University of Amsterdam
Programming Research Group

Molecule-oriented Java Programs for

Cyclic Sequences

|. Bethke
PWalters

Report PRG0201 November 2002

|. Bethke

Programming Research Group
Faculty of Science

University of Amsterdam
Kruislaan 403

1098 SJ Amsterdam

The Netherlands

tel. +31 20 525.7583
e-mail; inge@science.uva.nl

P. Walters

Microsoft
the Netherlands

e-mail; pwalters@microsoft.nl

Programming Research Group Electronic Report Series

Molecule-oriented Java Programs for Cyclic
Sequences

Inge Bethke®! Pum Walters P2

aUniversity of Amsterdam, Faculty of Science, Programming Research Group
b Keyconsult (Keyconsult is a trademark of Babelfish BV, The Netherlands)

Abstract
We present a theory of finite and repetitive sequences in the conceptual program-

ming style, using molecular programming as a model. We present this theory both
in PGLEcm-mppv and in Java.

Key words: program algebra, object, molecule, focus, field, Java.

1 Introduction

In this document we present a theory, in the conceptual programming style,
of finite and cyclic sequences. Such sequences arise as a data type in program
algebra [4, 5] representation of rational numbers and can serve many other
purposes as well. We will take the relevance of sequences with repetition for
granted below.

We follow the line of thought in [1] where conceptual programming is put
forward as a meaningful objective. Conceptual programs are meant to be read
by human readers and contain a conceptual analysis of some topic. At the
same time a conceptual program is executable. Its execution is purposefully
related to the working of the concept under analysis. The concept can thus
be ‘interrogated’ to exhibit its properties, which are otherwise not formally
established.

Our objective is to first present our theory in the frame work of the program
algebra PGLE. In this way, PGLE serves two roles: one as a design tool offering

! E-mail: inge@science.uva.nl
2 E-mail: pum@babelfish.nl

a formal foundation of our theory and a second as a tool to understand Java
programs. Working then in Java [7], conceptual programming leads to a Java
presented theory (JPT, in the terminology of [1]) which is more accessible for
a programmer or non-logician than a PGLE presented theory.

The remainder of this document is structured as follows. In Section 2 we dis-
cuss molecule-oriented representations of finite and cyclic sequences . Then we
offer our theory in the context of program algebra (a PGLEcm-mpp presented
theory, or PPT, to coin a phrase) in Section 3 and we offer a JPT in Section
4. Execution of the PPT was used to generate various pictures. Finally, we
conclude with some observations in Section 5.

2 Molecule-oriented representations of sequences

In molecule-oriented programming [1] emphasis is on a geometric (graph the-
oretical) understanding of the structure of objects in a computer memory, as
well as of their evolution, during program execution.

A molecule is a graph with atoms (objects) as its nodes and instance fields as
its edges. The collection of all atoms, including foci (external named references
to atoms) and fields, is called the fluid. Although we will not go into details, we
mention that molecular dynamics covers the concept of memory management
and garbage collection: atoms (and their fields) that are unreachable from any
focus are garbage.

Sequences are perhaps the simplest of structuring mechanisms, allowing for ar-
bitrary large molecules. In real life, sequential molecules occur in many places:
nylon, the fibers in trees, and DNA.

A sequence molecule is a finite set of atoms, where each atom has one or
two fields, one named entry and the other (if it is present) named nezt. Each
atom, possibly except one, is bound via next to another atom in this set, and,
traversing only next fields, it is possible to start in one of the atoms and visit
all other atoms. The entry field contains an arbitrary atom—and thus the
molecule consisting of all atoms reachable by the atom contained in the field.
Occasionally we will distinguish the structural atoms from the content of the
sequence molecule. Note that a structural atom may occur as content, so we
distinguish not a property of the atom but rather its role in our discussion.

The first picture that may come to mind is Figure 1: In this picture, as in
the one below, a e represents an atom and field names are written next to
the fields; [, X, ... denote molecules. If every atom is bound via next a cycle
must occur, as shown in the Figure 2.

next ¢ next ¢---0 next ¢ next ¢
entry entry entry entry
(] X © ®

Fig. 1. A finite sequence

[]
next entry next
® next * H *
next next
entry entry entry
©@ & o X
entry
©

Fig. 2. A lasso-shaped sequence, representing an infinite repetition from the second
entry onwards

A sequence molecule defines a possibly infinite sequence of entries. They can
be run over by following the next field. If a structural atom has no nezt field,
the sequence is finite. Otherwise, the sequence becomes repetitive from some
point onwards: the molecule contains a cycle (and is called cyclic). We shall
refer to molecules in which all atoms are contained in the cycle as circular; we
refer to non-circular cyclic molecules as lasso-shaped.

An atom can occur in more than one sequence. Even though our theory is
complicated significantly because of this, it is a fact of programming practice
that shared sub-sequences occur. Any theory which prohibits this, would be
at odds with this reality.

As a matter of fact, any non-empty sequence molecule leads to multiple se-
quences: each atom can be taken as the first. A sequence is uniquely defined
by a molecule and the initial atom. Note, hoewever, that different molecules
can represent the same sequence. For example, a cycle can be unfolded any
number of times.

In our final example in Figure 3, we will use sequences to represent two
decimal expansion of rational numbers® with one digit before the decimal

3 This representation offers true ‘infinite precision’. Most programming languages

point (thereby avoiding having to represent that in our example). The content
of these sequences is formed by digits. The sequence referenced with focus
1st2207 represents the rational number 22/7 which is a fair approximation of
7 (4.107% off). Its decimal expansion is repetitive after one digit with a cycle
size? of 6. The sequence in focus 1st{407 is the expansion of 44/7 (approxi-
mation of 2 x 7). Note that we use value fields—fields carrying next to a name
also a type indication and pointing to a label— to denote digits.

_1st2207, o
eMm)
° ° next °
. tlv lentry entryl
in
3 next PS PS next
e o
in in
) 1 7)
entryl lentry
P4 next next °
o o
mn in
/. next ¢ 5
entry lentTy
next l
_Lst4d07, o . .
lentry intlv in v
° 2 8
e
in
6

Fig. 3. Two sequences with a shared cycle.

3 Sequences designed in PGLE

Molecular dynamics [2] offers a simple theory, leading to primitives to describe
the process of molecule creation and evolution. Basic actions consist of:

(1) creation of an atom;
(2) addition or removal of a field;
(3) effectuation of a field;

offer ‘fixed precision’ arithmetic (e.g., 32-bits). Some languages (Perl, Python, ...)
offer ‘arbitrary precision’, which runs out when memory runs out. By no means do we
suggest this infinite precision representation to be suitable. As mentioned, identical
numbers have different representations (even apart from the distinction between, for
example, 1.0 and 0.999...). In reality the numerator-denominator representation is
probably superior.

4 A better approximation of 7 is 355/113, (8.1078 off), and a cycle size of 84 after
the first digit.

(4) setting of foci;
(5) tests as to the existence of fields or the equality of atoms.

Basic actions return a boolean value which either depends on the appropri-
ateness of the instruction in the case of mutations and assignments ((1)—(4))
or is the result of a test as in (5).

Evolution of a molecule entails the execution of these basic actions, and any
set of molecules can be described by an evolution that brings them about. The
sequential execution of these basic actions is formalized by program algebra.

PGA ([4],[5]) is an algebra for sequential programs, focusing on what is tra-
ditionally called control flow. PGA abstracts from data, assuming all data
manipulation to be managed by the set of basic instructions. The sole link
between data and control flow is embodied in the assumption that every basic
instruction returns a boolean value which may or may not be examined by
the program.

Base PGA programs are non-empty, possibly infinite sequences of so-called
primative instructions:

e perform a basic action—e.g. one of (1) to (5)—and do one of the following
three: (i) disregard the boolean value that is returned; or continue with the
next instruction if the returned value is (ii) true, or (iii) false, and skip the
next instruction and continue with the subsequent instruction otherwise;

e terminate execution;

e continue execution at the n-th subsequent instruction (goto).

There are no backward jumps in base programs.

On top of PGA, the concept of projections is introduced. A projection involves
a language and a map which projects programs in that language to base pro-
grams under preservation of behavior (behavior roughly being defined as the
sequence of actions being performed given the boolean result of those actions).
Various languages are defined in [5], among which, most notably, PGLE, which
has labels and the jump-to-label instructions. In addition PGLE adheres to
the following constraint: the instruction immediately following a conditional
is either termination or a goto instruction. Thus, the “then-part” cannot fall
through into the “else-part”.

In this section we use the language PGLEcm-mpp, which is based on PGLE,
with additional control instructions (if-then-else and method call), and in
which the basic instructions are precisely the basic actions of molecule ori-
ented programming. A toolset simulating PGLEcm-mpp and other languages
can be found on [6]. This toolset can be used to compute projections between
program algebra based languages and to generate dynamic representations of

molecules.

We have seen that a sequence molecule generally defines more than one se-
quence; only with the identification of an initial atom is one specific sequence
distinguished. In addition to the structural atoms that represent the order-
ing of elements in the sequence, we introduce a class to represent specific
sequences. Atoms in this class have a field first with the first structural se-
quence atom. We refer to atoms in this class as sequence handles.

Whether the sequence represented by a handle is finite depends on whether the
sequence molecule contains an atom without next field. Following the next field
until we encounter such an atom identifies finite sequences, but not infinite
sequences. It would require us also to compare each atom to all previously
visited atoms until either an absent next field is identified, or an atom is
encountered twice (and a cycle is established). Although functionally sufficient
this approach is practically unsuitable. Instead, we extend the handle with a
last field which contains either the final atom (in case of finite sequences),
or to the atom immediately before the first repeated atom. Then, a sequence
is finite precisely if last has no next. With this, we can interpret our first
generated picture. It represents the same sequences as Figure 3.

entry : 7

lst2257

lstdded

Fig. 4. Figure 3 generated by the PGA toolset.

Part of the program used to generate this picture is shown here:

e = new;
e.+v:int = 7;

1st = newSMEl(e);

e = new;

e.+v:int = 5;

1st2207 = newSMEl(e);
1st2207.chain(1lst);
1st = 1st2207;

e = new;

e.+v:int = 8;

1st2207 = newSMEl(e);
1st2207.chain(1lst);
1st = 1st2207;

e = new;

e.+v:int = 2;

1st2207 = newSMEl(e);
1st2207.chain(lst);
1st = 1st2207;

e = new;

e.+v:int = 6;

1st4407 = newSMEl(e);
1st4407.chain(lst);
e.+v:int = 4;

1st2207 = newSMEl(e);
1st2207.chain(lst);
1st = 1st2207;
1st4407.last = 1lst.first;
e = new;

e.+v:int = 1;

1st2207 = newSMEl(e);
1st2207.chain(lst);
1st = 1st2207;

1st = 1lst.cycle();

e = new;

e.+v:int = 3;

1st2207 = newSMEl(e);
1st2207.chain(lst);

A PGLEcm-mpp program consists of a sequence of basic instructions and con-
trol instructions. Basic instructions include the creation of a new atom (new),
setting of foci (a = ...), adding of (value) fields (a.+b or a.+b:int) and set-
ting them (a.b = ...). Field introduction and setting can be combined. In
this example control instructions consist of static and non-static method call.

The program fragment above repeatedly creates an entry by calling the method
newSMEL, creates a list containing only that element, and chains (concatenates)
it to the list so-far. At the appropriate point the list for 44/7 is attached, and
elsewhere the loop is closed.

Perhaps the most distinctive feature of a sequence is the ability to obtain its
first element (head) and the remaining elements (tail). This is essential in
order to process sequences recursively.

Clearly, the head of a sequence is the value bound to the first element. Whereas
the tail of a finite sequence is also obtained trivially, cyclic sequence molecules
pose a slight challenge. Consider the molecule in Figure 5, in which X = 3(21)*
(where * signifies repetition) is shown, together with its head, tail, and the
tail of its tail.

The methods head and tail are listed below:

head() {;

r = this.empty();

+ r == true {; that = NULL; }{; that = this.first.entry; };
};

Fig. 5. A generated lasso-shaped sequence with head and tails.

tail() {;

local(result);
r = this.empty();
+ r == true {;
result = newSM();
H;
r = this.finite();
+ r == true {;
result = newSMSMes(this.first.next,this.last);
H;
r = this.circle();
+ r == true {;
result = newSMSMes(this.first.next,this.first);
H;
result
};
};
};
r = result;
result = prev();
that = r;

newSMSMes (this.first.next,this.last);

Here, new control instructions are method definitions which—if a result is
returned—provide a result in that, and the conditional

+<exp>{; <when true> }{; <when false> };.

PGLEcm-mppv has no local variables apart from this, that, and parameters.
For that reason, we have an explicit stack (a molecule) which temporarily
holds the value result using the local method, and return it using the prev
method. In our programs we use r as a scratch variable.

The method newSMSMes generates sequence molecules with first and last
determined by its two arguments (see Appendix A). The properties empty,
finite and circle are trivial:

empty () {;
- this/first {; that = true; }{; that = false; };
};
finite() {;
r = this.empty();
+ r == true {; that = true;
H;
- this.last/next {; that = true; }{; that = false; };
};
};
circle() {;
r = this.finite();
+ r == true {; that = false;
H;
+ this.last.next == this.first {; that = true; }{; that = false; };
};
};

The real challenge is the definition of the chain. Obviously, it is not sufficient
to simply bind (with next) the last of one to the head of the other argument.
If the first argument is cyclic the second argument shouldn’t be considered
at all, and the first argument should be returned! There is, however, a more
subtle concern: what if the arguments share a sub-molecule. Consider the two
molecules in Figure 6, the right-hand side being the result of applying the
instruction X.last.+next = Y.first; in the left fluid.

A proper definition of chain must decide to clone (copy structural atoms)
under certain conditions. The question under which conditions cloning should
take place doesn’t have one clear answer. Safest is to clone always, but in

N—_— :
EE] [E Fluid [

. first next

antry

vim .

Fig. 6. Before and after: how not to chain.

practice, this is often regarded as being too expensive® . Without suggesting
our choice to be better than any other, we propose the following: if the first ar-
gument is non-cyclic (otherwise it is the chain itself), the shared sub-molecule
is cloned, and the atoms in the shorter non-shared segment are reused (i.e.
altered). The rationale is that this produces least garbage (unused atoms) and
least assignments, and that the handles of the arguments continue to repre-
sent the original sequence even though the molecule may have been changed.
Note that this approach is invalid if other processes manipulate the structural
sequence atoms. This is mainly relevant in the context of parallelism, which
is not considered here.

Below is our definition of chain and its auxiliary methods. Method spans
determines whether this is longer than x, and diffl computes a sequence the
size of which is the difference in sizes of the arguments to chain (PGLEcm-mpp
has no built-in integer arithmetic, but in fact a definition based on integers
would be very similar). Method auxclone clones the molecule from the point
of sharing onwards, and resets the next field otherwise.

chain(x) {;
r = this.empty();
+ r == true {;
that = x;
H;
r = x.empty(Q);
+ r == true {;
that = this;
H;
r = this.finite();
- r == true {;
that = this;
H;
+ this.last == x.last {;

5 Referential transparency suggest copying always, but molecular programming is
imperative in nature.

10

r = this.first.spans(x.first);
+ r == true {;
r = this.first.diffl(x.first);
x.first = x.auxclone(r,x.first,this.first);
H;
r = this.first.diffl(x.first);
this.first = this.auxclone(r,this.first,x.first);
};
};
that = this;

that.last.+next = x.first;
that.last = x.last;

};
};
};
spans(x) {;
- x/next {;
that = true;
Ho
+ this/next {;
that = true;
H;
that = this.next.spans(x.next);
};
};
};
diffl(x) {;
- this/next {;
that = x;
Ho
- x/next {;
that = this;
H;
that = this.next.diffl(x.next);
};
};
};
auxclone(d,p,q) {;
local(pclone);
+ d/next {;
r = this.auxclone(d.next,p,q.next);

H;

= this.auxclone(d,p.next,q.next);
.next = r;
=p;

HR9 KR

11

H;
pclone = newSMe(p.entry);

- p/next {;
this.last = pclone;
H;
pclone.+next = this.auxclone(d,p.next,q.next);
};
r = pclone;
};
3
pclone = prev();
that = r;

};

Method clone now can trivially be based on auxclone. Care must be taken
to temporarily remove cycles. The code is shown in Appendix A, included in
the full code for our sequences.

4 Sequence molecules in Java

We shall present all Java programs as JCFs (Java Class Families). The use of
JCFs has been advocated in [3] and is explained in detail in [1]. The purpose of
the JCF notation is to provide a completely unambiguous account of the way
Java sources are stored in a file system, which is relevant because the location
of Java sources is part of their meaning. In the present paper only file names
will play a role, directories and packages are not taken into consideration.

A JCF is a set of class description files. Each class description file has a name
(e.g. myclass.java) and a content. The content is an ASCII text containing
the source text of one or more Java classes. With JCF-notation it is possible to
have several different class descriptions with the same name in one document
without causing confusion.

The first JCF contains a class s from which all other programs are activated
as well as an abbreviation for console output actions. JCFsp = file:s. java(

class s {
public static void main(String x[1) { (new c()).m(); }
}

U file:co. java
) j

public class co {
public static void p(int x) { System.out.println(x); }
}

12

By convention we present extensions of JCFsp to larger JCFs comprising a
class ¢ with a static method m(). Molecule handles are defined by the class
SMj (sequence molecules in Java). Sequence molecules allow the representation
of finite and periodically infinite sequences of arbitrary objects. The repeti-
tive structure inside a sequence results from combining atoms of class SMe
(sequence molecule-element).

The class definitions for SMj and SMe are combined in a single source file:
JCFseq = file:SMj. java(

class SMe { // sequence molecule element
Object entry; // contains the object placed in the element
SMe next; // contains the next element in the sequence
protected SMe(Object e) { entry = e; }

}

class SMj { // Sequence molecule objects
private SMe first; // first points at the first SMe
private SMe last; // last points at the last SMe

private SMj(SMe f, SMe 1) { first = f; last = 1; }

public SMj() { first = last = null; }
public SMj(0Object x) { first = last = new SMe(x);}
public synchronized SMj cycle() {
if (Yempty() && finite()) { last.next = first; }
return this;

}

private SMe auxclone(SMe d, SMe p, SMe q) { // prerequisite: finite.

if (d !'= null) return auxclone(d.next,p,q.next);
if (p !'= q) { p.next = auxclone(d,p.next,q.next); return p; }
SMe pclone = new SMe(p.entry);
if (p.next == null) {
last = pclone;
} else {
pclone.next = auxclone(d,p.next,q.next);
}
return pclone;
}
// using ints (with static int size(SMe)) is slightly clearer in
// plain Java. However, this works just fine:
private static boolean spans(SMe p, SMe q) {
return q == null || !(p == null) && spans(p.next,q.next);
}
private static SMe diffl1(SMe p, SMe q) {
return p == null 7 q : q == null ? p : diffl(p.next,q.next);

13

}
public synchronized SMj chain(SMj that) {
if (this.empty()) return that;
if (that.empty() || !'this.finite()) return this;
if (this.last == that.last) { // shared tail
// aim: clone shared segment;
// reuse shortest unshared segment
// i.e. no garbage, least assignments
// may change this or that
if (spans(this.first,that.first)) {

this.first = this.auxclone(diffl(this.first,that.first),
this.first,that.first);
} else {
that.first = that.auxclone(diffl(that.first,this.first),

that.first,this.first);
} 3
last.next = that.first; last = that.last;
return this;
}
public synchronized SMj Clone() {
if (empty()) return new SMjQ);
SMe keep = last.next; last.next = null;
SMj result = new SMj(first,last);
result.first = result.auxclone(null,first,first);
SMe p = result.first, q = first;
while (q != keep) { p = p.next; q = g.next; }
result.last.next = p; last.next = q;
return result;
}
public synchronized Object clone() { return this.Clone(); }
public synchronized Object head() {
if (empty()) return null;
return first.entry;
}
public synchronized SMj tail() {
if (empty()) return new SMjQ);
if (finite()) return new SMj(first.next,last);
if (circle()) return new SMj(first.next,first);
return new SMj(first.next,last); //lasso shaped
}
public synchronized boolean empty() {
return first == null;
}
public synchronized boolean finite() {
return empty() || last.next == null;

}

public synchronized boolean circle() {

14

return !finite() && last.next == first;

}

public synchronized boolean lasso() {
return !finite() && last.next != first;

}

public static SMj glue(Object x[1) {

SMj y =

new SMjQ);

for (int k = 0; k < x.length; k++) {
y = y.chain(new SMj(x[k]));

}

return y;

}

public Object take(int x) {

SMe focus

for (int i =

= first;
1; i < x; i++) { focus = focus.next; }

return focus.entry;

// precondition: x > 0.

Using SMj we define a class SD10j for sequences of digits. Lacking an enumera-
tion type the definition of a class exactly matching the ten digits is somewhat
cumbersome. Sequences of digits are then an instantiation of sequences tak-
ing only digits as entries. The data type of digit sequences is modeled as an
algebra without an empty sequence, and with singleton sequences, sequence
concatenation and sequence repetition as its operators.

JCFdigseq = JCFseq U file:SD10j. java(

final class D10j {
static final
static final
static final
static final
static final
static final
static final
static final
static final
static final

void p() {
if (this
if(this
if (this
if(this
if (this

D10j
D10j
D10j
D10j
D10j
D10j
D10j
D10j
D10j
D10j

do)
d1)
d2)

= d3)

d4)

co
(e10)
Cco
(e10)
Cco

= new
= new
= new
= new
= new
= new
= new
= new
= new
= new

.p(0);
.p(1);
.p(2);
.p(3);
.p(4);

D10jQ);
D10jO);
D10jQ);
D10jO);
D103 Q) ;
D10j) ;
D10jQ);
D10j) ;
D10jO);
D10jQ);

else
else
else
else
else

15

if (this == d5) co.p(5); else

if (this == d6) co.p(6); else

if(this == d7) co.p(7); else

if (this == d8) co.p(8); else

if (this == d9) co.p(9);}
private D10j () { };

class SD10j { // Finite and periodic sequences of D10j objects.
private SMj mol;

SD10j() { } // This dummy constructor allows extending this class
// with classes having no explicit constructors.

SD10j(D10j x) {mol = new SMj(x);}

private SD10j(SMj x) {mol = x;}

static SD10j concatenate(SD10j x,SD10j y) {
return new SD10j((x.mol.Clone()).chain(y.mol.Clone()));
}
static SD10j repeat(SD10j x) {
return new SD10j(x.mol.Clone().cycle());
}
static SD10j glue(D10j x[1) {
return new SD10j(SMj.glue(x));
}
static D10j take(int x,SD10j y) { // precondition: x > 0.
return (D10j) (y.mol.take(x));
}
}

). The test program: JCFdigseqtest = JCFsp U JCFdigseq U file:c.java(

class c extends SD10j {
static void m() {
SD10j x = concatenate(
new SD10j(D10j.d3),
repeat (
glue(
new D10j[] {D10j.d1, D10j.d4, D10j.d2,
D10j.d8, D10j.d5, D10j.47}

for (int i
¥
}

1; i < 14; i++) { take(i,x).pO; }

) produces an initial segment of our sequence 1st2207 shown in Figure 3:

16

~N O 00ON DR, NOTON W

5 Conclusions

We have presented a theory of finite and repetitive sequences. We have done so
in a conceptual programming style, using molecular programming as a model.
We have presented this theory both in Java and in PGLEcm-mpp.

Java is widely understood, so the JPT is the more accessible. PGLEcm-mpp is
specifically geared toward molecular programming, so the PPT is more concise
(in concepts, if not in lines).

Developing a theory are similar activities whether undertaken in Java or in
PGLEcm-mpp. The ability to generate pictures during development are an
exceedingly useful tool in this phase as they are for the presentation of the
theory. Our preference for PGLEcm-mpp is partly based on the availability of
such a tool.

Java is not specifically aimed at molecular programming, and various aspects
are awkward because of that. Nonetheless we feel that Java is suitable.

References

[1] J.A. Bergstra. Molecule-oriented programming in Java. To appear in
Information and Software Technology.

[2] J.A. Bergstra and I. Bethke. Molecular dynamics. The Journal of Logic
and Algebraic Programming, 51(2):193-214, 2002.

[3] J.A. Bergstra and M.E. Loots. Empirical semantics for object-oriented
programs. Technical report, Lecture Notes, Programming Research Group,
University of Amsterdam, 1999.

17

[4] J.A. Bergstra and M.E. Loots. Program algebra for component code. For-
mal Aspects of Computing, 12: 1-17, 2000.

[5] J.A. Bergstra and M.E. Loots. Program algebra for sequential code. The
Journal of Logic and Algebraic Programming, 51(2):125-156, 2002.

[6] B. Diertens. The PGA-ProGramAlgebra website.
http://www.science.uva.nl/research/prog/projects/pga.

[7] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification. Sun Microsystems, Inc., second edition, 2000.
http://java.sun.com/docs/books/jls/.

A The entire PGLEcm-mpp code

Below is the entire PGLEcm-mpp code used to generate the fluid in Figure 3.
The action fgc performs a full garbage collection. Various auxiliary variables
are set to null before termination to avoid the picture being cluttered.

vstack = new;

e = new;
e.+v:int = 7;

1st = newSMEl(e);

e = new;

e.+v:int = 5;

1st2207 = newSMEl(e);
1st2207.chain(1lst);
1st = 1st2207;

e = new;

e.+v:int = 8;

1st2207 = newSMEl(e);
1st2207.chain(lst);
1st = 1st2207;

e = new;

e.+v:int = 2;

1st2207 = newSMEl(e);
1st2207.chain(1lst);
1st = 1st2207;

e = new;

e.+v:int = 6;

1st4407 = newSMEl(e);
1st4407.chain(lst);

e = new;

e.+v:int = 4;

1st2207 = newSMEl(e);
1st2207.chain(1lst);
1st = 1st2207;

18

1st4407.last = 1lst.first;
e = new;

e.+v:int = 1;

1st2207 = newSMEl(e);
1st2207.chain(1lst);

1st = 1st2207;
1st = lst.cycle();
e = new;

e.+v:int = 3;
1st2207 = newSMEl(e);
1st2207.chain(lst);

q = null;
pclone = null;
keep = null;
result null;
rClone null;
X = null;

1 = null;

this = null;
that = null;
vstack = null;
stackframe = null;
label = null;
r = null;

fgc;

| .

t

newSMe(e) {;
that = new;
that.+entry = e;

};

newSM() {;
that = new;

};

newSMSMes (el,e2) {;
r = new;
r.+first = el;
r.+last = e2;
that = r;

};

19

newSMEl(e) {;
1 = new;
local(l);
1.+first = newSMe(e);
l.+last = 1.first;
r =1;
1 = prev();
that = r;
};
empty () {;
- this/first {;
that = true;
H;
that = false;
};
};
finite() {;
r = this.empty();
+ r == true {;
that = true;
H;
- this.last/next {;
that true;
H;
that
};
};
};
circle() {;
r = this.finite();
+ r == true {;
that = false;
H;
+ this.last.next == this.first {;
that
H;
that
};
};
};
head() {;
r = this.empty();
+ r == true {;
that = NULL;
H
that = this.first.entry;
};

false;

true;

false;

20

};
tail() {;
local(re
r = this
+ r =1
result

H;

sult);
.empty();
rue {;

= newSM();

r = this.finite();
+ r == true {;
result = newSMSMes(this.first.next,this.last);

H;
r =
+r
re
H;
re
};
};
};

this.circle();
== true {;
sult = newSMSMes(this.first.next,this.first);

sult = newSMSMes(this.first.next,this.last);

r = result;

result =

prev();

that = r;

};

chain(x) {;
r = this.empty();

tr=1¢
that
H;

r = X.

rue {;

= X;

empty () ;

+ r == true {;

that
H;

r =
- T

= this;

this.finite();
== true {;

that = this;

H;

+

};

this.last == x.last {;
r = this.first.spans(x.first);
+ r == true {;
r = this.first.diffl(x.first);
x.first = x.auxclone(r,x.first,this.first);
H;
r = this.first.diffl(x.first);
this.first = this.auxclone(r,this.first,x.first);

};

that = this;

21

that.last.+next = x.first;
that.last = x.last;
};
};
};
};
spans(x) {;
- x/next {;
that = true;
H;
+ this/next {;
that = true;
H;
that = this.next.spans(x.next);
};
};
};
diffl(x) {;
- this/next {;
that = x;
Ho
- x/next {;
that this;
H;
that
};
};
};
auxclone(d,p,q) {;
local(pclone);
+ d/next {;
r = this.auxclone(d.next,p,q.next);
H;
-p=q1{;
r = this.auxclone(d,p.next,q.next);
p-next = r;
r =p;
H;
pclone = newSMe(p.entry);
- p/next {;
this.last = pclone;
H;

pclone.+next = this.auxclone(d,p.next,q.next);

this.next.diffl(x.next);

= pclone;

};
r

};
};

22

pclone = prev();
that = r;
};
cycle() {;
r = this.empty();
+ r == false {;
= this.finite();
r == true {;
this.last.+next = this.first;
};
};
that = this;
};
clone() {;
local(p);
local(q);
local(rClone);
local(keep);
r = this.empty();
+ r == true {;
r = newSM();
H
+ this.last/next {;
keep = this.last.next;
this.last.-next;
H;
keep
};
rClone = newSMSMes(this.first,this.last);
rClone.first = rClone.auxclone(null,this.first,this.first);
- keep == null {;
p = rClone.first;
q = this.first;
LO;
+ q == keep {;
rClone.last.+next = p;
this.last.+next = q;
Ho
p = p.next;
q q.next;
##1.0;
};
};
};
r = rClone;
keep = prev();
rClone = prev();

+ R R

null;

23

q = prev();
= prev();
that = r;
};
local(x) {;
vstack.+push = new;
vstack.push.+pop = vstack;
vstack = vstack.push;
vstack.+val = x;
};
prev({;
+ vstack/val {;
that = vstack.val;
H;
that
};
vstack = vstack.pop;
vstack.-push;

};

o]
|

null;

24

Electronic Reports Series of the Programming Research Group

Within this series the following reports appeared.

[PRG0201] |. Bethke and P. Walters, Molecule-oriented Java Programs for Cyclic Sequences, Programming
Research Group - University of Amsterdam, 2002.

The above reports and more are available through the website: www.science.uva.nl/research/prog/

Electronic Report Series

Programming Research Group
Faculty of Science
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam
the Netherlands

www.science.uva.nl/research/prog/

