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Abstract

The multi-file paradigm — where program modules are located in differ-
ent files as exhibited in Java, is investigated using the program algebra
PGA. In order to so a number of auxiliary results in the context of PGA
are presented: languages with explicit location of execution (PC), method
invocation, structured programming, and a flat file system.

1 Introduction

In a desire to understand and reason about the nature and mechanism of pro-
gramming, the program algebra project has developed the program algebra PGA
([BLO2]). PGA offers an algebraic theory intended to facilitate reasoning about
sequential programs. By definition, a sequence of instructions is a program, as
is any entity the meaning of which can be defined by mapping it to a sequence
of instructions. Such a map is called a projection. In this setting, aspects of
programming are discussed, based upon definitions that are open to debate and
formal reasoning.

The programming language Java refines a programming paradigm that exists
in various languages in more or less ad-hoc fashions and that we will call multi-
file programs: program modules originate from multiple separate files, and the
content of such a file refers to (calls) methods contained in another file.

In this article, our purpose is to define a very simple format for multi-file
programs in the style of PGA. Then, we will identify a fragment of Java that
we can study using this format.

In order to achieve this, a number of prerequisites have to be developed:
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versity, Department of Philosophy, Applied Logic Group, email: Jan.Bergstra@phil.uu.nl.
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Explicit PC.

Control features such as a method call require the ability to represent the pro-
gram counter (i.e., the locus of execution) explicitly, to store, retrieve and ma-
nipulate it.

In computer hardware, the program counter is a special register which holds
the address of the current instruction. Maintaining the proper value at all
times, which includes an increment each time an instruction is fetched and
performed, is ordinarily done automatically by hardware and does not require
explicit program control. In addition, advanced control instructions manipulate
the contents of this register as if it is a data register, storing it, altering it or
replacing it with a stored, or entirely new value.

The “locus of execution” in PGA is implicit; thinking of it as data leads to
defeat of the purposes of PGA. As it turns out though, the mechanisms at our
disposal to use or manipulate the locus are sufficient for most control features.

Our intention is to use a value that can be manipulated and that can be
transfered to and from the PGA’s implicit locus of execution; we do not alter
the nature of the locus of execution, or the fact that it remains implicit, and
we do not expect this value to be synchronous with the locus of execution with
every instruction: only after specific control instructions. One can think of this
value as the hardware PC at the moments it is being manipulated as data. We
shall refer to it as the PC.

Invocation and returning goto.

Since we intend to look at Java, where method invocation is the predominant

control flow mechanism, we require a PGA-language which has that feature.
In [BB02] the feature is defined using a projection based on primitives which

are not present in our current framework (notably: molecular programming

primitives). Accordingly we redefine this feature.

Vector labels.

PGA and various related languages use natural numbers as labels. Although this
is quite adequate in theory, in practice many formulations become cumbersome
in order to avoid unintended clashes of labels. Vector labels provide a clearer
approach.

Flat file system.
In order to reason about multi-file programs we develop a (minimal) formaliza-
tion of a file system.

Structured programming.
In structured programming a program is regarded as a hierarchy of nested
blocks. A block may be executed or may be passed over entirely.



1.1 PGA

PGA is an algebra for sequential programs, focusing on what is traditionally
called “control flow”. PGA abstracts from data, assuming all data manipulation
to be managed by the set of basic instructions . The sole link between data
and control flow is embodied in the assumption that every basic instruction
returns a boolean value which may or may not be examined by the program.

PGA also abstracts from most syntactical aspects: PGA values, i.e., base
programs, are non-empty, possibly infinite, sequences of the so-called primitive
instructions shown below (here, a ranges over X).

e q: perform a, and disregard the boolean value that is returned;

e +a: perform a, and, if the returned boolean is true, continue with the
next instruction. Otherwise, skip the next instruction and continue with
the subsequent instruction;

e —a: perform a and continue with the next instruction if the returned
boolean was false, skipping one instruction otherwise.

e !: terminate execution;

e #n: continue execution at the nth subsequent instruction “goto” (there is
no backward jump in base programs; loops are unrolled where necessary).

PGA terms are constructed from primitive instructions, from the associative
operator - ; - for sequential execution, and the operator - “ for infinite repetition.
Four equations (schemes) are given for PGA terms: (X;Y);Z7 = X;(Y;2)
(associativity of ;), (X™)* = X“ (for any positive natural n), X“;Y = X%,
and (X;Y)¥ = X;(Y;X)“. Terms equal with respect to these equations are
instruction sequence congruent (=;s.). Any finite closed PGA term has a =;,.
canonical form X or X;Y“ (where X and Y are finite primitive instruction
sequences).

The behavior of programs is defined as follows (here, P and ) range over
program behaviors, and a ranges over ¥).

e P <gar Q: the program performs a. If the boolean returned is true the
program proceeds with behavior P, and otherwise with behavior (). Note
that all possible behaviors of a program are considered rather than the
behavior during one particular execution;

e S: the program terminates;

e D: the program is inactive and will not process further instructions. For
example, it performs an infinite empty loop;

e The sequentialization notation a o P is introduced as a short hand for
Pdap P.



The behavior extraction operator |-| assigns behavior to PGA-programs in
the straightforward manner. Programs are behavior equivalent (=p.) if they
have the same behavior.

A projection is a map ¢ from a language L (set of objects) into the set of base
programs for some appropriate . Such a map defines a meaning for L-programs
as the behavior of their ¢-value. We write | X |, = |¢(X)| for X € L.

Finally, [BLO02] defines several languages, some of which are discussed below.

1.1.1 PGA-related languages introduced in [BL02]

The language PGLA offers a textual representation of PGA. The representa-
tion of - ¢ is the instruction \\#k. This instruction has no equivalent in any
programming language known to us). In addition it has non-local implications
which make it difficult to handle consistently.

In PGLB this situation is improved upon by removing that instruction and
introducing a more conventional backward (relative) jump.

PGLD offers an absolute jump (#+#n) as its predominant control mechanism.
Although unfriendly for a human programmer, this mechanism is a suitable
target in projections.

PGLDg removes the detailed technicalities of absolute addressing; it offers
(numeric) labels (£k) and a jump-to-label (##£k) instruction.

PGLE is identical to PGLDg, except that it requires conditional basic in-
structions only to be followed immediately by a jump instruction or a terminate
instruction. This avoids the ’true-case’ falling through into the ’false-case’,
which is unclear and leads to all sorts of technicalities in program transforma-
tions.

[BL02] introduces other languages, but they shall not be used in this article.

1.1.2 Co-programs and Focus Method Notation

Since a basic instruction results in a boolean, it follows that something outside
the program produces that boolean. Whether this is trivial, perhaps producing
the same boolean for the same instruction each time, or more complex, perhaps
producing the binary digits of an approximation of one solution of a fifth-degree
polynomial equation, is left open in PGA. Indeed, PGA leaves entirely open
how basic instructions come to their result.

An entity performing services for a program is called an instruction execut-
ing agent, a co-program, or a re-actor. One class of co-programs, called state
machines, will be introduced in the next section.

The focus method notation (FMN) is a convention which addresses basic
instructions. It distinguishes two aspects in a basic instruction: the focus,
which one can think of as the name a program uses to identify one particular
co-program!, and the method, which denotes the service required of that co-

INote that a focus doesn’t identify a specific co-program; merely the name under which a
program addresses one of possibly multiple co-programs. This is similar to many programming
languages, where programs identify files using handles.



program, and possibly additional information needed to perform the service. In
FMN, focus and method are separated by “.”. Both focus and method must
start with a letter and may contain only alphanumeric ASCII characters and
the colon symbol “:”.

1.2 State Machines

A state machine ([BP02]) is a pair (X, F') where X (the interface of the machine)
is a set of basic instructions, and F' is a map from sequences of such instructions
(X7) to the booleans, where F(ay;...;a,) signifies the boolean value resulting
from execution of a, in the state resulting from the sequence of instructions
ay...50p—-1.

For example, smbv, a state machine for a boolean variable, arguably the
simplest abstract data type, is ({set:true, set:false, eq:true,eq:false}, Fj,)

where Fy,(a1;...; an—1; ay) equals trueif a,, = eq:true and the last ’set’ instruc-
tion in aq;...;an—1 is set:true, or a, = eq:false and ay;...;a,—1 contains no
'set’ instruction or the last one is set:false, and Fyy(a1;...;an—1;a,) equals

false otherwise. Observe that F/() = false. By convention, this is the case for
every state machine.

Different state machines can be combined, when their interfaces are disjoint.
The combined interface is the union of the separate interfaces, and the combined
map is the obvious extension of the two separate maps. A state machine calculus
is defined in [BP02].

The interaction between program behaviors and state machines is embodied
in two binary operators: the use operator (/) and the apply operator (e¢),
which have a program behavior and a state machine as arguments, and where
f is a focus occurring in the program. The set of methods occurring in the
program for that focus must be contained in the interface of the state machine.

The apply operator considers a program (behavior) as a transformer of state
machines in that basic instructions alter the state of the state machine. The
use operator considers a state machine as a transformer of behaviors in that
the state machine simplifies the program by offering a decisive choice on the
conditional instructions with the given focus.

As an illustration we offer one of the defining equations of the use operator:

d d
(P2fm2Q) /g H= (P [f g2 H)aF(m)>(Q /5 5. H)
Here, H = (3, F), and #& H signifies the state machine obtained from H

assuming a to have been the first instruction, and . <.>. signifies a three-valued
conditional.

2 Projection-compatibility

The purpose of PGA is to make explicit and then study programs, and to reason
about them formally, by mathematical or automatical means. Adding arbitrar-



ily complex co-programs, or co-programs which are beyond formal reasoning
altogether, defeats this purpose.

Even when a co-program does allow for formal reasoning, there is a price
attached to its use: results which depend on specific properties of that co-
program have limited usefulness in a more general scope. General results remain
limited to programs where one can abstract from the behavior of co-programs
in a well understood manner.

Because of this we introduce the notion of projection-compatibility. A co-
program is projection compatible on a class of programs, if a projection exists
from programs in that class that use the co-program to programs with the same
behavior, that do not use that co-program (or any replacement).

If the domain of such a projection is an entire language (such as PGLD),
the class of programs is implicitly limited to that language and to any further
languages for which the meaning has been defined by a map to that language.
Accordingly, a compatibility projection on PGA (or PGLA) applies to all lan-
guages in the PGA framework. From a practical perspective we mention that
PGA and PGLA can be embedded, preserving meaning, in PGLB, PGLD, and
certain other languages. Accordingly those languages can also be taken as a
point of departure to establish general projection compatibility.

If that domain is characterized by other properties (whether within one lan-
guage or not), the applicability to further languages depends on what properties
on such languages lead to the desired properties in their meaning.

Focusing on state machines, we mention three facts:

e State machines with finitely many states are projection compatible on all
programs. This is a special case of the third fact.

As an example, consider the state machine ({prime:ili € IN}, F), where
F(...;prime:i) = true precisely when ¢ is prime. This state machine
has a single state, and the projection unpr, defined below, maps PGLA
programs using this state machine on focus pr to behaviorally equivalent
programs not having this focus.

unpr(ug;...;uy) = ¢(ur);...; d(uy)

+pr.prime:p) = #1 when p is prime;

(
(
— ¢(+pr.m) = #2 in any other situation;
(—pr.prime:p) = #2 when p is prime;
(—pr.m) = #1 in any other situation;
— ¢(u) = u, otherwise;
e A priori, state machines with infinitely many states are not projection
compatible. This follows from the fact that a PGA program without co-
programs has finitely many states.



e A state machine is projection compatible on a class of programs if each
program in that class can only make the state machine reach finitely many
states.

In this article we will not prove this fact in general (we will look at some
instances), merely stating it as a conjecture. That it is reasonable can
be seen for example by considering the following projection ¢ on PGLD.
Let p be a program which uses state machine s via focus f, and which
potentially makes s reach the states {si,...,s,}. Then, ¢(p) contains
precisely n copies of p which have been transformed as follows:

— A basic instruction (void or conditional) at location [ in p with focus
J which changes state s; to state s,,, () is replaced in copy i by
the goto instruction to location [ + 1 in copy m ,i(¢);

— If the basic instruction at location [ was a positive condition and
s in state s; results in false, for the basic instruction at location [
in p, or it is a negative condition and that result is true, then the
goto instruction produced above is replaced by the goto instruction
to location [ + 2 in copy ms p(1);

In other words: state changes are replaced by jumps to the appropriate
copy, and resulting booleans reflect the copy they are contained in.

As an extended example the next section (2.1) discusses projection com-
patibility along these lines for a state machine to be used elsewhere in this
article.

Establishing behavior equivalence between programs using a projection com-
patible co-program and their image under a projection compatibility map is
often difficult to prove in general, even in straightforward cases such as our
“prime” example, above. However, it is often sufficiently satisfactory to estab-
lish bisimulation for a number of representative programs.

In this document we will offer projections wherever projection-compatibility
is claimed, but we will neither prove projection-compatibility in general, nor
establish it for specific programs.

Finally we stress that the purpose of projection compatibility is not to avoid
the use of co-programs; they are an integral part of the PGA framework. Also,
the compatibility projection of a program is not to be confused with the meaning
of that program, which may very well include co-programs.

In the remainder of this article, we use the notation [::f-m for programs
written in language [ using a focus f with methods defined in interface ¥,,. An
l:: f-m program uses advanced control instructions defined in [, but assumes the
presence of a co-program which offers services defined in ¥,,, and which is used
by the program via focus f.

2.1 The state machine smpc

State machine smpc is used to store a number. It has instructions set:n,
which set the current value to n, forgetting any previous stored value, and



eq:n which return true precisely when the current value equals n. That is,
smpc = (X, Fje), where X, = Ujew{set:i,eq:i}, and Fj.(s) = true when
s =b1; ... by; setik; ci; ... oy eqik, for n,m > 0, where each b; € ¥,,. and
each ¢; = eq : [; for some l;, and Fj.(s) = false in any other situation.

State machine smpc is projection compatible on PGLD, and without loss of
generality we consider PGLD programs using methods of that state machine
via focus pc (i.e., PGLD:pce-pc). We take PGLD as our point of departure
because it leads to a more straightforward projection than would PGLA or other
languages. As mentioned, this is sufficient to establish projection compatibility
on all PGA languages.

Although smpc has infinitely many states, only finitely many states can oc-
cur, since the state of smpc is determined exclusively by the final set instruction
(or absence thereof), and no program contains more than a finite number of such
instructions. This is the basis of our projection from PGLD::pc-pc to PGLD.

The projection copies the program as many times as there are distinct states
that can be reached or queried. Then, the fragment processing occurs in en-
codes the current state; processing pc.set:k corresponds to branching to the
corresponding fragment; and querying the current state with pc.eq:k succeeds
depending on the actual fragment.

The projection from PGLD:pc-pe to PGLD of a program p = ui;...;um,
with focus pc is defined as follows. Let L = {la,...,l;} be the ordered set of
values occurring in p in a basic instruction with focus pc and method set or eq,
(L = {l|Fi : u; = pc.set:l V u; = pc.eq:l}), and let L = {ly,...,lx} = LU{l1}
where [; is some arbitrary value not occurring in L (this value will be used
to represent the initial state of the state machine, where the 'stored’ value, by
definition, is not equal to any specific value). Then,

pyld::pc-pe2pgld(p) = ;:n,L (p)

Here, ¢ and auxiliary functions are defined as follows. Notation "™ (%, j)
signifies the location of the j-th instruction in fragment 4.

. QST’L(Ula’um): TiL(ul),, Tr’rf(um)’
m.L m.L m,L m,L
o 1 (urse . um) = @7 (was s )s #HO FHO0 0 (wn); - (Um);
o YU (#4#) = ##+t where t = I™(i,1) for 1 < 1 < m, and t = 0, otherwise;
. Qp?j’L(pc.set:ln) = #H#1"(n,j)+1;
o VT (+pe.setil,) = #HI (1, §)+2;
. q/;ZTj’L(—pc.set:ln) = ##1"(n, j)+1;
. qp;?j’L(—l-pc.eq:ln) = ##1™(i,j)+1, when i = n;

. ¢Z}’L(+pc.eq:ln) = ##1™(i,j)+2, otherwise;



o YW (—pe.eqil,) = #4411, §)+1, when i #n;

° Q/JZZ-’L(—pc.eq:ln) = #H#1"™(i,7)+2, otherwise;

o Y (pe.eqily) = ##I™(i,§) + 1;
. w:"ﬂL(u) = u, otherwise;
o I™(i,j) = (i — 1) * (m+2) +j.

Note that ’l/)le’L is somewhat cumbersome in order to handle 'rogue’ programs
that contain instructions such as —pc.set:l or pc.eq:l. Though not forbidden,
these instruction are odd in the context of smpc in that set:l always yields false,
and eq:l has no effect in a void basic instruction.

We conjecture that the behavior of a PGLD::pc-pc program using smpc
via focus pc is identical to that of the projected program. That is, given a
PGLD::pc-pe program p, |p|parLp:pe-pe /f SIPC =be | pgld::pe-pe2pgld (p)|paLp-

As mentioned, this establishes projection compatibility on all PGA lan-
guages.

The following examples may serve to illustrate the projection.

pgld::pc-pc2pgld (pe.set:1; a; +pc.eq:1; b; —pc.eq:l;¢) =
H#H#10; a; #4£5; b; #4£6; ¢; #4F0; ##0; ##10; a; #412; b; ##15; ¢

3 Relocatable programming with explicit PC

PGLB is the PGA language for relocatable programming. Relocatable program-
ming, also referred to as program counter relative programming, means that
addresses in an instruction are given relative to the location of that instruction.

In many compilers relocatable code generation is an option; it is selected
when compiling libraries, for instance, leading to library modules which can be
added to programs at an arbitrary location, without an expensive relocation
phase. In ordinary code the option is not selected, because absolute addressing
is generally faster.

In the context of PGA this property is relevant because it simplifies pro-
jections significantly: under mild restrictions fragments can be concatenated
without alterations, and the behavior of the resulting program can be under-
stood from the behavior of the fragments. Without formalizing this, we shall
refer to this property as monotony.

PGLBpc is an extension of PGLB in which the locus of execution can be
stored and retrieved. In addition to PGLB, PGLBpc has the following instruc-
tions. We refer to the stored value as PC.

e pc=here
Set PC to the location of this instruction. One can think of this instruction
as assigning PGA’s locus of execution to PC;



e pc=here+n
Set PC to the location of the n-th instruction ahead, if that exists, or
terminate, otherwise;

e pc=here—n
Set PC to the location of the n-th previous instruction, if that exists, or
terminate, otherwise;

* Ff#pC
Jump to the instruction the location of which is held in PC, or terminate
if no such instruction exists. One can think of this instruction as assigning
PC to PGA’s locus of execution.

As an example, consider the following template, where p is an arbitrary
PGLB program (we are assuming p proceeds to execute it first subsequent in-
struction when it has finished, as is reasonable in a sequential programming
environment):

pc=here+l; p; +a; ##pc

Fragment p is repeated while basic instruction a succeeds (i.e., this is a
template which implements “do { p } while(a);” in Java syntax). Note that
the size of p doesn’t matter; it is impossible to express such a template in PGLB
without taking the size of p into account.

As a second example, consider:

pc=here+2; #4; pc=here+2; #2; !; p; #i#pc

Fragment p is invoked from different locations, returning control to wherever
it was called from. PGLBpc allows one-shot invocation (no recursion, no chained
invocation). In PGLBpc it is possible to use pre-compiled libraries without
altering them in order to link. Only their size is needed, when more than one
is used, to establish their start as a relative offset from the main program.

3.1 Projection from PGLBpc to PGLB
The projection from PGLBpc to PGLB is defined as follows:

pglbpc2pglb(uy; . .5 un) = Yp(0, ¢1 (u1); - - -5 by (un); #0; #0)

An instruction #0 ensures that a program reaching its end without termi-
nating doesn’t “fall through” in the jump table which is placed there in 9,. An
additional #0 is added in case u,, is conditional. Jumps beyond the boundaries
of the program are adapted for the same reason. Here, ¢} and v, are defined
as follows:

o ¢ (#k) =#0 when i + k > n;
o ¢7"(pc=here+k) = u, where u = pc.set:i+k when i+ k > n, and u = #0,

otherwise;
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o ¢7"(\#k) = #0 when k > i;

o ¢!'(pc=here—k) = u, where u = pc.set:i—k when k > i, and u = #0,
otherwise;

o ¢'(pc=here) = pc.set:i;
o Of(##pc) =#n—i+3;
o ¢7"(u) = u, otherwise;

o U, (S, ut;. .. uy) = Y (SU{l}, us ... U +pc.eq:l; \#m—1+2) when [ ¢
S and for some j (1 < j < m) we have u; = pc.set:l;

e ,(S,p) = p otherwise.

The image of a PGLBpc program is assumed to use state machine smpc via
focus pc.

Projection pglbpc2pglb is not the identity on PGLB (certain instructions #k
and \#k are mapped to #0). However, pglbpc2pglb can still be regarded as a
conservative extension in that it attributes the same meaning to PGLB pro-
grams: pglb2pgla(pglbpc2pglb(p)) = pglb2pgla(p) (pglb2pgla maps precisely the
same instructions #k and \#k to #0).

Looking at our earlier examples (assuming the size of p is n,, and assuming
p to be mapped to p):
pglbpc2pglb(pc=here+1; p; +a; ##pc) =
pc.set:2; ;3; +a; #3; #0; #0; +pc.eq:2; \#n,+5

pglbpc2pglb(pc=here+2; #4; pc=here+2; #2; !; p; ##pc) =
pc.set:3;#4;pc.set:5;#2;!;ﬁ;#s;#o;#0;+pc.eq:3;\#7+np;+pc.eq:5;\#7—|—np

4 Absolute addressing with explicit PC

PGLD is the PGA language with absolute addressing. It is relevant as a model
for many processors, which have absolute addressing as their most basic control
mechanism. It is also relevant in that it offers a very straightforward target for
projections from other PGA languages.

PGLDpc is an extension of PGLD with explicit PC. In addition to PGLD’s
##k (absolute goto), PGLDpc offers the following control instructions:

e pc=k
Set the value PC to k (the location of the k-th instruction), or terminate
if no such instruction exists;

e i#itpc
Proceed execution at the instruction referred to by the program counter,
if that exists, or terminate, otherwise.

11



Like PGLD, the significance of PGLDpc is that it offers a straightforward
target for projections. Other than that PGLDpc exhibits no significant prop-
erties: the capabilities it adds are similar to those added by PGLBpc, except
that they are less useful (templates abstracting from fragment size mean little if
the absolute location of every instruction is to be incorporated). PGLDpc does
have one shot invocation.

By way of an example, consider the following two programs, which are the
PGLDpc versions of the examples from the previous section.

pc=2; p; +a; #i#pc

pc=3; ##6; pc=5; ##6; !; p; ##pc

4.1 The projection of PGLDpc

Two routes to define the meaning of PGLDpc are appropriate. PGLD is given
a meaning in a projection to PGLC, which again derives its meaning from a
projection to PGLB. Both projections are straightforward. Based upon these,
PGLCpc could easily be defined, and conservative extensions of the respective
maps from PGLDpc to PGLCpc and from there to PGLBpc.

Alternatively, a projection from PGLDpc to PGLD could be defined in the
spirit of pglbpc2pglb.

We chose the first alternative because it strengthens the view that an explicit
PC is an orthogonal extension to PGA languages. In addition, the jump table
introduced by pglbpc2pglb is an artifact introduced to express the fact that in
computer hardware the program counter can be manipulated as data, whereas
in PGA the abstract value PC and the locus of execution live in different realms
altogether. It seems appropriate to express this fact only once. Note that we
suggest nor deny that PGLCpc serves any significant purpose on its own.

4.1.1 PGLCpc

PGLCpc adds the same advanced control instructions to PGLC as does PGLBpc
to PGLB (##pc, pc=here, pc=here+k, pc=here—k). Its meaning is defined
by pgle2pglb, the projection of PGLC to PGLB, under the understanding that
the domain of that projection has been extended with the instructions above;
the projection is the identity on that extension by the third clause of qﬁ;’? (see
below). For completeness, we repeat the definition of pgle2pglb from [BL02].

pgle2pglb(uys. .. sug) = f (ur)i. . (ug); ;!
Here:

. 1/);“(#1) = !'when j+1>k;
o YF(\#I) = ! when [ > j;

. 1/);?(u) = u, otherwise;

12



4.1.2 The projection from PGLDpc to PGLCpc
The projection from PGLDpc to PGLCpc is defined as follows:

pyldpe2pglepe(uy; . .. ur) = 1 (ur);. . .5 Un(uy)

With the exception of the clauses handling PC-related instructions, the defi-
nition of pgldpc2pglcpc is identical to that of pgld2pglc. Accordingly, pgldpc2pglepc
is a proper extension.

Obviously the image of our examples under pgldpc2pglcpe, disregarding the
projection of fragment p itself, is precisely as they appeared in Section 3 .

5 Structured programming

Every imperative “higher” programming language favors so-called structured
programming. At the basis is the block: an arbitrarily large program fragment
that behaves as a unit in certain circumstances. A block can be entered, in which
case it is processed normally, or it can be passed over completely. Blocks can
be nested, and they are demarcated with matching braces, as is quite common.

Structured programming is obviously relevant to a human programmer;
keeping track of absolute locations, and having to change half of them when
the program is altered is error prone and cumbersome.

In addition structured programming is relevant in projections in that it
brings back location independence and monotony which were lost in PGLD.

In PGLDS, the goto instruction (##k) is removed because it is in conflict
with the idea of location and size independence. We do not suggest that the
instruction is superfluous; see [BL02] for a proof to the contrary, under similar
circumstances.

PGLDS has the control instructions shown below.

e { and } mark the beginning and end of blocks. When executed they do
nothing other than advancing to the next instruction (or terminate if no
such instruction exists);
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e #> passes control two instructions after the next block, or, whichever
comes first, after the next } if the matching { occurs before #> or is
missing altogether, or terminates if none of these apply. That is, control
passes after the next block, the enclosing block, or the entire program,
whichever comes first;

e <+ passes control two instructions before the immediately preceding block,
or, whichever comes first, before the last { if the matching } occurs after
<# or is missing altogether, or terminates if none of these apply. That is,
control passes before the previous block, the enclosing block, or the entire
program, whichever is closest;

e xskip advances to the next instruction, terminating if no such instruction
exists.

e ! terminate execution.

The instructions immediately preceding { or following } are limited to ter-
mination, skip and jump instructions.

Some examples may help to illustrate this. Unless specified otherwise, frag-
ments “...” may contain braces, but only in matching pairs.

-a; #>; {; ... }; *skip

If basic instruction a yields true, control passes to the opening brace, and the
block is processed. Otherwise, control passes to #> and then immediately after
the xskip. That is, this is a template for the statement “if (a) { ... }’ (in
Java syntax).

—a; #>; {; ... }; #>; {; ... }; *skip

This template implements “if (a) { ... } else { ... }”.
-a; #>; {; ... }; <#

This template implements “while (a) { ... }”.

—ay ¥ {; .. B> L <#; L) <#

Again, a while loop. The enclosed #> and <# behave as break and continue
statements, respectively, if the ellipses do not contain any block.

5.1 Projection from PGLDS to PGLD

The projection from PGLDS to PGLD giving a meaning to a program p =
u1;. .. ; Uy is defined as follows.

pgldsgpgld(ul; cee un) = ¢1,p(ul); S ¢n,p(un)
Here, ¢; ,,, and [< and [~ (used by ¢) are defined as follows:

L4 ¢Lp(0 = ##0;

14



o ¢ p(u) = ##i+1 for u = xskip, u = { or u =};
L4 ¢Z,P(#>) = ##l>(oalap)a
L4 ¢1,P(<#) = ##l<(oalap)a
e ¢; ,(u) = u, otherwise;
b l>(kalu1)aun) =
— 0 when i > n;
—1Z(k+1,i+ 1,u3;...;u,) when u; = {;
— ¢t when u; =} and k < 1, wheret =i+ 2if i +2 < n and ¢t = 0,
otherwise;
—17(k—1,i+1,u3;...;u,) when u; =} and k > 1;
— 17 (kyi+ 1,uq;. .. ;uy), otherwise;
b l<(kalu1aaun) =
— 0 when 7 < 0;

— IS(k+1,i—1,ug;...;uy,) when u; =};
— t when u; = { and k < 1, where t =i —2ifi—2 > 1 and t = 0,

otherwise;
—I<(k—1,i—1,u1;...;up) when u; = { and k > 1;
— I=(k,i— 1,uq;...;uy,), otherwise;

The images under pglds2pgld of our examples are as shown below. Here,
the lengths of the fragments indicated by ellipses are taken to be 1 for the
computation of absolute addresses.

pglds2pgld(-a; #>; {; ... }; *skip) = -a; ##7; ##4; ... ##6; ##7; ...
pglds2pgld(-a; #>; {; ... }; #; {; ... }; *skip) =

-a; ##7; ##4; ... ##6; ##11; ##8; ... ##10; ##11; ...

pglds2pgld(-a; #>; {; ... }; <#)=-a; ##7; ##4; ... ##6; ##1; ...
pglds2pgld(-a; #>; {; ... #>; ... <#; ...}; <#)=

—a; ##11; ##4; ... ##11; ... ##1; ... ##10; ##1; ...
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6 Structured programming with exceptions

One of the accepted deficiencies of purely structured programming is exception
handling. In most programming languages exception handling is absent or rudi-
mentary; in some languages, such as Lisp, ADA and Java, it is very refined and

expressive.
Key to most if not all mechanisms is that an exception handler is made
known (“catch”, “try”, ...) before any exception can occur, and that it will

handle any subsequent exception, possibly of a specific type, which occurs either
implicitly in the run time system or explicitly by user control (“throw”, “raise”,

PGLDSpc, the extension of PGLDS with an explicit PC, offers precisely

such a mechanism.
PGLDSpc adds the following instructions to PGLDS:

e pc=here>
set the value PC to the location #> would jump to, from the current
location (or terminate if that is outside the program);

e pc=<here
set the value PC to the location <# would jump to, from the current
location;

* F#pC
Proceed execution at the instruction referred to by the program counter,
if that exists, or terminate, otherwise.

”

As an example, consider the following (“...” may contain braces, but only

in matching pairs).
#>; xskip; *skip; {; h; }; *skip; pc=<here; ... #iipc;

The fragment A is skipped entirely, but PC is set to the location of its beginning.
The fragment is invoked by executing #+#pc.

6.1 Projection from PGLDSpc to PGLDpc

The projection from PGLDSpc to PGLDpc of a PGLDSpc program p = ui;...;u,
is a conservative extension of pglds2pgld defined as follows.

pgldspe2pgldpe(u; . . .5 un) = G1p(u1);- . .5 dnp(Un)

Here, ¢; ;, is defined as follows (I< and [~ are defined as before).
b ¢i,p(!> = ##0;
o ¢ip(u) =##i+ 1 for u = *skip, u = { or u =};
i ¢i,p(#>) = ##l>(ovlvp)a
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® ¢;p(pc=here>) = pc=I~(0,i,p);
b ¢zp(< ) ##l<(0,i,p);

e ¢; p(pc=<here) = pc=I<(0,1,p);
(

e ¢; ,(u) = u, otherwise;

The result of our example, assuming the size of h to be nj and assuming h to
be mapped to h, is shown below:

pglv2pgle(#>; *skip; *skip; {; h; }; *skip; pc=<here; ... ##pc; ...)=
#HT7+np ; ##3; ##4; ##5; h; ##6+nn; ##74n,; pc=2; ...; ##pc;

7 Vector Labels

Structured programming concerns the flow of control under normal circum-
stances, pursuant to the structure of a program. This is too limited when con-
sidering exceptional circumstances or loosely related program fragments such
as modules. As mentioned, PGLDSpc improves upon this situation in a very
limited way by introducing a single type of exception.

In a sense, the other extreme of a range is PGLE: it allows for arbitrar-
ily complex control flow including multiple exceptions and other mechanisms,
unrelated to the program structure.

Under certain conditions PGLE is monotonous. These conditions avoid un-
intended reuse of the same label in distinct program fragments that are to be
combined. In practice, this means that fragments which are to be combined
have to be checked to compare labels, and have to be modified by replacing
labels when the same label is defined in both, taking care that the labels that
are introduced do not clash with any label already occurring in the fragments or
in their context. Often, projections become significantly more complex in order
to handle this properly.

PGLV offers a partial solution to this problem by using vectors of numbers
rather than singleton numbers. Then, program fragments can be combined, for
example, by prepending all labels defined and used in the n-th fragment with
the number n (a label being used but not defined might, depending upon the
situation, be an error or a reference to another fragment; how to handle this
depends on that situation). Since vectors have arbitrary size, this process can
be repeated indefinitely without a clash ever being introduced inadvertently.

For all clarity, PGLV is monotonous under similar conditions as PGLE.
However, PGLV offers a mechanism which makes guaranteeing these conditions
significantly more easy.

A vector label will appear as [ny,...,ng].

In PGLV, the following control instructions replace the corresponding control
instructions in PGLE.
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e [ny,...,nk], where ny # 0 (replaces £k)
Define the given label. When executed, do nothing other than advancing
to the next instruction, or terminate, if no such instruction exists. Trailing
zeroes are excluded for the reason given in Section 7.1;

o ##ny,...,ng] (replaces ##Lk)
Continue execution at the first location in the program where the given
label is defined, or terminate, when no such location exists;

It is not illegal to refer to (as opposed to define) labels with trailing zeroes
(it’s just confusing).

Like PGLE, PGLV requires the instruction immediately following a condi-
tional basic instruction to be either ! or a goto instruction.

The following is a PGLV program:

+a; ##[1,2]; ##[3,4,5]; [1,2]; b; !'; [3,4,5]; c

7.1 Vectors and map (...)

The function 7(n,m) = $(m? + 2mn + n® + 3m + n) is an bijective map from
IN — IN x IN (the points in the natural grid are visited in successive diagonals).
Using 7, a pair of numbers can be encoded in one number.

This function can be used to encode a vector of numbers in one number. Let

(ny = m(n,0) and (nq,...,nE) = w(n1, (na,...,nk)). Note that every number
encodes infinitely many vectors. For example, 0 = (0) = (0,0) = ... and so
forth. Indeed, (ni,...,n;) = (ny,...,ng,0). When trailing zeroes are excluded,

the encoding is unique.

The vector encoded by a number p can be found as follows. Let d =
1(vBp+1—1) (d for diagonal, since p occurs on the d-th diagonal), let i be the
integral part of d, and let m = p — 1i®> — 1i. Now, p = (d — m,m). The entire
vector encoded by p is found by repeating this step until m = 0.

7.2 Projection from PGLV to PGLE
The projection of PGLV is defined as follows:

pglv2pgle(uy; ... ;un) = @(ur); ... o(uy)
Function ¢ is defined below, where map {(...) will be defined subsequently.

e o([ni,...,ng]) = £v where v = (nq1,...,ng);

o O(F#H#([n1,...,nk]) = ##Lv where v = (nq, ..., ng);
e ¢(u) = u, otherwise.

Applied to our earlier example, this means:

pglv2pgle(+a; ##[1,2]; ##[3,4,5]1; [1,2]1; b; !; [3,4,5]; c) =
+a; ##L8; ##L1481; L8; b; !; L1481; c
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8 A higher programming language

Most higher programming languages combine structured programming with the
ability to express non-structural behavior. Within a module, and under nor-
mal circumstances, structured programming is favored, but between modules
or when exceptions occur, mechanisms which are not structure-oriented are
favored. PGLVS, the union of PGLV and PGLDS, exhibits precisely this com-
bination.

As in PGLE, the instruction immediately following a conditional is limited
to termination (!) and jump instructions (##[n1,...,nk], #> and <#). For
similar reasons, the instructions immediately before { and after } are limited to
skip, jump and termination instructions.

Example:
-a; #>; {;
-b; #> {; .. +c; ##[1]; .. +d; ##[2]; .. e;
#> [2]; h2;
}; <#; ..
;o' v [1]; hi; !

This example contains a nested loop. The outer loop is performed while a
is true; the inner loop while b is true. The fragment containing e is performed
in the inner loop, unless exception c occurs, in which case both loops are left
and handler h1 is applied, or exception d occurs, in which case the inner loop
is left, but the outer loop is continued after handler h2 finishes.

Under mild conditions PGLVS is again monotonous. The most notable con-
ditions are concerned with name clashes (the same label being used indepen-
dently in multiple fragments) and well-formedness regarding { and }.

8.1 The projection of PGLVS

PGLE is a restriction on the language PGLDg and derives its meaning from
the projection pgldg2pgld defined in [BLO02], shown here for clarity (we deviate
slightly from the original notation):

pgldg2pgld (u1; . . .3 un) = Y1(u1)s. -5 ¥n,p(un)

Here, v; ,,, and auxiliary functions are defined as follows:

[ ]
&
S|

=
=

I
1S
*

+
2

7p(k) = j, when p = wi;...;u, and j is the least number such that
uj = £k, or j =0 when £k is not defined in p.
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Now, let pglv2pgld be defined by pglv2pgld(p) = pgldg2pgld(pglv2pgle(p)).
The projection pglvs2pgld from PGLVS is defined by the composition of pglv2pgld
and pglds2pgld under the following understanding:

e The domain of pgldg2pgld is extended to contain PGLDS’s structured prim-
itives and PGLD’s absolute goto. On this extension, pgldg2pgld is the
identity (by the fourth clause of ¥ p);

e The domain of pglds2pgld is extended to contain PGLV’s label-related
instructions and PGLD’s absolute goto. On this extension, pglds2pgld is
the identity (by the fifth clause of ¢; ;);

Under these assumptions, that composition is in fact commutative, as is
easily verified. Note that to that end PGLD’s absolute goto is added to both
respective domains (it is not contained in PGLVS, however).

Applying this projection to our earlier example results in the following. Here

the size of fragments .. is taken to be 1 for the computation of all absolute
addresses.
pglvs2pgld(-a;#>; {; .. -b; #>; {; .. +c; ##[1]; .. +d; ##[2]; .. e;
#>1[21; h2; }; <#; .. }; !5 [1]; h1; 1) =
-a; ##25; ##4; .. -b; ##22; ##38; .. +c; ##26; .. +d; ##18; .. e;
#422; ##10; h2; ##21; ##5; .. ##24; ##0; ##0; ##27; hl; ##0

9 Invocation and returning goto

The invocation of a procedure, function, method, etcetera (we shall use the word
method to signify all these forms), directs processing from its location to that
of the instructions ’belonging to’ the method. When the invoked method has
fulfilled its purpose, processing resumes immediately after the invocation. Since
the same method can be invoked from different locations, that location must
somehow be remembered until processing resumes. Since an invoked method
may invoke other methods, the number of loci that must be remembered is, a
priori, unbounded.

The mechanism that implements invocation is the returning goto (or call):
like a plain goto it directs processing of instructions to continue elsewhere, but
in addition, the location following the returning goto instruction is remembered.
The return instruction directs processing to continue immediately after the last
returning goto.

In [BB02] this mechanism is defined using primitives which are not present
in our current framework (notably: molecular programming primitives). In
consequence, we redefine this mechanism using primitives presented here.

PGLI is the PGA-language with method invocation. In addition to the
control instructions of PGLVS, it offers the following control instructions:
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b R##[nla s 7nk]
Go to the first location in the program where the given label is defined, and
save the current location for future use; if no such label exists, terminate;

* #HR

Return to the last saved location; if none was saved, terminate.

For example,
a; R##[1]; b; !'; [11; c; ##R

An extended example appears in Section 11.

We will now proceed as follows.

Remembering multiple previous locations of execution requires the aid of a
new state machine. First we will define a state machine for returning goto and
we will show that it is projection compatible. Then we will define PGLVSpc,
the extension of PGLVS with explicit PC. Finally, we will present the projection
of PGLI.

9.1 The state machine for returning goto

Earlier we mentioned that a state machine is projection compatible on a class
of programs if every program in that class can only make it reach finitely many
states. Unrestricted use of returning goto can lead to non-trivial infinite recur-
sion (which is not finitely representable) even for simple programs.

In consequence we limit the state machine. The call-once state machine smco
remembers an address only once; it allows for multiple methods being called,
and methods being called from multiple locations, but it does not allow for
(mutual) recursion. A priori this state machine is again unbounded, but now
only finitely many states can be reached for any given program, as we will make
clear.

The state machine smco = (2., F,) where X, = U;c{set:i,eq:i} U
{push, pop} and F¢, (o) = true precisely when o = p; eq:k, when p contains at
least one set instruction, when the first push instruction (if any) is preceded
by a set instruction, when v (p,0, mt()) = (k,S) and when S # err(), and it is
false in any other situation.

Here, 1 is defined as follows:
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The third argument of v is an element of the algebra S, of unique element
stacks, which has signature {mt() — Sye, push(IN, Sye) — Suye, err() — Sue}
(mt, when pronounced, sounds like empty). In this algebra, the following equal-
ities hold: push(n, err()) = err() and push(n,S) = err() when S already holds
n.

9.2 Projection compatibility of smco

We discuss projection compatibility of smco on PGLD because it implies pro-
jection compatibility for all PGA languages, and PGLD is a straightforward
target, for our projection.

Given a program p = ui;...;upm, let L be the set of values occurring in
a set or eq instruction for focus pc, let S be the set of non-empty sequences
(tuples) of elements of L in which each element of L occurs at most once, and let
S ={s1,...,s6} = (LxS8)U{({z1), (1)}, where z; and y; are unequal numbers
not occurring in L ({z1) will represent the machine’s state before any value has
been set, and (y1) will represent the machines state after a number has been
pushed more than once or after underflow occurs). We use the notation (k, 1, 7)
to signify a tuple with elements k, [, and zero or more remaining elements 1,
and the notation |s| signifying the number of elements in tuple s. Tuples are
taken to be elements of the Cartesian product, so a x (,ﬁ) = (a, B’) We assume
s1 = (x1) and s = (y1).

The projection of a pgld::pc-co program p = ui;...; U, with focus pc and
using methods from ., to a program not using that or a substitute state
machine with equivalent behavior is defined as follows.

pold::pe-co2pgld (p) = ¢} (p)

Here, QS;"’S and auxiliary functions are defined as follows. Note that 1" (%, j)
signifies the location of the j-th instruction in fragment 7.

o 7 (uss. .y um) = U7 (wa)s U (Um);
o O7(uns. 3 um) = O (ua .t ) FAEO HHO T ()T ()
. quqj’s(##l) = ##t where t =1 (i,1) for 1 <1 < m, and ¢ = 0, otherwise;

. ¢;$’S(+pc.set:x) = ##t when s; = (y,Z), where s, = (x,Z) and t =
I™(n,j)+2 when ¢ # 2, and t = 1" (2, 7)+2, otherwise;

. ¢:’;S(u) = ##t when u = pc.set:x or u = —pc.set:z, when s; =
(y, Z),where s,, = (x, Z) and t = {"™(n, j)+1 when ¢ # 2, and t = ["(2, j)+1,
otherwise;

. q/);j;.’s(—}—pc.push) = ##t when s; = (z, 2), where s,, = (z,z,2) and t =
I™(n,j)+2 when ¢ > 2 and = ¢ 2, and ¢t = I"™(2, j)+2, otherwise;
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. 1/)2}’5(10) = ##t when u = pc.push or u = —pc.push, when s; = (z, 2),
where s, = (z,2,2) and t = {™(n,j)+1 when ¢ > 2 and = ¢ Z, and
t =10m(2,7)+1, otherwise;

o 1/)23’5(+pc.pop) = ##t where s; = (z,Z), where s, = (Z) and where
t = 1"™(n,j)+2 when ¢ > 2 and |s;] > 2, and where ¢ = 1"(2,5)+2,
otherwise;

. 1/)22’5(10) = #4t when u = pc.pop or u = —pc.pop, where s; = (z, ),

where s, = (%) and where ¢t = I™(n,j)+1 when ¢ > 2 and |s;| > 2, and
where ¢ = "(2, j)+1, otherwise;

o 1/);735(10) = ##1™(i,7)+1 when i > 2 and when u = +pc.eq:x and s;
(x,Z), or when u = —pc.eq:x and s; = (y,Z), and = # y, or when u
pc.eq:;

. qu”;S(u) = ##1™(i,7)+2 when ¢ < 2 or when u = —pc.eq:z and s;
(z, Z), or when u = +pc.eq:x and s; = (y, 2), and = # y;

o 1/)2}’5(11,) = u, otherwise;
o I"(iyj) = (i —1)* (m+2)+ .

We conjecture that the behavior of a program in combination with smco
is identical to that of the projected program; i.e., that given a PGLD::pc-co
program p, |p|PGLD::pcfc0 /pc SMCO =pe |pgld::pc_602pgld(p)|PGLD-

As an example of this projection, consider the following. For clarity we have
prepended each line with the tuple related to the fragment in that line, and we
have subscripted some instructions with their location.

pgld::pc-co2pgld(pc.set:1; pc.push; pc.pop; pc.pop; !)=
(1) ##161; ##10; ##115; ##124; 15; ##0; ##0;

(2)  ##9g; ##100; ##1110; ##1211; 110; ##0; ##0;

(1) ##1615; ##2416; ##1117; ##12:15; '19; ##0; ##0;
(1,1> ##2302; ##1093; ##1824; ##1925; !og

9.3 PGLVSpc

PGLVSpc is the extension of PGLVS with explicit PC. It is the union of PGLVS
and PGLDSpc with the single additional instruction pc = [ng, ... ng].

The projection pgluspc2pgldpc of PGLVSpc is defined as follows. First, given
a PGLVSpc program p = uy;...; Um, let

peo(p) = Bpluns 5 tum)
Here, ¢, is defined as follows:
o ¢,(pc=[ni,...,ng]) = pc=j where j is the first location with the instruc-

tion [ny,...,ng], if that exists, and 7 = 0, otherwise;
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e ¢,(u) = u, otherwise.

Now, pglvspc2pgldpc is the composition of pglus2pgld, pgldspc2pgldpc and pcw,
under the assumption that all domains have been extended appropriately and
that all projections are the identity on these extensions. Under this assumption
the composition commutes.

That this definition makes sense can be seen as follows. Intuitively, one
verifies easily that if the PGLD-meaning of the instruction ##[n1,...,ng] = J,
in some context, then the PGLDpc-meaning of the instruction pc=[n1,...,n;] =
7, as one would expect.

More thoroughly one should observe that all relevant projections map any
instruction precisely to one instruction, which implies that the location of a
label definition in a PGLVSpc program is the same as its location in the PGLD-
meaning of that program.

As an example consider the following. For absolute address calculations the
size of the fragment ... is taken to be one.

pglvspe2pgldpe(pe=here>; {; ... }; pc=[1,2,31; [1,2,3]; *skip)) =
pc=6; ##3; ...; ##5; pc=6; ##7; ##8

9.4 Projection from PGLI

Given a PGLI program p = uy; . ..;uy, its projection to PGLVSpc is defined as
follows:

pyliZpglvspe(uss . . - ;un) = ¢(ua); ... G(un)
Here, ¢ is defined as follows:
o ¢(R##t[n1, ... ,n]) = {; pc=here>; pc.push; }; ##[na,. .. nkj;
* ¢(#+#R) = pc.pop; ##pc;
o ¢;p(u) = u, otherwise;

This projection assumes that the program uses the state machine smco via
focus pc.
Considering the earlier example, we have:

pgli2pglvspc(a; R##[1]1; b; !; [1]; c; ##R)) =
a; {; pc=here>; pc.push; }; ##[1]; b; !; [1]; c; pc.pop; ##pc

10 Component Format and Flat File System
A file system contains a collection of files. Associated with each file are its

contents, and additional information such as the name of the file. The name of
a file identifies that file in a certain scope. If the collection of files is an otherwise
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unstructured set, and if the scope within which a name identifies a file is the
entire set, we speak of a flat file system?.

It is common to describe the language or format of the contents of a file as
a suffix of its name, sometimes called the extension. We shall refer to this as a
file’s form.

Often, file names are arbitrary size-bounded strings over some alphabet,
but we abstract from this as follows. File names are of the form ci:FORM, for
component i (¢ € IN) with form FORM. For example, cO:pgle.

In practice, further information is kept with a file, pertaining to ownership
and access rights, physical location on the underlying media, dates of modifica-
tion, backup, etcetera. We will not go into this.

Also note that we are only interested in the behavior of programs consisting
of multiple files. We do not consider files which represent anything other than
programs, nor do we consider alterations to the file system. Arguably, we are
being overly restrictive. For example, a compiler must, by definition, transgress
both restrictions, and yet it falls well within our conceptual framework, in that
it embodies a projection. Nonetheless, PGA focuses on control behavior rather
than data manipulation, so files representing data, and the behavior of multi-
file programs that alter their file system, remain significant areas which will get
appropriate attention elsewhere.

To conclude, a file system F'is a set of tuples <n,p>, where n is a name
as described above, and p is a program with the appropriate form. For every
name n at most one tuple occurs in F' with that name. We will refer both to
the tuple and to the contents of the associated file as “component”, assuming
that the reader can infer our intention. For convenience we define the functions
lookup(nm, F) = <nm, p> € F if that component exists, and indez(n, f, F) =
lookup(nm, F) for nm = cn:f.

10.1 PGLIcf

PGLIcf is the PGA-language for the component format. two advanced control in-
structions related to multiple components are added to PGLI: ##ci[n, ..., ng],
called the non-local goto, and R##cinq, . .., ng], called the non-local invocation.
The projection from PGLIcf not only replaces these control instructions, but
ensures that all referenced components are included in its result®.
Given a file system F' and a component c in that file system, the projection
from PGLIcf is defined as follows. Let C' = {¢;;,...,¢;, } be the smallest set

2Without going into this further, we mention that in a hierarchical file system the collection
is structured hierarchically as a set of files and other sets (called directories); the scope of a
file name is the set in which the file is an element; and a file is therefore identified by its name
and a path: an identification of one directory in the hierarchy of sets.

3A straightforward approach would be to concatenate all programs in the file system,
making sure that the one program under consideration appears first, and replacing all non-local
goto’s with an appropriate local goto. Although formally sufficient, this approach deviates
substantially from practice, where a linker recursively analyzes a program module to establish
which other modules are required, and consequently produces the minimally sufficient program
(obviously we do not regard dynamically linked modules here).
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such that if some ¢; (i € {i1,...,ir}) contains a reference to some ¢; (i.e., an
instruction ##cjlma,...,my] or R#H#cjlmy, ..., my]), and ¢; is contained in
F', then c; is contained in C. We assume c¢; = c¢. Then,

pglicf2pgli(c, F) = ¢pc(C)

Here,

o do(=mmy,p1 =, ..., =< nmy,pe =) =V (P1);. . 508 (p);

o ¥y (urs . sum) = 05 (ur); - 105 (um); 15

e 0S(u) = !, when u is a non-local goto or invocation (i.e., an instruction
#H#cjimy, ..., my) or R#Hcjmy, ..., my]) referring to a module not con-
tained in C. Otherwise,

o 0% (#4ci[ny,...,nm]) = ##i,n1, ..., m);

o 0C(##[n1, ..., nm]) = ##[M, 01,0, s

o 0C (R##ci[ny, ..., nm]) = R#EH, 11, ... s

o 0F(R#H[n1, .o nm]) = REH# [, 11,1

o 07 (1, nm]) = [0, s

e 0% (u) = u, otherwise;

For example,

pglicf2pgli({<cl, a; ##c2[1]1>,<c3, [2]; b>,<c2, [1]; c>}) =
a; ##[2,11; !5 !5 [2,115 c; !5 !

11 Java

In this section we present an extended example which illustrates the following
aspects:

e the projections developed in the previous section;

e the way in which it can be used to describe the behavior of a subset of
Java sufficiently large to express the multi-file paradigm;

e our claim that PGA helps to reason about programs in that it explains
unexpected program behavior.

Consider the following Java program, consisting of three classes. The “main”
class file is file:c0. java(
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class c0 {
static void main(String s[]) {
cl1.m7();
}
}

). Tt invokes a method in class file file:c1. java(

class c1 {
static boolean b3 = c2.b5;
static boolean b6 = true;
static void m7() {

if (b3) {
b3=false;
c2.bb=false;
m7();

} else {
c2.m80);

}

}

), which again invokes a method in class file file:c2. java(

class c2 {
static boolean b4 = cl1.b6;
static boolean b5 = true;
static void m8() {
System.out.println(b4);
System.out.println(b5);
System.out.println(cl.b6);
}
}

).

The output of this program is twice “false”, then “true”, which may be
somewhat surprising because seemingly variable b4 is set once, to a value which
is demonstrated to be “true”.

To express this program in the PGA family of languages we use instances of
the state machine for boolean variables, as described in Section 1.2.

The projection from this subset of Java to PGLIcf is straightforward, with
the following comments:

e PGA offers no data manipulation such as the assignment of one boolean
variable to another boolean variable; this is implemented with a condi-
tional construct. Note that we use the fact that a variable’s initial value
as defined in Section 1.2 is false;
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e PGA programs have no I/O other than state changes in their co-program.
In particular, there is no println, unless one would define a co-program
offering that basic instruction. Since I/O is not the topic under investi-
gation, we abstract from it, accepting the state of smbv:4, smbv:5 and
smbv:6 after the program terminates as output;

e In Java initialization of static variables is implicit; in our program we have
made this explicit by defining a “method” at label [1], in each module
(except the 'main’ module) that performs the initialization.

The following PGLIcf file system results: f = {

< 0, <1, < 2,
Rit#tc2[1]; [1] [1]
R##c1[1]; -smbv:5; -smbv:6;
R##c1[7]; ##[2] ; ##[2] ;
! smbv:3.set:true; smbv:4.set:true;
[2]; [2]1;
~ smbv:6.set:true; smbv:5.set:true;
##R; #4R;
[71; [8l;
-smbv: 3; *skip;
##[3]; ##R

smbv:3.set:false;
smbv:5.set:false;
R##[7];

##[9];

[31;

R##c2[8];

[91;

##R

-}

>,
Now, pglicf2pgli(c0, f) =
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R##[2,1]; [2,8]; -smbv:3;

R##[1,1]; *skip; ##[1,3];
R##[1,7]; ##R; smbv:3.set:false;
1 LN smbv:5.set:false;
s I R##[1,7];

' [1,11; ##[1,9];

[2,1]; -smbv:5; [1,3]1;

-smbv:6; ##[1,2]; R##[2,8];
##[2,2]; smbv:3.set:true; [1,9];
smbv:4.set:true; [1,2]; ##R ;

[2,2]; smbv:6.set:true; !;
smbv:5.set:true; ##R ; !

##R; [1,71;

We choose not to show further projections, because the amount of detail
makes the example inaccessible. Instead we will discuss the program as listed
above.

It is clear why smbv:4 is false when the program terminates. It is set, if at
all, only once, shortly after label [2,1], but only if smbv:6 is true. However, label
[2,1] is actually the second instruction processed, which implies that smbv:6 is
false at that time, by definition. Accordingly, smbv:4 isn’t set.

Naively, one could put forth that our projection from Java to PGLIcf is
faulty: had component 1 been initialized before component 2, smbv:4 would
have gotten the right value. However, in that case smbv:3 would have been
set to the wrong value, leading to similarly unexpected output “true”, “false”,
“true”.

The order we have chosen is a consequence of the following mechanism, which
is the one used in Java (with respect to this simple setting). While a module
(i-e., class file) is being loaded, modules it refers to (i.e., uses) are identified.
Before the module is initialized, any modules it refers to which are not yet
loaded, are loaded and initialized. When this is done, initialization of the first
module commences.

From this description we can see that the order in which modules are loaded,
in our example, is c0, c1, c¢2, and that c2 is initialized before c1 is initialized.
The reference from c2 to c¢1 doesn’t matter, in this respect, since c1 is already
loaded when c2 is initialized.

Where then does the initial value false come from, if not from initialization?
When a module is loaded, but before it is initialized, every variable gets a
default value which depends on its type. For booleans this default is false.
Using state machines, the default value of a boolean variable is also false, so our
implementation is a correct projection of the Java program.

12 Summary and conclusions

We have sketched a projection from a subset of Java which exhibits multi-file
behavior in the sense described, to PGLIcf, a PGA-language which exhibits the
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same feature. We have also defined a projection from that language to PGA

defining the meaning of PGLIcf in every

detail in terms of the program algebra

for sequential programming. Based upon these projections we have given a
“formal” meaning to the subset of Java described.

We have also shown how our approach can help to discuss complex pro-
gram behavior by making explicit a feature which is handled implicitly in Java,

thereby becoming inscrutable to the sup
pected results.

erficial user, possibly leading to unex-

Finally, we have defined a number of useful languages in the context of PGA.

In the picture adjacent various lan-
guages and relevant projections have
been depicted.

Solid arrows represent projections
defined in this article; dashed arrows
represent projections introduced else-
where. Dotted lines signify embeddings
where the related projections are conser-
vative extensions.

The symbol 8 signifies the definition
of a projection as the commutative com-
position of projections shown.

The projections establishing com-
patibility of smpc and smco are shown,
as is the embedding of PGA, PGLA,
PGLB and PGLC in PGLD necessary
to establish projection compatibility of
those state machines in the entire frame-
work.

As an overview we list key applica-
tions and predominant control instruc-
tions of most languages (others might
be considered auxiliary):

e PLGA: Textual representation of
PGA.
Relative jump forward (#k) and
instruction sequence repetition

(\\#E);

e PLGB: Relocatable programming.
Relative jump forward (#k) and
backward (\#k);

PGLDg/PGLE

/\\\ B
smpc S
sch,o PGLD

e PLGBpc: Relocatable programming with explicit PC.
Store relative location (pc=here+k) and jump-to-stored-location ##pc);

30



PLGC: Conventional termination.
No termination instruction (!); jump outside scope signifies termination;

PLGD: Absolute addressing.
Absolute jump (##k);

PLGDpc: Absolute addressing with PC.
Absolute set (pc=k);

PGLE: Abstract addressing with labels.
Label definition (£k) and jump (##Lk);

PGLV: Vector labels.
Label definition ([77]) and jump (##][7]);

PGLDS: Structured programming.
Blocks ({ and }), unsized relative jumps (# > and < #) and skip (xskip);

PGLDSpc: Structured programming with limited non-local capabilities.
Unsized relative set (pc=here> and pc=<here);

PGLVS: Structured and abstract non-structured addressing: a higher pro-
gramming language;

PGLI: A higher programming language with method invocation.
Call (R##[7]) and return (##R);

PGLIcf: Component format.
Define multiple (mutually invoking) PGLI components.

In conclusion it is worthwhile to mention that all projections and examples in
this article have been checked by specifying them in an environment specifically
suited for the creation of executable PGA-style specifications.
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