mostly a user of a programming language wants to execute his programs. The process of
converting a program into an executable format, compilation, is nothing more than a mapping from one
language to another, in which the latter can be used as the input for an execution system. But with
compilation we do not only map the primitive instruction set onto another primitive instruction set, we map
both basic and primitive instruction sets onto another combination of basic and primitive instruction sets.
In this article we describe a minimal programming language based on program algebra that is both usable
as a language to program in and can easily be turned into an executable format. Furthermore, we describe
the process of projecting this language to an executable form. Normally, a projection goes towards a lower
notation in our hierarchy of instruction sets, but now we go away from this hierarchy. To distinguish this
kind of projection from the others, we call it a compiler-projection.

As our starting point for the programming language we use MSP [8] as basic instruction set and PGLEc as
our primitive instruction set. MSP is based on HMPPV, which is a high-level version of MPPV (Molecular
Programming Primitives with Values), and extends it with operations on values.
In general, a program acts on some input data and produces some output data. In order to be able to do this
we extend MSP with instructions for input and output in a simple form, reading from the front and writing
to the end of a sequence of characters (which can be seen as a representation of a file).

As execution system we use Parrot. Parrot is a virtual machine currently being developed for version 6 of
Perl [2], but it also aims for being a virtual machine for similar languages, such as Python [4] and Ruby [5],
as well.

In the following sections, we give a short overview of program algebra and give descriptions of HMPPV,
MSP, and PGLEc.

- 2 -

1.1 Program Algebra

Program Algebra (PGA) [3] is an algebraic framework for sequential programming. It is intended to
contribute to a better understanding of sequential programming. A very simple program notation is used as
basis for development of other program notations.

The syntax of program expressions in PGA is generated from a set of constants, the primitive instructions,
and two composition mechanisms. The primitive instructions have as parameter a set of basic instructions.
These basic instructions can be viewed as requests to an environment to provide some service. Upon
execution, a basic instructions returns a boolean value.

Primitive instructions:
a basic instruction: a

After performing the basic instruction a execution continues with the next instruction.
termination: !

Execution stops.
positive test: +a

If the basic instruction a returns true, execution is continued with the next instruction. If it
returns false, the next instruction is skipped.

negative test: -a
If the basic instruction a returns false, execution is continued with the next instruction. If it
returns true, the next instruction is skipped.

forward jump: #k
The instruction itself and the following k - 1 instructions are skipped. If k is 0, a jump to the
instruction itself is made.

Compositions:
concatenation of X and Y: X;Y
repetition of X: Xω

PGLA is a program notation for representing PGA expressions. For dealing with repetition, PGLA has an
additional primitive instruction, which replaces repetition.

repeat: \\#n
Here, n is a natural number greater than zero. A program text ending with this instruction will
repeat its last n instructions, excluding the repeat instruction itself.

On top of PGLA, other program notations are designed, which can be mapped on PGLA. Such a mapping
towards PGLA is called a projection. Several projections to intermediate languages may be used to get the
result that is needed. A mapping away from PGLA is called an embedding.

1.2 Molecular dynamics

In molecular dynamics [6] the memory state of a system is modeled as a fluid consisting of a collection of
atoms which may have bindings between them to form molecules. A molecule consists of a number of
atoms all reachable from one of the atoms by sequences of directed links. A directed link from one atom to
another atom exists if the former has a so-called field containing the latter. By means of actions causing a
change of state, fields can be added to and withdrawn from atoms, and contents of fields can be modified.
Selected atoms can also be brought into focus.
MPP (Molecular Programming Primitives) is a basic instruction set based on this setting. There is also a
version with values (MPPV).

1.3 HMPPV

HMPPV is a basic instruction set based on MPPV (Molecular Programming Primitives with Values). It has
some instructions that are a shorthand for commonly used combinations of instructions in MPPV.
Furthermore, in addition to the type of values provided by MPPV, it has strings.

- 3 -

With the instructions described here, extfocus (extended focus) is used to denote either a focus, or a
field selection that may also be compound. When more than one extfocus is used in an instruction, they
are followed by a number. A field selection that does not exist results in a failure of the instruction. Where
not mentioned, an instruction returns true, except when a failure occurs, in which case it returns false.
To make the description of the instructions easier, we consider an atom a value of type atom.

extfocus = new
Create a new atom and assign it to extfocus, When extfocus is a field selection, it must be
of type atom.

extfocus1 = extfocus2
Assign the value in extfocus2 to extfocus1. When extfocus1 is a field selection, the
field must be of the same type as the value in extfocus2.

extfocus.+f
Add a field of type atom to the atom selected by extfocus.

extfocus.+f = new
Add a field of type atom to the atom selected by extfocus, and assign it a newly created atom.

extfocus1.+f = extfocus2
Add a field of type atom to the atom selected by extfocus1, and assign it the atom selected by
extfocus2.

extfocus.+f:t
Add a field of type t to the atom selected by extfocus.

extfocus.+f:t = u
Add a field of type t to the atom selected by extfocus, and assign it the value u.

extfocus1.+f:t = extfocus2
Add a field of type t to the atom selected by extfocus1, and assign it the value selected by
extfocus2.

extfocus.-f
Removes the field f from the atom selected by extfocus. Returns false when the atom has
no field f.

extfocus/f
Returns true when the atom selected by extfocus has a field f, and false otherwise.

extfocus1 == extfocus2
Comparison of the values selected by extfocus1 and extfocus2. Returns true when the
values selected by extfocus1 and extfocus2 are the same or contain the same atom, and
false otherwise.

extfocus?
Returns true when the value selected by extfocus is an atom, and false otherwise.

extfocus?t
Returns true when the value selected by extfocus is of the type t, and false otherwise.

The type of a value field can be one of bool, int, or str, representing boolean, integer, or string. Boolean
values can either be true or false. An integer must be a non-negative number. In notation, string
values must be delimited by double quotes ("), and a backslash (\) and a double quote inside a string must
be preceded (escaped) by an additional backslash. For the moment, we restrict the set of characters that
may appear in a string to the alphanumeric, the punctuation characters, the space, and the newline in the
form of \n.

1.4 MSP

MSP extends HMPPV with operations on values. Here, we only describe the instructions that are part of the
extension.

With the instructions described here, an extfocus is used to denote either a focus, or a field selection that
may also be compound. A field selection that does not exist results in a failure of the instruction. A value
taken from a focus and all field selections must be of the proper type, otherwise the instructions fails.

- 4 -

Where not mentioned, the instructions return true, except when a failure occurs, in which case it returns
false.

Operations on numbers:
incr extfocus

Increments the integer value selected by extfocus with 1.
incr extfocus n

Increments the integer value selected by extfocus with n.
incr extfocus1 extfocus2

Increments the integer value selected by extfocus1 with the integer value selected by
extfocus2.

decr extfocus
Decrements the integer value selected by extfocus with 1. Return false if the value was
already 0.

decr extfocus n
Decrements the integer value selected by extfocus with n if the value is larger than or equal to
n. Returns false otherwise.

decr extfocus1 extfocus2
Decrements the integer value selected by extfocus1 with the integer value selected by
extfocus2 if it is larger than or equal to the value it must be decremented with. Returns
false otherwise.

Operations on strings:
first extfocus1 extfocus2

Takes the first character of the string selected by extfocus1 and assign it as a string of length 1
to extfocus2. If the selected string is the empty string, false is returned.

delfirst extfocus
Removes the first character from the string selected by extfocus. If the string is the empty,
false is returned.

append extfocus1 extfocus2
Appends the string selected by extfocus2 to the end of the string selected by extfocus1.

Type conversions:
int extfocus1 extfocus2

Converts the string selected by extfocus1 to an integer value and assigns it to extfocus2.
If no integer value can be obtained from the string, false is returned.

str extfocus1 extfocus2
Converts the integer value selected by extfocus1 to a string and assigns it to extfocus2.

1.5 PGLEc

The primitive instruction set PGLEc is the same as PGLE but extended with conditional constructs. We
give here a listing of all instructions in PGLEc.

a
The basic instruction a.

!
Indicates termination of the program.

+ a
When the basic instruction a returns true, execution continues with the next instructions. When it
returns false, the next instruction is skipped.

- a
When the basic instruction a returns false, execution continues with the next instructions. When

- 5 -

it returns true, the next instruction is skipped.
Lk

Denotes a label. Here, k is a natural number. As an action, it is skipped.
##Lk

Jumps to the first label with the number k.
+ a {

When the basic instruction a returns true, execution continues with the instruction after the
matching }{, or if there is no matching }{, the matching }. When it returns false, the next
instruction is skipped.

- a {
When the basic instruction a returns false, execution continues with the instruction after the
matching }{, or if there is no matching }{, the matching }. When it returns true, the next
instruction is skipped.

}{
Execution continues with the instruction after the matching }.

}
Execution continues with the following instruction.

2. MSP with I/O

So far, our PGA languages lack any kind of input and output mechanism, and so cannot interact with the
environment. Here, we extend MSP with three instructions that enables us to abstract from interacting with
the environment, but are powerful enough to mimic a simple input and output mechanism.

read extfocus
Deletes the first character (actually a string with length 1) from the string in focus INPUT and
puts it in extfocus.

write "string"
Appends "string" to the string in focus OUTPUT.

write extfocus
Appends the string in extfocus to the string in focus OUTPUT.

The read instruction is equivalent with the MSP instructions

first INPUT extfocus;
delfirst extfocus

but with the use of the boolean value returned by first in conditional context. The write instructions
are equivalent with the instructions append OUTPUT "string" and append OUTPUT extfocus .

3. Parrot

We giv e here a very short description of Parrot. More information can be found in [10] and the
documentation that comes along with the source code,1 which is available from [1].

The Parrot Virtual machine is a register-based virtual machine, which means that the operands for an
operation are stored in registers. Internally it uses the Parrot Byte Code format (PBC). Since this is a
binary format, another form is used to program in. This format called Parrot Assembler (PASM) has many
low-level features, but since it is designed to implement dynamic high-level languages, it also has support
for many advanced features.

3.1 Data Types

Parrot has four basic data types, integer, floating-point (also called number), string and Parrot Magic
Cookie, or PMC. A PMC is a common base variable type. Each PMC contains some data and has a table

1. We used version 0.1.0 with an additional patch to get the macro’s working. This patch was made by us and is incorparated in the
current development version.

- 6 -

of function pointers, vtable, attached to it. The data can represent an integer, floating-point, string, or a
pointer to other data. The list of functions and the place in the vtable is the same for each PMC, and
provides the interface to the data type. PMC’s can be used to define one owns types, but there are also a
number of built-in types.

An aggregate PMC is a PMC that allows indexed access to a sub-element that it stores or references by
means of the functions in the attached vtable. An index can be any of the basic data types.

3.2 Registers

Parrot has four sets of 32 registers, one for basic type indicated with the first letter of the basic type (I, N, S,
P) and a number from 0 until 31.

3.3 Garbage collection

Parrot has two separate allocation systems builtin into it, each with its own garbage collection scheme. One
system is responsible for PMC and string structures, which are of fixed size. The other system is
responsible for the contents of strings and PMCs. PASM has instructions for disabling, re-enabling, and
forcing garbage collection.

3.4 PIR

PIR stands for Parrot’s Intermediate Representation2 and IMCC is a compiler for PIR that is integrated into
Parrot. PIR compiles directly to PBC or to PASM and is the preferred target language for compilers for the
Parrot Virtual Machine.

PIR is a medium level language that abstracts from the PASM and allows unlimited symbolic registers. The
PIR compiler has a builtin register allocator and spiller.

3.4.1 PIR variables
PIR has two classes of variables, symbolic registers and named variables. Both are mapped to real
registers. Named variables must be declared and can either be global or local. Symbolic registers have a $
sign for the first character followed by the character indicating the type of register (I, N, S, P) and one or
more digits.

3.5 Example

Below we giv e an example in which (a) is a Perl program, (b) an equivalent program in PIR, and (c) the
translation of (b) into PASM done by the compiler.

$i = 6;
$j = 3;
$k = 4;
print $i * ($j + $k);

.sub _main
.local int i
.local int j
.local int k
i = 6
j = 3
k = 4
$I0 = j + k
$I0 = $I0 * i
print $I0
end

.end

_main:
set I18, 6
set I17, 3
set I16, 4
add I16, I17, I16
mul I16, I16, I18
print I16
end

(a) (b) (c)

2. The original term was PIR, but later on IMC (Intermedicate Code) was used. Now , it seems that PIR is the preferred term.

- 7 -

Note the use of register I16 for both the named variable k and the symbolic register $I0.

4. Projecting PGLEc.MSPio to PIR

4.1 Execution Model

In program algebra, a basic instruction returns a boolean value on which the primitive instruction
containing the basic instruction can act. Parrot has only the if (and the unless) instructions that can
perform a goto depending on the result of the evaluation of an expression. Somehow, we hav e to map the
program algebra model to the Parrot model.

In general, a basic instruction is compiled into a block of Parrot-code. At certain points in this block the
execution of the block is ended. At such points, the result must be stored somewhere and a jump to the end
of the block must be made.
At the end of the block the stored result can be tested, in case of a conditional primitive instruction, and
acted upon. So the compilation of + a {;...;}{;...;} may look as follows (the register $I31 is
used for the storage of the result).

...
$I31 = 1
goto ENDBLOCK
...

$I31 = 0
goto ENDBLOCK
...

$I31 = 1
ENDBLOCK:

if $I31 == 0 goto ELSE
...

goto ENDIF
ELSE:

...
ENDIF:

We can optimize this scheme by not storing the result and directly jump to ELSE if the result is false (0).
Then it will look like the following.

...
goto ENDBLOCK
...

goto ELSE
...

ENDBLOCK:
...

goto ENDIF
ELSE:

...
ENDIF:

We can generalize this, by introducing a code generation function φ , that takes a basic instruction as its first
argument for which it has to generate code, and a label as its second argument to which to jump to if the
result is false. Then our scheme looks as follows.

φ (a, ELSE)
...

goto ENDIF
ELSE:

...

- 8 -

ENDIF:

Applying this scheme to - a {;...;}{;...;} may give the result below.

φ (a, IF)
goto ELSE

IF:
...

goto ENDIF
ELSE:

...
ENDIF:

4.2 Data Representation

To represent our fluid we make use of the builtin type PerlHash. We use the following code to define the
foci.

.local PerlHash focus

We use a PMC of type Perlhash for every object in the fluid, whether it is an atom or a value. A field is
represented by an index of an PMC. The fields "_t" and "_v" are special (normal fields may not begin
with an underscore) and represent the type and value of the object. So, with the following code we add the
focus null to our fluid for which we also add a named variable.

$P0 = new PerlHash
$P0["_t"] = "atom"
focus["null"] = $P0
.local PerlHash null
null = focus["null"]

For example, to following code can be generated for the instruction x = new.

$P0 = new PerlHash
$P0["_t"] = "atom"
focus["x"] = $P0

And the following for x.+f:int = 42.

$P0 = focus["x"]
$P1 = new PerlHash
$P1["_t"] = "int"
$P1["_v"] = 42
$P0["f"] = $P1

This is without code for checking if focus x exists, and if it hasn’t already a field f.

For the input and output system we introduce the named variables input and output and initialize them
with the following code.

.local pmc input

.local pmc output
getstdin input
getstdout output

4.3 Projection of PGLEc.MSPio to PIR

First, we provide an intermediate program notation PGLEca in which an instruction containing an opening
brace is annotated with the number of the instruction containing the matching closing brace. The projection
pglec2pgleca can easily be done by searching ahead in the program for a matching closing brace.3 Our
projection of PGLEca.MSPio to PIR start with providing every instruction with a label consisting of ’IL’
and its instruction number.

- 9 -

pgleca-mspio2pir(u0, u1,..., uk) =
initialization code
IL0: ψ0 (u0)
IL1: ψ1 (u1)

...
ILk: ψ k (uk)
ILk + 1:
END:
end code

The initialization code consist of the head of a function and initialization of our data-types, end the end
code of the ending of the function.

The auxiliary operations ψ i are determined by the following rewrite rules:

ψ i (!) = goto END
ψ i (Lk) = LABELk:
ψ i (##Lk) = goto LABELk
ψ i (+a) = φ(a,ILi + 2)
ψ i (-a) = φ(a,ILi + 1)

goto ILi + 2
ψ i (+a{n) = φ(a,ILn)
ψ i (-a{n) = φ(a,ILi + 1)

goto ILn
ψ i (}{n) = goto ILn
ψ i (}) =
ψ i (a) = φ(a,ILi + 1)

The second argument of the auxiliary operator φ is the label to which a jump is made when the execution of
the instruction a may not be continued anymore, as discussed in section 4.1 on the execution model.

The operation φ for the MSPio instructions is determined by the rewrite rules below. Here, the registers and
labels used in a rewrite rule are local to that rule.

φ(incr x, false) = LValue($P0 , x,int , false)
$I0 = $P0["_v"]
inc $I0
$P0["_v"] = $I0

φ(incr x v, false) = LValue($P0 , x,int , false)
$I0 = $P0["_v"]
$I0 = $I0 + v
$P0["_v"] = $I0

φ(incr x y, false) = ExistingLValue($P1 , y,int , false)
LValue($P0 , x,int , false)

$I0 = $P0["_v"]
$I1 = $P1["_v"]
$I0 = $I0 + $I1
$P0["_v"] = $I0

3. A similar thing is done in [7]. There, the instructions containing closing braces are annotated with the number of the instruction
containing the matching opening brace.

- 10 -

φ(decr x, false) = LValue($P0 , x,int , false)
$I0 = $P0["_v"]
if $I0 == 0 goto false
dec $I0
$P0["_v"] = $I0

φ(decr x v, false) = LValue($P0 , x,int , false)
$I0 = $P0["_v"]
if $I0 < v goto false
$I0 = $I0 - v
$P0["_v"] = $I0

φ(decr x y, false) = ExistingLValue($P1 , y,int , false)
LValue($P0 , x,int , false)

$I0 = $P0["_v"]
$I1 = $P1["_v"]
if $I0 < $I1 goto false
$I0 = $I0 - $I1
$P0["_v"] = $I0

φ(first x y, false) = ExistingLValue($P0 , x,str , false)
$S0 = $P0["_v"]
length $I0, $S0
if $I0 == 0 goto false

LValue($P1 , y,str , false)
substr $S1, $S0, 0, 1
$P1["_v"] = $S1

φ(delfirst x, false) = ExistingLValue($P0 , x,str , false)
$S0 = $P0["_v"]
length $I0, $S0
if $I0 == 0 goto false
dec $I0
substr $S0, $S0, 1, $I0
$P0["_v"] = $S0

φ(int x y, false) = ExistingLValue($P0 , x,str , false)
$S0 = $P0["_v"]
$I0 = $S0
abs $I0
$S1 = $I0
if $S1 != $S0 goto false

LValue($P1 , y,str , false)
$P1["_v"] = $I0

φ(str x y, false) = ExistingLValue($P0 , x,int , false)
LValue($P1 , y,int , false)

$S0 = $P0["_v"]
$P1["_v"] = $S0

φ(append x v, false) = ExistingLValue($P0 , x,str , false)
$S0 = $P0["_v"]
concat $S0, v
$P0["_v"] = $S0

- 11 -

φ(append x y, false) = ExistingLValue($P0 , x,str , false)
ExistingLValue($P1 , y,str , false)

$S0 = $P0["_v"]
$S1 = $P1["_v"]
concat $S0, $S1
$P0["_v"] = $S0

φ(read x, false) = LValue($P0 , x,str , false)
read $S0, input, 1
if $S0 == "" goto false
$P0["_v"] = $S0

φ(write x, false) = ExistingLValue($P0 , x,str , false)
$S0 = $P0["_v"]
print output, $S0

φ(write v, false) = print output, PrintValue(v)

We continue with the rewrite rules of the operator φ for the HMPPV instructions.

φ(focus = new , false) = New($P0, atom)
focus[" focus"] = $P0

φ(x = new , false) = LValue($P0 , x,atom , false)
New($P1, atom)

$P0["_v"] = $P1

φ(focus = null , false) = $I0 = defined focus[" focus"]
unless $I0 goto false
delete focus[" focus"]

φ(x.+ f , false) = ExistingLValue($P0 , x,atom , false)
NoField($P0 , f , false)

$P0[" f "] = $P0

φ(x.+ f :type, false) = ExistingLValue($P0 , x,atom , false)
NoField($P0 , f , false)
New($P1, type)

$P1["_v"] = DefaultValue(type)
$P0[" f "] = $P1

φ(x.+ f = new , false) = ExistingLValue($P0 , x,atom , false)
NoField($P0 , f , false)
New($P1, atom)

$P0[" f "] = $P1
φ(x.+ f = y, false) = ExistingLValue($P0 , x,atom , false)

NoField($P0 , f , false)
ExistingLValue($P1 , y,atom , false)

$P0[" f "] = $P1

φ(x.+ f :type = v, false) =
ExistingValue($P0 , x,atom , false)
NoField($P0 , f , false)
New($P1, type)
AssignValue($P1 , type, v)

$P0[" f "] = $P1

- 12 -

φ(x.+ f :type = y, false) =
ExistingLValue($P1 , y, type, false)
ExistingLValue($P0 , x,atom , false)
NoField($P0 , f , false)
New($P2, type)
AssignPValue($P2 , type,$P1)

$P0[" f "] = $P2

φ(x.- f , false) = ExistingLValue($P0 , x,atom , false)
HasField($P0 , f , false)

delete $P0[" f "]

φ(focus = y, false) = Value($P1 , y, false)
$S1 = $P1["_t"]

SetFocus(focus,$P1 , $S1 , false)
φ(x. f = y, false) = Value($P1 , y, false)

ExistingLValue($P0 , x,atom , false)
HasField($P0 , f , false)

$S1 = $P1["_t"]
if $S1 != "atom" goto LL − ELSE

SetField($P0 , f ,$P1 , false)
goto LL − END

LL − ELSE:
SetFieldValue($P0 , f ,$P1 , $S1 , false)
LL − END:

φ(x = v, false) = LValue($P0 , x,Type(v), false)
AssignValue($P0 ,Type(v), v)

φ(x == y, false) = Value($P0 , x, false)
Value($P1 , y, false)
ComparePValue($P0 , $P1 , false)

φ(x == v, false) = ExistingLValue($P0 , x,Type(v), false)
CompareValue($P0 ,Type(v), v, false)

φ(x/ f , false) = ExistingLValue($P0 , x,atom , false)
$I0 = defined $P0[" f "]
unless $I0 goto false

φ(x?, false) = ExistingLValue($P0 , x,atom , false)
φ(x?type, false) = ExistingLValue($P0 , x, type, false)

The rewrite rules for the auxiliary functions used in the rewrite rules of operator φ are given below.

Lvalue(Px, focus, type, false) =
Focus(Px, focus, LL − ELSE)
IsType(Px, type, LL − ELSE)

goto LL − END
LL − ELSE:
New(Px, type)

focus[" focus"] = Px
LL − END:

- 13 -

LValue(Px, fieldselection, type, false) =
SelectField(Px, fieldselection, false)
IsType(Px, type, false)

eq_addr Px, null, false

ExistingLvalue(Px, focus, type, false) =
Focus(Px, focus, false)
IsType(Px, type, false)

ExistingLValue(Px, fieldselection, type, false) =
LValue(Px, fieldselection, type, false)

Focus(Px, focus, false) = $I0 = defined focus[" focus"]
unless $I0 goto LL − ELSE
Px = focus[" focus"]
goto LL − END

LL − ELSE:
Px = focus["null"]

LL − END:

IsType(Px, type, false) = $S0 = Px["_t"]
if $S0 != "type" goto false

New(Px, type) = Px = new PerlHash
Px["_t"] = "type"

SelectField(Px, x. fields, false) =
Focus(Px, x, false)
Field(Px, fields, false)

Field(Px, f , false) = IsType(Px,atom , false)
HasField(Px, f , false)

Px = Px[" f "]
Field(Px, f . fields, false) =

Field(Px, f , false)
Field(Px, fields, false)

HasField(Px, f , false) = $I0 = defined Px[" f "]
unless $I0 goto false

NoField(Px, f , false) = $I0 = defined Px[" f "]
if $I0 goto false

AssignValue(Px,int , v) =
Px["_v"] = v

AssignValue(Px,bool , true) =
Px["_v"] = 1

AssignValue(Px,bool , false) =
Px["_v"] = 0

AssignValue(Px,str , v) =
Px["_v"] = PrintValue(v)

- 14 -

AssignPValue(Px,int|bool , Py) =
$I0 = Py["_v"]
Px["_v"] = $I0

AssignPValue(Px,str , Py) =
$S0 = Py["_v"]
Px["_v"] = $S0

SetFocus(focus, Px, Sx, false) =
if Sx != "atom" goto LL − ELSE1
focus[" focus"] = Px
goto LL − END1

LL − ELSE1:
$I0 = defined focus[" focus"]
unless $I0 goto LL − ELSE2
$P0 = focus[" focus"]
$S0 = $P0["_t"]
if $S0 == "atom" goto LL − ELSE2
goto LL − END2

LL − ELSE2:
$P0 = new PerlHash
focus[" focus"] = $P0

LL − END2:
$P0["_t"] = Sx
if Sx != "str" goto LL − ELSE3
$S0 = Px["_v"]
$P0["_v"] = $S0
goto LL − END3

LL − ELSE3:
$I0 = Px["_v"]
$P0["_v"] = $I0

LL − END3:
LL − END1:

SetField(Px, f , Py, false) =
$P0 = Px[" f "]

IsType($P0 , atom , false)
Px[" f "] = Py

SetFieldValue(Px, f , Py, Sy, false) =
Px = Px[" f "]
$S0 = Px["_t"]
if $S0 != Sy goto false
if Sy != "str" goto LL − ELSE
$S0 = Py["_v"]
Px["_v"] = $S0
goto LL − END

LL − ELSE:
$I0 = Py["_v"]
Px["_v"] = $I0

LL − END:

- 15 -

Value(Px, focus, false) =
Focus(Px, focus, false)

Value(Px, fieldselection, false) =
SelectField(Px, fieldselection, false)

CompareValue(Px,int , v, false) =
$I0 = Px["_v"]
if $I0 != v goto false

CompareValue(Px,bool , true , false) =
$I0 = Px["_v"]
unless $I0 goto false

CompareValue(Px,bool , false , false) =
$I0 = Px["_v"]
if $I0 goto false

CompareValue(Px,str , v, false) =
$S0 = Px["_v"]
if $S0 != PrintValue(v) goto false

ComparePValue(Px, Py, false) =
$S0 = Px["_t"]
$S1 = Py["_t"]
if $S0 != $S1 goto false
if $S0 != "atom" goto LL − ELSE1
ne_addr Px, Py, false
goto LL − END

LL − ELSE1:
if $S0 != "str" goto LL − ELSE2
$S0 = Px["_v"]
$S1 = Py["_v"]
if $S0 != $S1 goto false
goto LL − END

LL − ELSE2:
$I0 = Px["_v"]
$I1 = Py["_v"]
if $I0 != $I1 goto false

LL − END:

And finally, we describe some functions that operate on values.
PrintValue(v)

Turns the string v into something printable (escaping \ and ", change a newline into \n, and puts it
inside ").

Type(v)
Determines the type of the value v.

DefaultValue(t)
Returns the default value for type t (0 for int, 0 (false) for bool, "" for str).

4.4 Implementation

We implemented our compiler-projection as part of the PGA Toolset [9]. As is done with other tools in the
Toolset, the compiler-projection is implemented in a generic form such that modules for projecting
primitive and basic instruction sets can be loaded on request by the user. Figure 1 shows the import
relations (that are of interest) of the different modules for our compiler-projection. The step
pglec2pgleca is done internally by the parsing and checking of the PGLEc code, and together with
pglec-mspio2pir correspond to gencompiler. The ψ operations correspond to PGLEc2PIR and
the φ operations to the modules MSPio2PIR and HMPPV2PIR. The auxiliary functions used in the ψ and
φ operations correspond to the module Fluid2PIR. The larger part of these functions is implemented as

- 16 -

Fluid2PIR

HMPPV2PIR

MSPio2PIR

PGLEc2PIR

gencompiler

Figure 1. Model of the generic compiler-projection

macro’s for PIR. This not only makes the generated code much more compact, but also made the
development of our compiler-projection much easier.

4.5 Testing

Most of the testing is done with the use of small examples and inspection of the resulting code. But as a
larger test that makes it possible to use the PGA Toolset in testing, we developed a projection of PGLB to
PGLA in PGLEc.MSPio. The listing of this program, b2a.ec, can be found in Appendix A. This program
can be simulated with the following command.

% gensim -P PGLEc -B MSPio -v -l b2a.ec

Put a PGLB program in focus INPUT and run the program. The result will be a PGLA program in focus
OUTPUT.

We can compile our program with the command:

% gencompiler < b2a.ec > b2a.pir

Now we project our program in PGLEc to a program in PGLB.

% project pglec pglb < b2a.ec > b2a.b

We execute the compiled program with the result from the previous command, which gives us a version of
our projection in PGLA.

% parrot b2a.pir < b2a.b > b2a.a

Now we can simulate our projection of PGLB to PGLA again, but this time with PGLA as primitive
instruction set.

% gensim -P PGLA -B MSPio -v -l b2a.a

Another way to test our projection is by bisimulation. We first translate the versions of our projection in
PGLEc and PGLA into labeled transition systems (lts).

- 17 -

% prog2lts -P PGLEc b2a.ec > b2a-ec.lts
% prog2lts -P PGLA b2a.a > b2a-a.lts

After which we can test for bisimulation.

% bisim b2a-ec.lts b2a-a.lts

5. Evaluation

We fulfilled our goal to project a language based on Program Algebra to an executable form. We did not
strive to dev elop the best code generator possible, because the emphasis lay on the code generation process
and not on the quality of the generated code.
The code generation process was rather easy. This is partly due to the simplicity of our programming
language, but also to the execution model we used, which made it possible to design the process in a top
down manner.

As our test showed, the I/O extension of MSP is satisfying. The instructions are powerful, but are still low
level enough to make it possible to translate them directly to PIR.

Parrot turned out to be very suitable as target for our simple programming language. Because we already
modeled the fluid in Perl for the simulator of the PGA Toolset and Parrot supports the data-types of Perl,
implementing a model of the fluid in Parrot was easy. We must admit that Perl hashes are ideal for
modeling the fluid, so it may take much more effort to implement a model for a basic instruction set that is
not based on molecular dynamics.

Whether Parrot is the virtual machine to be used as prime target in future, we cannot say at this moment.
For that, we should gain more experience with other languages that require more features of the virtual
machine. And of course, other virtual machines such as .NET, JVM (Java Virtual Machine), should be
considered also.

References

[1] Parrot website. http://www.parrotcode.org/

[2] Perl website. http://www.perl.org/

[3] Program Algebra website. http://www.science.uva.nl/research/prog/projects/pga/

[4] Python website. http://www.python.org/

[5] Ruby website. http://www.ruby-lang.org/

[6] J.A. Bergstra and I. Bethke, ‘‘Molecular dynamics,’’ Journal of Logic and Algebraic Programming,
vol. 51, no. 2, pp. 193-214, 2002.

[7] J.A. Bergstra and M.E. Loots, ‘‘Program algebra for sequential code,’’ Journal of Logic and Algebraic
Programming, vol. 51, no. 2, pp. 125-156, 2002.

[8] B. Diertens, ‘‘Molecular Scripting Primitives,’’ report PRG0401, Programming Research Group -
University of Amsterdam, 2004.

[9] B. Diertens, ‘‘A Toolset for PGA,’’ report PRG0302, Programming Research Group - University of
Amsterdam, 2003.

[10] A. Randal, D. Sugalski, and L. Tötsch, Perl6 and Parrot Essentials, second edition, O’Reilly &
Associates, Inc., 2004.

- 18 -

Appendix A. Projection of PGLB to PGLA in PGLEc.MSPio

In the following, a listing is given of the program in PGLEc with MSPio to convert a program in PGLB to a
program in PGLA.

1 instrlist = null;
2 nrinstr = 0;
3 L0;
4 instr = "";
5 - read h {;
6 ##L100;
7 };
8 L10;
9 + h == " " {;
10 read h;
11 ##L10;
12 };
13 + h == "\n" {;
14 read h;
15 ##L10;
16 };
17 space = "";
18 ##L13;
19 L11;
20 + read h {;
21 L13;
22 + h == " " {;
23 append space " ";
24 ##L11;
25 };
26 + h == "\n" {;
27 append space " ";
28 ##L11;
29 };
30 + h == "\"" {;
31 append instr space;
32 append instr h;
33 space = "";
34 L12;
35 read h;
36 append instr h;
37 + h == "\\" {;
38 read h;
39 append instr h;
40 ##L12;
41 };
42 - h == "\"" {;
43 ##L12;
44 };
45 ##L11;
46 };
47 - h == ";" {;
48 append instr space;
49 append instr h;
50 space = "";
51 ##L11;
52 };
53 };
54 + instrlist == null {;
55 pinstr = new;
56 instrlist = pinstr;
57 }{;
58 pinstr.+next = new;
59 pinstr = pinstr.next;
60 };

61 + instr == "!" {;
62 pinstr.+end;
63 ##L20;
64 };
65 first instr h;
66 + h == "+" {;
67 pinstr.+testt;
68 delfirst instr;
69 L21;
70 first instr h;
71 + h == " " {;
72 delfirst instr;
73 ##L21;
74 };
75 pinstr.+basic:str = instr;
76 ##L20;
77 };
78 + h == "-" {;
79 pinstr.+testf;
80 delfirst instr;
81 L22;
82 first instr h;
83 + h == " " {;
84 delfirst instr;
85 ##L22;
86 };
87 pinstr.+basic:str = instr;
88 ##L20;
89 };
90 + h == "#" {;
91 delfirst instr;
92 + int instr s {;
93 pinstr.+goto:int = s;
94 ##L20;
95 };
96 };
97 + h == "\\" {;
98 delfirst instr;
99 first instr h;
100 + h == "#" {;
101 delfirst instr;
102 + int instr s {;
103 pinstr.+gotob:int = s;
104 ##L20;
105 };
106 };
107 };
108 pinstr.+basic:str = instr;
109 L20;
110 incr nrinstr;
111 ##L0;
112 L100;
113 pinstr = instrlist;
114 ic = 0;
115 + pinstr == null;
116 ##L200;
117 L110;
118 incr ic;
119 + pinstr/goto {;
120 h1 = ic;

- 19 -

121 incr h1 pinstr.goto;
122 h2 = nrinstr;
123 - decr h2 h1 {;
124 pinstr.goto = 0;
125 ##L190;
126 };
127 };
128 + pinstr/gotob {;
129 h1 = pinstr.gotob;
130 - decr h1 ic {;
131 h1 = nrinstr;
132 incr h1 2;
133 decr h1 pinstr.gotob;
134 }{;
135 h1 = 0;
136 };
137 pinstr.-gotob;
138 pinstr.+goto:int = h1;
139 ##L190;
140 };
141 L190;
142 + pinstr/next {;
143 pinstr = pinstr.next;
144 ##L110;
145 };
146 L200;
147 pinstr.+next = new;
148 pinstr = pinstr.next;
149 pinstr.+goto:int = 0;
150 pinstr.+next = new;
151 pinstr = pinstr.next;
152 pinstr.+goto:int = 0;
153 incr nrinstr 2;
154 pinstr.+next = new;
155 pinstr = pinstr.next;
156 pinstr.+repeat:int = nrinstr;
157 pinstr = instrlist;
158 ic = 0;
159 L300;

150 + pinstr/end {;
151 instr = "!";
152 ##L310;
153 };
154 + pinstr/testt {;
155 instr = "+ ";
156 append instr pinstr.basic;
157 ##L310;
158 };
159 + pinstr/testf {;
160 instr = "- ";
161 append instr pinstr.basic;
162 ##L310;
163 };
164 + pinstr/goto {;
165 instr = "#";
166 str pinstr.goto s;
167 append instr s;
168 ##L310;
169 };
170 + pinstr/repeat {;
171 instr = "\\\\#";
172 str pinstr.repeat s;
173 append instr s;
174 ##L310;
175 };
176 instr = pinstr.basic;
177 L310;
178 - ic == 0 {;
179 write "; ";
180 };
181 write instr;
182 incr ic;
183 + pinstr/next {;
184 pinstr = pinstr.next;
185 ##L300;
186 };
187 write "\n";

The lines 1 through 112 parse the input and build a list of instructions in focus instrlist. The list of
instructions in PGLB is converted to a list of instructions in PGLA in the lines 111 through 156. The
remainder of the code writes the list of instructions on the output.

Electronic Reports Series of the Programming Research Group

Within this series the following reports appeared.

[PRG0403] B. Diertens, A Compiler-projection from PGLEc.MSPio to Parrot, Programming Research Group -
University of Amsterdam, 2004.

[PRG0402] J.A. Bergstra and I. Bethke, Linear Projective Program Syntax, Programming Research Group -
University of Amsterdam, 2004.

[PRG0401] B. Diertens, Molecular Scripting Primitives, Programming Research Group - University of
Amsterdam, 2004.

[PRG0302] B. Diertens, A Toolset for PGA, Programming Research Group - University of Amsterdam, 2003.

[PRG0301] J.A. Bergstra and P. Walters, Projection Semantics for Multi-File Programs, Programming Research
Group - University of Amsterdam, 2003.

[PRG0201] I. Bethke and P. Walters, Molecule-oriented Java Programs for Cyclic Sequences, Programming
Research Group - University of Amsterdam, 2002.

The above reports and more are available through the website: www.science.uva.nl/research/prog/

Electronic Report Series

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

