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Abstract

Program algebra provides a means to reason about programs and programming languages. One
such algebra is PGA. It provides a hierarchy of increasingly complex languages that implement
a range of programming constructs. These languages can be translated to each other. The PGA
Toolset holds a collection of programs that automates this process. This paper introduces two
new languages that add multi-file support to the PGA hierarchy. This is done by defining the
necessary translation rules. The PGA Toolset is also updated to handle these new languages
and translations.
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CHAPTER 1

Introduction

Program algebra is an algebraic approach to sequential, imperative programs and programming.
It allows reasoning about programs and programming languages.
One such program algebra is PGA as defined in [BL02]. In its most basic form it defines

basic instructions, test instructions, jump instructions and a termination instruction. Using this
very small set of instruction types a hierarchy of higher level languages can be defined in terms
of more basic (lower level) languages.
The translation of a higher level language to a lower level language is called a projection,

whereas the translation of a lower level language into a higher level language is called an embed-
ding.
PGA follows simple rules and uses simple instructions. The result is a hierarchy of languages

that can easily be remembered and understood at the level of individual instructions.
This paper assumes that the reader is familiar with the projections and embeddings intro-

duced in [BL02]. The languages discussed here are all (indirect) embeddings of the languages
mentioned in that document.

1.1 Aims of this paper

As research on programming languages is one of the main purposes of program algebra, there is
a constant strive to create more realistic embeddings within PGA. In this respect the final goal
of creating new PGA languages is to mimic every aspect of the programming constructs of any
language.
Most if not all modern programming languages have support for functions (or methods in the

case of object oriented programming), macros and multi-file programs. What these techniques
have in common is that they allow the reuse of code and significantly reduce the overhead and
complexity of the process of programming and the program code itself.
For this reason it is important to be able to model these concepts within PGA. Significant

work has been done in this direction as can be read in e.g. [BB02, BW03].

1.1.1 Multi-file programs

This paper aims to extend the support for multi-file programs within PGA. Currently there is
one PGA language that offers this feature: PGLIcf, which is introduced in [BW03]. PGLIcf has
its strengths and shortcomings.1

This paper adds two new languages with support for multi-file programs to the PGA hierarchy.
These languages, which are quite similar, have properties that are significantly different from
PGLIcf. These new languages and their projections to existing languages will also be added to
the PGA Toolset.
The remaining sections of this chapter will introduce the aspects of PGA that are required

to understand the design decisions that are made in this paper and during the extension of the
PGA Toolset. A study of the construction of PGLIcf is given. The languages PGLEcm and
PGLEcmn, onto which the new languages will be projected, are introduced. The last section
provides an overview of the relevant aspects of the PGA Toolset.
Chapter 2 introduces the new languages and projections. Chapter 3 describes the design

decisions that were made during the implementation of the new languages as part of the PGA

1See Section 1.3, especially Section 1.3.5.
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Toolset.

1.2 Primitive instruction sets and basic instruction sets

It is important to understand that PGA makes a distinction between instruction sets that are
called primitive and basic. The primitive instruction sets provide the control constructs of the
language. PGLA and its hierarchy of (indirect) embeddings are examples of primitive instruction
sets (see Appendix A).
A basic instruction is a parameter of a primitive instruction. Each basic instruction returns

a boolean value upon which a primitive instruction can react. A basic instruction set defines a
language consisting of instructions that are to be used in conjunction with a primitive instruction
set. As an example, consider the following code snippet in the language PGLE:

L0 ; +a; ##L1; ##L0 ; L1 ; b

Here, the instructions are delimited by a semi-colon. The instructions L0 and L1 are primitive
label catch instructions. ##L0 and ##L1 are primitive goto instructions. The expressions a and b
are basic instructions. The +a operation evaluates the result of a. Program execution continues
at the next instruction if a returns true or skips the next function if a returns false.
When running this program the instuction a would be executed as long as it returns false.

Once it returns true b is executed, after which the program terminates.

1.2.1 A basic instruction set: MPP and its extensions

One of the basic instruction sets that has been created for PGA is MPP, short for Molecular
Programming Primitives. MPP is introduced in [BB02]. In short it provides a way to model
program states by making an analogy with a fluid of molecules. Though it is assumed that the
reader is familiar with the concepts of atoms, fields and foci as used in MPP, this section will
provide a very short introduction to this language.
Consider Figure 1.1, which shows a fluid consisting of a single molecule and a proto-atom

named null. The molecule consists of two atoms (the black dots) which each have a single focus:
x and y. The atoms can therefore be referenced by the names x and y. Atom x has a field to
atom y named a and atom y has a field to atom x named b. This molecule is the result of the
following PGLE.mpp (PGLE with the MPP basic instruction set) program:

x=new ; y=new ; x.+a ; y.+b ; x . a=y ; y . b=x

The first two instructions create new atoms and assign their respective foci. The second two
instructions add a reflexive field with the given names to each atom. The last two instructions
make the fields point to the other atom. The proto-atom null is present to allow the removal of
foci from atoms by assigning them to null.
In short, MPP provides instructions to create atoms, assign foci to atoms, add and remove

fields, direct fields, and test for the equality of atoms and the existence of fields.
Several extensions to MPP have been defined. The most notable extension is MPPV, which

introduces additional instructions for dealing with values of basic types. These values can be
viewed as terminal objects (i.e. they do not support fields) labeled with a literal. Specifically,
MPPV supports values of type boolean and integer.
In [Die04] Bob Diertens describes additional basic instruction sets which are built on top

of MPPV. First there is HMPPV (High-level MPPV) which adds support for strings among
some other additional instructions. HMPPV is embedded within MSP or Molecular Scripting
Primitives, which provides some instructions that can be considered as replacements of large
chunks of code. MSPea adds support for code evaluation to MSP. It must be noted that MSPea
introduces one instruction that cannot be translated to MSP. The apply instruction evaluates a
given string as a basic instruction. However, PGLEc and MSP provide no means to turn a string
into a focus or field selection.

1.3 Methods and the multi-file paradigm using primitive instruction

sets

One way to model method calls and to split up programs in multiple files is described in the
electronic report [BW03] by Bergstra and Walters. This report describes the use of an explicit
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null
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Figure 1.1: A molecule that is the result of an MPP program.

program counter and state machines in order to model method definitions and invocations as
well as structured programming within PGA. All languages introduced are indirect embeddings
of PGLA and thus primitive instruction sets. This section will give a short overview of the key
concepts described in [BW03]. Figure 1.2 places the languages described here in their greater
context.

PGLIcf

PGLI

PGLVSpc

PGLVS θPGLVSpc

PGLV θPGLVS PGLDSpc

PGLE PGLDg PGLDS PGLDpc

PGLD PGLCpc

PGLC PGLBpc

PGLB

PGLA

Figure 1.2: Languages and projections introducted in [BW03] (dashed lines) in the context of
the languages on which they are based (solid lines).

1.3.1 An explicit program counter

Method calls and other control features within a program require that at times the program
counter needs to be manipulated, thereby making it explicit. PGA only knows an implicit
program counter. On itself a PGA program cannot retrieve, alter and store this implicit program
counter.
To work around this problem, an explicit program counter may be introduced. This program

counter will be explicitly altered by the program itself and may be seen as a variable that is
modeled using solely primitive instructions. For this purpose, state machines are introduced.
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1.3.2 Modeling state machines

[BW03] describes several state machines modeled in PGA. Especially worth noting are the state
machines smpc which stores a program counter and smco which stores a sequence of program
counter values, but no duplicate elements.
Though state machines can potentially have an infinite number of different states, the intro-

duced state machines can be modeled using a finite number of PGA instructions because they are
only required to store a finite number of different values. To see why, note that every program
has a finite number of instructions and that therefore the number of different valid values for the
program counter is finite too.

1.3.3 An explicit program counter using a state machine

The concept of an explicit program counter and the state machine smpc first meet in the lan-
guage PGLBpc. PGLBpc provides several instructions that manipulate the program counter by
allowing it to be set to a position relative to the calling instruction. PGLBpc can be projected
onto PGLB.
The language PGLDpc offers functionality similar to PGLBpc, with the difference that it

treats addresses in an absolute instead of a relative manner. PGLDpc can be projected onto
PGLBpc using the intermediate language PGLCpc.
Note that both PGLBpc and PGLDpc can only remember the most recent value to which the

program counter is set. Therefore, neither of these languages is suitable to simulate, for example,
two or more nested method calls.
This problem is partially solved by the language PGLI. PGLI introduces the returning goto

instruction, allowing the program to jump to some predefined instruction while remembering the
location of the goto instruction. When a return instruction is executed, the program continues
the execution at the instruction following the goto instruction. This involves storing multiple
values of the program counter, one for each goto instruction. To achieve this, PGLI makes use of
the state machine smco instead of smpc. As mentioned in the previous section, this state machine
has one disadvantage: the stack of which it keeps track may not contain duplicate values. This
places a firm restriction on PGLI, in that it cannot handle (mutual) recursion.

1.3.4 Structured programming

[BW03] also introduces structured programming — the concept of code blocks and the ability
to either execute or skip them — using the language PGLDS which can directly be projected
onto PGLD. As structured programming is not the focus of this paper, PGLDS is not examined
in depth. Worth mentioning is that the report also introduces the language PGLDSpc, thereby
adding the possibility to manipulate the program counter in PGLDS. This allows exception
handling. PGLDSpc is indirectly a component of the language PGLI that was mentioned in the
previous section.

1.3.5 Multiple program components

The report introduces the language PGLIcf that allows the use of multiple program components.
The suffix ’cf’ in the name PGLIcf stands for component format. A program component can be
regarded as sequence of instructions that is not necessarily capable of acting as a program on
its own, but may contain code that is made available to other program components. Program
components are the building blocks of source code libraries.
When program components are merged, one may find that some of the components have label

catch instructions with identical values in common. Such namespace clashes must be resolved.
To do this, vector labels are introduced by means of the language PGLV. PGLI embeds PGLV.
A vector label contains a sequence of integer values that make up a unique label value.

This sequence of values can be projected onto a unique single integer using a provided bijective
mapping. This ensures compatibility with PGLE, onto which PGLV is projected.
Summarizing, PGLIcf is the first language that supports multiple file components. It is a

primitive instruction set and can thus be used in combination with every basic instruction set. Its
main drawback is the lack of support for recursion. Furthermore there is currently no embedding
of PGLEcf that provides support for parameterized method calls. These two issues are of great
importance with respect to code reusability.
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1.4 Defining methods using MPP

The article [BB02] examines two interesting concepts with regards to code reuse. The article
uses PGLEc.mpp, which means that the basic instruction set MPP is used in conjunction with
the primitive instruction set PGLEc.

1.4.1 Molecular programming families

Introduced first is the concept of molecular programming families, MPF for short. An MPF can
be regarded as a set of programs that are supposed to act on the same molecules or fluids. The
programs are (usually small) sequences of instructions that can be embedded in larger programs.
Additional restrictions may be imposed on the use of a programming family. For example,
parameters are passed through the use of variables with predefined names. The use of variables
with such names other than for the purpose of passing arguments should be avoided. Further
more, there may also be restrictions on when and where to insert the program components in the
main code. An MPF can probably be best compared with a set of macro’s, with the important
difference that programs in an MPF do not substitute variables in a way that macro’s do.
An example of an MPF that is introduced in [BB02] is that of the natural numbers. The

provided programs are named setZero (creates the number 0), P (predecessor, decrements a
number), S (successor, increments a number) and mod2 (modulo 2). Note that one of the restric-
tions imposed on this MPF is that setZero should always be executed before any of the other
programs in the program family.
It is clear that the concept of MPFs becomes impractical when several different programming

families are used within the same program. Some of the variable names that they reserve for
special purposes may overlap. This results in the need to alter one or more MPFs before they
can be used in conjunction with other MPFs. For this reason, methods are a better alternative.

1.4.2 Method calls: PGLEcm and PGLEcmn

[BB02] shows how method definitions and method calls can be added to PGLEc using the MPP
instruction set.2 The language introduced in that paper has no name, so we shall call this
embedding PGLEcmn. The reason for this name will become clear shortly. One may pass
arguments to the methods defined in PGLEcmn and a return value may be defined. Unlike
PGLI, this implementation does support the use of recursion and is thus more flexible. Of course
this comes with a price: PGLEcmn cannot be projected onto PGLEc without the use of MPP3

and is thus not independent of a specific basic instruction set.
The name PGLEcmn is a derivative of the name of the language PGLEcm. PGLEcm is

a language implementation in the PGA Toolset that closely resembles the functionality and
implementation of method definitions as described in [BB02]. The difference is that the projection
semantics in the paper only allow numerical method names, whereas the Toolset implementation
supports string names for methods. Hence the appended ’n’. For a precise overview of the
differences between these two languages, see Appendix B in which the projection pglecm2pglecmn
is introduced.
In order to allow the use of methods, the notion of a stack is introduced. Without going

into further detail, the stack is represented as a list of atoms with prev and next fields to each
preceding and successive atom. The returning goto instruction, which is also introduced in the
language PGLI, manipulates the stack and allows the recursive invocation of methods. The
language that introduces the returning goto instruction using MPP is part of the PGA Toolset
under the name of PGLEcr. It is to this language that PGLEcm is projected. In turn PGLEcr
is projected onto PGLEc.
The arguments that are passed to a method are saved on the stack to preserve their value

in the event of recursion (or any other situation in which variables may be overwritten due
to overlapping scopes). PGLEcm does not provide a means to discriminate between local and
global variables. Hence, all variables may be considered global. This implies that non-argument
variables that are used within a method will be overwritten when coping with recursion. The

2See pages 206–209.
3Or any other sufficiently expressive basic instruction set.
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solution for this problem, namely to also add these variables to the stack, is not handled by the
projection to PGLEcr and must thus be performed manually.
Note that though both [BB02] and the PGA Toolset use the language MPP to implement

method calls, it is very well possible that one may define a completely different basic instruction
set which provides enough functionality to define PGLEcr and PGLEcm without the use of MPP.

1.5 Making PGA more user friendly: string labels

Most PGA languages make extensive use of numeric labels. While these greatly simplify the
construction of the various projections and embeddings, they have a disadvantage.
In general, the meaning of a numeric label within a program cannot be determined from its

value. When programs grow larger, the result may be that the human reader must take great
effort to interpret the program. This is not desirable, since PGA was created to be easily readable
by humans.
A solution for this problem is the introduction of label values to which clear semantics can be

assigned: strings. These string labels can easily be projected onto numeric labels, as is necessary
when projecting a language that supports string labels onto a lower level language that does not.
One such projection is described in [Gee03], where string labels are introduced in the language

PGLEcws, an embedding of PGLEcw. Each string label is assigned a unique number larger than
the largest value of any numeric label present in the program. This is done by ordering all unique
strings in program X in a dictionary DX . For a dictionary of size n, DX

1 through DX
n denote

all entries and thus all unique strings present in the program. The index of some string s in the
dictionary is obtained through the function DX(s).
The projection of PGLEcws onto PGLEcw, or more generally, the projection of some language

supporting numeric and string labels onto some lower language that is identical except for the
lack of string label support, is defined below. Here m denotes the maximal numerical label in
program X and s is some string present in DX .

• ψ(Ls) = L(DX(s) +m);

• ψ(##Ls) = ##L(DX(s) +m);

• ψ(u) = u, otherwise.

This projection is present in the PGA Toolset in the form of the program slabel2nlabel. Note
that this implementation rounds the value of m to the next multiple of 1000 in order to make
the newly created numerical labels more distinguishable from the old ones.

1.6 The PGA Toolset

The PGA Toolset is an application built for educational and scientific purposes that is meant
to serve as a tool while working with the various PGA languages. The Toolset is built and
maintained by Bob Diertens as described in [Die03].

1.6.1 Functionality

The simulator provides a command line as well as a graphical user interface. The PGA Toolset
can project certain PGA languages onto other languages and has support for several basic in-
struction sets, such as MPP. See Figure 1.3 for an overview of the primitive instruction sets and
projections that are currently implemented in the PGA Toolset.

1.6.2 Program architecture

The Toolset has a modular structure that makes the easily extendable. Because the program
is implemented using the programming language Perl (and Tcl/Tk for the graphical views), it
can be run on many different platforms. The fact that Perl has excellent support for regular
expressions greatly simplifies the parsing of PGA code.
This section will only describe the general structure of the parsers and projection programs

in the Toolset. The graphical interface is not relevant for this paper.
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PGLEcm

PGLEcr PGLEcw

PGLEc

PGLE

PGLDg

PGLD

PGLC PGLBg

PGLB PGLBu

PGLA PGLAu

Figure 1.3: Projections that are implemented in the PGA Toolset.

To get an idea of the inner workings of the Toolset, see Figure 1.4. This diagram shows the
various modules that are used to project PGA language b onto language a. The arrows point
from a module that is called to the calling module.
Here, the Input module reads the program in language b and prepares it for parsing. The

Generic module provides the most basic form of parsing: it strips leading and trailing spaces, but
otherwise accepts any token. Because of this it is compatible with every basic instruction set.
The Display module handles the program’s output. This means that none of the other modules
has to bother with the differences between the command line and the graphical interface.
The PrimitiveA and PrimitiveBmodules provide functionality to parse code in their respective

language and represent this data in an internal, general format (a list of opcodes and arguments).
These modules also provide a routine that performs basic checks on the code and a function that
translates the internal instruction list to the program representation in its original form.
The program b2a uses PrimitiveB to parse some program in language b, alters the internal

program representation according to the projection rules for the projection b2a and then uses
PrimitiveA to print the result in language a.

Input Generic Display

PrimitiveB PrimitiveA

b2a

Figure 1.4: Projection model used by the PGA Toolset.
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CHAPTER 2

Adding support for multiple files in

PGLEcm

This chapter describes two new languages named PGLEcmcf and PGLEcmcfn. They support
the use of multiple program files or program components and can be projected onto PGLEcm
and PGLEcmn, the languages that are described in Section 1.4.2. Specifically, PGLEcmcfn
can be projected on PGLEcmn whereas PGLEcmcf can be projected onto PGLEcm as well as
PGLEcmcfn.
The choice for PGLEcm as the basis for these new languages is based on the fact that PGLEcm

is the only language currently implemented by the Toolset that supports methods. Methods are
the basic building blocks within a programming language that allow code reuse and the creation
of code libraries. Libraries are collections of methods that provide a specific functionality that
may be used by multiple programs. Because libraries are shared among multiple programs, they
need to be in separate program files. This is where PGLEcmcf comes in.
As said in Section 1.4.2, PGLEcm and PGLEcmn differ in that the former allows the use of

string method names while the latter only allows numerical method names. The only restriction
posed on method names defined in PGLEcm is that they consist solely of alphanumeric characters
and/or the dash character. PGLEcmn has the advantage that it is easier to project onto PGLEcr,
but PGLEcm is clearly more user friendly. Even the code examples in [BB02] use string method
names.

2.1 Analysis of techniques used by PGLIcf

Currently there is only one language projected to PGA that allows programs to span multiple
files: PGLIcf, an extension of PGLI.1 It has currently not been added to the PGA Toolset.
Of the languages that are part of the PGA Toolset, PGLEcm is probably the language that is
functionally the most similar to PGLI, though it can be argued that the properties that PGLEcw
shares with PGLI are just as significant. This section analyzes PGLIcf in order to get some clues
on how to define the new languages PGLEcmcf and PGLEcmcfn and how to formulate their
projection onto PGLEcm(n).

2.1.1 PGLIcf’s internals

PGLIcf assumes a single flat file system F in which each file or component is identified by a unique
integer value. In short, the projection pglicf2pgli(c, F) of some program c incorporates the
program c as well as any program c′ that is directly or indirectly referenced by c. Label catch
and goto instructions and method declarations and references are resolved using vector labels
(see Section 1.3.5). This ensures that the namespaces of the included files will not clash.
As PLGI only regards portions of code in other files of the file system when they are referenced,

it has no notion of code that is present outside of the called functions. For this reason the
projection pglicf2pgli(c, F) concatenates all relevant program files by separating them with
two termination instructions (!;!). To see why two termination instructions are necessary,
consider a situation where the last instruction of some included program component is a test
instruction. If it were not for the second termination instruction, program flow could jump over

1The suffix ’cf’ stands for component format. PGLI and PGLIcf are introduced in [BW03] and are briefly
described in Section 1.3.
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the first termination instruction, in which case execution would continue in another unrelated
program component. The second termination instruction prevents this and as a result the order
in which program components are concatenated after the main component c is irrelevant.

2.2 PGLEcmcfn

This subsection defines the language PGLEcmcfn and its projection onto PGLEcmn, thereby
assuming the projection semantics for method calls as described in [BB02].
PGLEcmcfn introduces the notion of multiple program components — sequences of instruc-

tions with a name (number) that uniquely identifies them — by defining additional instructions
that are prefixed with a component identifier cj using the |-operator. Here j is a natural number
referring to some program component cj in file system F . Method names are of the form mk()
or mk(arg1, . . . , argn) with k a natural number.
The following is a list of the new instructions that PGLEcmcfn provides on top of PGLEcmn.

Note that this list is somewhat oriented towards MPP. The |-operator has a higher precedence
than the .-operator that is part of MPP.

• cj|##Lk;

• cj|mk();

• x = cj|mk();

• cj|mk(arg1, . . . , argn);

• x = cj|mk(arg1, . . . , argn);

• x.cj|mk(arg1, . . . , argn);

• y = x.cj|mk(arg1, . . . , argn).

2.2.1 The projection of PGLEcmcfn onto PGLEcmn

Mimicking pglicf2pgli(c, F) as closely as possible, the following rules define the projection
pglecmcfn2pglecmn(c, F). Here, C = {c1, . . . , ck}, which is the smallest set of program compo-
nents in file system F that are directly or indirectly referenced by program component c. The
integer value q is the largest label or method number present in the program components that
are part of C, plus 1. By defining q to be larger than any of the label and method numbers
present in C, the value 0 can also be used as a label or method number. A program component
cn with instruction sequence pn is written as ≺ cn, pn Â.
The function φ concatenates all program components in C using the function ψ. ψ appends

two termination instructions to each program component after it has been translated by the
function θ : PGLEcmcfn→ PGLEcmn.

• φC(≺ c1, p1 Â, . . . ,≺ ck, pk Â) = ψC
1 (p1); . . . ;ψ

C
k (pk);

• ψC
n (u1; . . . ;um) = θC

n (u1); . . . ;θ
C
n (um); !; !;

• θC
n (u) = !, when u is a non-local label jump or method invocation (i.e., an instruction
cj|mk(. . . ) referring to a module not contained in C. Otherwise,

• θC
n (Lk) = L(nq + k);

• θC
n (##Lk) = ##L(nq + k);

• θC
n (cj|##Lk) = ##L(jq + k);

• θC
n (mk(){) = m(nq + k)(){;

• θC
n (mk()) = m(nq + k)();

• θC
n (cj|mk()) = m(jq + k)();
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• θC
n (x = mk()) = x = m(nq + k)();

• θC
n (x = cj|mk()) = x = m(jq + k)();

• θC
n (mk(arg1, . . . , argn)) = m(nq + k)(arg1, . . . , argn);

• θC
n (cj|mk(arg1, . . . , argn)) = m(jq + k)(arg1, . . . , argn);

• θC
n (x = mk(arg1, . . . , argn)) = x = m(nq + k)(arg1, . . . , argn);

• θC
n (x = cj|mk(arg1, . . . , argn)) = x = m(jq + k)(arg1, . . . , argn);

• θC
n (x.mk(arg1, . . . , argn)) = x.m(nq + k)(arg1, . . . , argn);

• θC
n (x.cj|mk(arg1, . . . , argn)) = x.m(jq + k)(arg1, . . . , argn);

• θC
n (y = x.mk(arg1, . . . , argn)) = y = x.m(nq + k)(arg1, . . . , argn);

• θC
n (y = x.cj|mk(arg1, . . . , argn)) = y = x.m(jq + k)(arg1, . . . , argn);

• θC
n (u) = u, otherwise.

2.3 PGLEcmcf: PGLEcmcfn with string names

This section introduces an extension of PGLEcmcfn that allows the use of string labels and string
method names. This language, named PGLEcmcf, will be projected onto PGLEcmcfn.
Because the implementation of PGLEcm in the PGA Toolset uses string names too2, it is

relatively straightforward to project PGLEcmcf directly onto PGLEcm. For this reason, such
projection is also provided.
PGLEcmcf provides the following instructions instead of those described in Section 2.2. Note

that the component identifier c′ and the label/method name s are strings.

• c′|##Ls;

• c′|s();

• x =c′|s();

• c′|s(arg1, . . . , argn);

• x =c′|s(arg1, . . . , argn);

• x.c′|s(arg1, . . . , argn);

• y = x.c′|s(arg1, . . . , argn).

2.4 The projection of PGLEcmcf onto PGLEcmcfn

This section will describe how PGLEcmcf can be translated to PGLEcmcfn. For this purpose a
new kind of string dictionary needs to be defined first.

2.4.1 Multiple string dictionaries

The dictionary DX as introduced in Section 1.5 contains the collection of unique strings in some
program X. Specifically, it is used in the projection of PGLEcws onto PGLEcw to convert string
labels into numerical labels. PGLEcmcf does not only have string labels, but also string method
names and string component names. If the projection pglecmcf2pglecmcfn(c, F) were to use
the dictionary DX , where X would be the concatenation of all program components in F , then
two things would happen:

• There would be no continuous ordering of label and method names in each program com-
ponent. The integers would appear to be selected at random. This would not improve the
readability of the resulting program code.

2For methods, not for labels.
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• Occurrences of identical strings in different program components would be mapped onto
the same integer. This can be regarded as a good thing, considering that it will improve
the understandability of the resulting PGLEcmcf code.

It can be argued that the former issue is of greater importance. Therefore, the projection
of PGLEcmcf will have a separate dictionary for each program component. Dictionary DX is
thus assumed to contain the unique string names of labels as well as methods in the program
component X.
The names of program components that are (indirectly) referenced by program c are not

necessarily located in a single program component. The mapping of these names onto integer
values will therefore be handled as a special case. The dictionary DF stores the unique string
names of the collection of files in F . The function DF (c) returns the index of component name
c in the dictionary.
Note that because DX and DF are dictionaries over different domains, the notation of the

functions DX(s) and DF (c) is unambiguous.

2.4.2 The projection

The projection pglecmcf2pglecmcfn(c, F) can now be defined as follows:

• φC(≺ cn, pn Â) = ψC
1 (pn);

• ψC
n (u1; . . . ;um) = θC

n (u1); . . . ;θ
C
n (um);

• θC
n (Ls) = LDcn(s);

• θC
n (##Ls) = ##LD

cn(s);

• θC
n (c

′|##Ls) = cDC(c′)|##LDc′

(s);

• θC
n (s(){) = mDcn(s)(){;

• θC
n (s()) = mDcn(s)();

• θC
n (c

′|s()) = cDC(c′)|mDc′

(s)();

• θC
n (x =s()) = x = mDcn(s)();

• θC
n (x =c

′|s()) = x = cDC(c′)|mDc′

(s)();

• θC
n (s(arg1, . . . , argn)) = mDcn(s)(arg1, . . . , argn);

• θC
n (c

′|s(arg1, . . . , argn)) = cDC(c′)|mDc′

(s)(arg1, . . . , argn);

• θC
n (x = s(arg1, . . . , argn)) = x = mDcn(s)(arg1, . . . , argn);

• θC
n (x = c′|s(arg1, . . . , argn)) = x = cDC(c′)|mDc′

(s)(arg1, . . . , argn);

• θC
n (x.s(arg1, . . . , argn)) = x.mDcn(arg1, . . . , argn);

• θC
n (x.c

′|s(arg1, . . . , argn)) = x.cDC(c′)|mDc′

(s)(arg1, . . . , argn);

• θC
n (y = x.s(arg1, . . . , argn)) = y = x.mDcn(arg1, . . . , argn);

• θC
n (y = x.c′|s(arg1, . . . , argn)) = y = x.cDC(c′)|mDc′

(s)(arg1, . . . , argn);

• θC
n (u) = u, otherwise.

2.5 The projection of PGLEcmcf onto PGLEcm

PGLEcmcf can also be projected onto PGLEcm instead of PGLEcmcfn, thus preserving string
method names instead of converting them to integers. Label names are converted to integers.
For this reason the projection pglecmcf2pglecm(c, F) requires two new functions: a special kind
of dictionary and a string concatenation function.
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2.5.1 String labels and multiple files

The use of string labels described earlier in Section 1.5 assumes a single program component.
This is clearly unsuitable for the conversion of multiple program components to a single program
file. In order to convert the string labels in PGLEcmcf, an alternative type of dictionary D′

C

over the collection of program components C is introduced. This dictionary consists of elements
D′

C
1 through D

′C
n . Each element is a tuple (c, s) that denotes the string s in program component

c, where c ∈ C. The index of some tuple (c, s) within the dictionary is returned by the function

D′
C
(c, s).
Now the conversion of label catch and goto instructions in PGLEcmcf to equivalent instruc-

tions in PGLEcm becomes:

• ψC
n (Ls) = LD′

C
(cn, s);

• ψC
n (##Ls) = ##LD

′C(cn, s);

• ψC
n (c

′|##Ls) = ##LD′
C
(c′, s);

• ψC
n (u) = u, otherwise.

This alternative approach assumes that there are no numerical labels. Some instruction L1 in
program component cn ∈ C will be interpreted as ψ

C
n (L1) = LD′

C
(cn, 1), because the numerical

value will be regarded as a string. By treating every label value as a string, there is no need to
determine the maximum value of the numerical labels over all included program components.

2.5.2 Concatenating strings

In order to translate the method names in PGLEcmcf to those in PGLEcm, they are prefixed
with the name of the program component in which they are declared. To do this, the names must
be concatenated in such manner that the resulting name cannot be ambiguous in PGLEcm. For
this purpose a new function S(c, s) for program component c and method name s is introduced.
The function does the following:

• Each occurrence of the dash character (-) within the string c is replaced by two dashes.

• The same operation is performed on the string s.

• The two strings c and s are concatenated with a single dash in between.

As an example, assume the program component stdio and the method name print-it which
is defined within stdio. In PGLEcmcf this method will externally be referenced by the name
stdio|print-it. When projected onto PGLEcm, the name of this method will be translated
to stdio-print--it.
The function S(c, s) is bijective and does not introduce a new type of character, thereby

ensuring that each combination of c and s results in exactly one, unique method name that is
valid in PGLEcm.

2.5.3 The projection

The projection pglecmcf2pglecm(c, F) for some PGLEcmcf program c within file system F

becomes:

• φC(≺ c1, p1 Â, . . . ,≺ ck, pk Â) = ψC
1 (p1); . . . ;ψ

C
k (pk);

• ψC
n (u1; . . . ;um) = θC

n (u1); . . . ;θ
C
n (um); !; !;

• θC
n (u) = !, when u is a non-local label jump or method invocation (i.e., an instruction
cj|mk(. . . ) referring to a module not contained in C. Otherwise,

• θC
n (Ls) = LD′

C
(cn, s);

• θC
n (##Ls) = ##LD

′C(cn, s);
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• θC
n (c

′|##Ls) = ##LD′
C
(c′, s);

• θC
n (s(){) = S(cn, s)(){;

• θC
n (s()) = S(cn, s)();

• θC
n (c

′|s()) = S(c′, s)();

• θC
n (x =s()) = x = S(cn, s)();

• θC
n (x =c

′|s()) = x =S(c′, s)();

• θC
n (s(arg1, . . . , argn)) = S(cn, s)(arg1, . . . , argn);

• θC
n (c

′|s(arg1, . . . , argn)) = S(c′, s)(arg1, . . . , argn);

• θC
n (x = s(arg1, . . . , argn)) = x = S(cn, s)(arg1, . . . , argn);

• θC
n (x = c′|s(arg1, . . . , argn)) = x = S(c′, s)(arg1, . . . , argn);

• θC
n (x.s(arg1, . . . , argn)) = x.S(cn, s)(arg1, . . . , argn);

• θC
n (x.c

′|s(arg1, . . . , argn)) = x.S(c′, s)(arg1, . . . , argn);

• θC
n (y = x.s(arg1, . . . , argn)) = y = x.S(cn, s)(arg1, . . . , argn);

• θC
n (y = x.c′|s(arg1, . . . , argn)) = y = x.S(c′, s)(arg1, . . . , argn);

• θC
n (u) = u, otherwise.

2.6 PGLEcmcf and PGLEcmcfn programs: additional constraints

As the observant reader will have noticed, the projection of PGLEcmcf(n) onto PGLEcm(n)
does not alter basic instructions. The reason for this is that the projection of basic instructions
depends on the type of instruction set used. The type of basic instruction set used does not need
to be specified in order for the projection of a primitive instruction set to work. In fact, the
type of instruction set used may not even be known at this time. An implicit constraint placed
on the basic instruction set that is being used is that it must be expressive enough to allow the
(indirect) projection of PGLEcm(n) onto PGLEc. If this is not possible, it is not possible to
reason about the language at a level lower than PGLEcm. This defeats the purpose of PGA.
Regardless of the type of basic instruction set used, there are several constraints to which

the program must adhere in order for it to stay semantically unaltered after the projection
of PGLEcmcf(n) onto PGLEcm(n). These constraints may either be manually applied by the
programmer or enforced by a set of projection rules that are specific to a basic instruction set.
Here, a set of constraints will be formulated to which a programmer must adhere to ensure

that his or her program will not be semantically altered by the projections from PGLEcmcf onto
PGLEcm and from PGLEcmcfn onto PGLEcmn.

2.6.1 Global vs. local variables

As PGLEcm and PGLEcmn do not provide a mechanism to declare variables to be either local
to a method or global to a program, there is no way that the projection of either PGLEcmcf(n)
onto PGLEcm(n) or PGLEcm(n) onto PGLEcr knows if and when to save, restore or remove
variables that are local when program control changes its scope.
For this reason, special care must be taken when handling variables. This mostly holds for

local variables, but even variables that are global to one program component in PGLEcmcf(n)
may not necessarily be global to the entire program after projection onto PGLEcm(n).
Part of these problems can be solved by applying strict naming rules. For example, one

may choose to prefix each variable that is local to a method with the name of that method
and then prefix each variable that is strictly global to a single program component with the
name of that component. Local variables would then be prefixed by the method name as well
as the name of a program component. This technique is similar to that used by the projection
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pglecmcf2pglecm(c, F) with regard to method names. Strictly applying this convention ensures
that no two variable names that are supposed to be in different scopes collide.
It is important not to overlook the method arguments in this process. They need to be local,

as the programmer will want to ensure that the arguments are not overwritten when another
function is being called.

2.6.2 Recursion: direct and indirect

Strict naming conventions do not solve all problems relating to the scope of variables. In the
special case of recursion, either direct or indirect3, local variables may be overwritten.
A possible solution is to explicitly implement a stack data structure onto which local variables

are saved before a method is called recursively. When the method returns, the variables are
popped from the stack again. This stack must be implemented using the instructions provided
by the basic instruction set.

2.6.3 Projections specific to the basic instruction set

Alternatively to the manual bookkeeping of variable scopes, additional projection rules may be
defined. These projections are to take care of the translation of basic instruction sets before,
during or after the projection of PGLEcmcf(n) onto PGLEcm(n) (or any other two primitive
instruction sets for that matter).
Each basic instruction set should therefore provide its own collection of additional rewrite

rules that should be considered together with those provided by pglecmcf2pglecm(c, F) and
pglecmcfn2pglecmn(c, F).
Note that the implementations of pglecm2pglecr and pglecmn2pglecr in the Toolset do

in fact translate the methods defined in PGLEcm to more primitive constructs in PGLEcr by
explicitly defining a stack in MPP. Argument variables are saved on the stack. For this reason,
the Toolset implementation of PGLEcm is restricted to the MPP basic instruction set and its
derivatives. Note that this implementation does not push other variables local to a method on
the stack when calling another function. This bookkeeping is still left to the programmer.

3Also called mutual recursion: two or more functions that recursively call each other.
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CHAPTER 3

Implementation of the new projections

During the extension of the PGA Toolset with support for the new languages and projections, the
code that handled existing languages and projections proved to be very helpful. Because of the
Toolset’s modular structure, significant parts of this code could be copied without modification.
In fact, the code that describes the new languages introduced here greatly resembles that what
has been programmed by Bob Diertens in most aspects.
Because of this it does not seem useful to describe the entire programming process. Instead

this chapter describes the key concepts that all newly created files share. Furthermore some of
the mayor design decisions that were made during the implementation of the new languages and
projections are explained.

3.1 Functionality of a primitive module

Each language that is supported by the Toolset has its own module. Each of these modules
provides the following routines:

Init Tells which modules to use for input, parsing of basic instructions and output (display).

Parse Parses the input and saves the instructions in a list of opcodes and corresponding argu-
ments.

PrintStep Returns a formatted string representation of the given opcode and arguments.

Print Formats the instructions that were earlier parsed by the Parse routine using the PrintStep
routine. Indentation is added if requested. The result is sent to the display module that
was passed to the Init method.

Check Performs basic checks on the previously parsed instructions. For example, this routine tries
to find matching opening and closing braces.

3.2 Projection code

The programs in the Toolset that perform a projection of one language onto another are also quite
similar in the way they work. In short, the process of projecting PrimitiveB onto PrimitiveA
is as follows:

1. Initialize the modules PrimitiveA and PrimitiveB.

2. Specify the input stream — usually stdin, but not in the case of PGLEcmcf(n).

3. Parse the input stream using the Parse routine in module PrimitiveB.

4. Perform a check on the parsed data.

5. Iterate over the list of parsed instructions and build a new list of instructions that can be
understood by PrimitiveA.

6. Output the resulting instruction list using the printing functionality provided by module
PrimitiveA.
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3.3 Representing multiple program components

The languages that are currently known to the Toolset share one property that PGLEcmcf and
PGLEcmcfn do not have: they are strictly oriented on single file programs. Each provided
program interprets its input as a single, stand alone program.
PGLEcmcf(n) programs may consist of multiple components. Additionally, one component

should be selected as the main file, i.e. the component that contains the program’s first instruc-
tions. The elegant input-output principle using pipes applied by the existing programs in the
Toolset is in its current form unsuitable to handle this additional information.
There are several possible implementations that allow the input of multiple program compo-

nents together with the selection of the main component:

• Each program component in a different file. The introduction of command line arguments.

While a program can only read a single stream from stdin1, the number of command line
options that may be passed to a program is unlimited.

If each program component is stored in a separate file, their filenames can be communicated
by means of command line options. This idea is straightforward to implement.

• Each program component in a different file. The introduction of a meta information file.

To avoid the use of command line arguments, a new meta information file can be introduced
that lists the names of the files that contain the program components. The main program
component can also be defined.

• Aggregation of the program components into a single file.

A way to hold on to the principle of a single input stream, is by defining a file format
that allows the description of an undefined number of program components. The format
can additionally provide the functionality to define the main component, or the program
component first described in the file can be assigned this property.

The markup of such an aggregation file should be defined in a way that allows no ambiguity
between its constructs and the PGA components it separates. A possible solution lies in
the use of XML2. This implementation would have at least one significant drawback: it is
incompatible with one of the main purposes of PGLEcmcf(n): defining code libraries.

• More explicit use of the system’s file system.

Another way to stick with a single direct input stream from the user’s point of view, is by
assuming that all references to other program components are in fact the names of files
resident on the file system. This way each program component is saved in its own file
without forcing the user to explicitly pass the names of these files to the Toolset. This
increases the ease of use, scales well to large amounts of program components and even
allows the use of a special environment variable to list the locations of program components.
This is comparable to the use of the system’s $PATH-variable as it is present on most modern
operating systems. This implementation most closely mimics the way that libraries are
handled by compilers of most modern programming languages.

It should come as no surprise that during the extension of the Toolset the last option was
chosen as the most preferable one. The name of the environment variable that is used to search
for program components is $PGALIB.
Note that in order to be able to work with multiple input streams, a small patch had to be

committed to one of the existing modules in the Toolset. See Appendix C for details.

1Standard input, the file descriptor of the default input stream of a program.
2Extensible Markup Language, see http://www.w3.org/XML/
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CHAPTER 4

Conclusion

This paper has introduced two new languages, added three languages to the PGA Toolset and
implemented five projections.1 By defining additional types of instructions to reference instruc-
tions in other program components, the number of instructions defined by PGLEcmcf(n) is
significantly larger than the number of instructions defined by PGLEcm(n). These new instruc-
tions are semantically only slightly different however. It is because of this that the projection of
a multi-file program in PGLEcmcf(n) onto a single file PGLEcm(n) program is straightforward.
This beautifully demonstrates one of the basic principles of PGA: the multi-file paradigm is a

powerful concept and yet the hierarchy of PGA languages can easily be extended to incorporate
this programming construct without compromising another aspect of the hierarchy in any way.
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APPENDIX A

PGA language overview

Figure A.1 tries to present the reader with an overview of all PGA languages and projections
that are mentioned in this paper. The language names surrounded by a solid box are those that
are known to the PGA Toolset. The solid arrows show the projections that are available in the
Toolset. The language boxes with the long dashed borders are introduced in this paper and
added to the Toolset, along with the relevant projections.
The boxes and lines with the short dashed edges show the languages and projections that are

introduced by [BW03]. Note that the function θ represents the commutative composition of the
connected projections.

PGLIcf

PGLEcmcfn PGLEcmcf PGLI

PGLEcmn PGLEcm PGLVSpc

PGLEcr PGLEcw PGLVS θPGLVSpc

PGLEc PGLV θPGLVS PGLDSpc

PGLE PGLDg PGLDS PGLDpc

PGLD PGLCpc

PGLC PGLBpc

PGLB PGLBg PGLBu

PGLA PGLAu

Figure A.1: Projections that are either implemented in the PGA Toolset (solid lines) or men-
tioned or introduced in this paper (resp. short and loang dashes).
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APPENDIX B

The projection of PGLEcm onto PGLEcmn

Throughout this paper a distinction has been made between the specification of the language
PGLEcmn as it is introduced in [BB02] and the Toolset implementation in the form of PGLEcm.
For the sake of completeness, this section presents the projection pglecm2pglecmn. The Toolset
has been extended with support for PGLEcmn and the projection of PGLEcm onto this language
has also been added.
This projection uses a dictionary DX very similar to the one introduced in Section 1.5. This

version of the dictionary is different in that it also regards method names (not just label names)
and in that it disregards the notion of numerical string and method names. This behavior is
similar to that of the multi-file dictionary introduced in Section 2.5.1.
These projection rules assume the projection of some program X:

• θC
n (s(){) = mDX(s)(){;

• θC
n (s()) = mDX(s)();

• θC
n (x =s()) = x = mDX(s)();

• θC
n (s(arg1, . . . , argn)) = mDX(s)(arg1, . . . , argn);

• θC
n (x = s(arg1, . . . , argn)) = x = mDX(s)(arg1, . . . , argn);

• θC
n (x.s(arg1, . . . , argn)) = x.mDX(s)(arg1, . . . , argn);

• θC
n (y = x.s(arg1, . . . , argn)) = y = x.mDX(s)(arg1, . . . , argn);

• θC
n (u) = u, otherwise.
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APPENDIX C

The patch of Input.pm

Since the new languages PGLEcmcf and PGLEcmcfn allow multiple input streams, the Toolset’s
Input module may be called several times during their projection onto more basic languages;
once for each referenced program component. It turned out that a very minor adjustment to
this module was necessary in order to be able to call Input multiple times during the execution
of a single projection. The variable $myeof keeps track of the state of the input stream. When
Input was reinitialized, this variable was not updated. The patch below solves this problem.
This patch has been committed to the Toolset.

1 −−− Input .pm. o r i g 2006−04−17 15:27:09.588516000 +0200

2 +++ Input .pm 2006−04−17 15:27:26.349920000 +0200

3 @@ −18 ,6 +18 ,7 @@

4 my $ s e l f = s h i f t ;

5

6 $stream = s h i f t ;

7 + $myeof = 0 ;

8 }

9

10 sub St r ing {
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APPENDIX D

Short projection example

Figure D.1 aims to provide the reader with a single overview of all the projections described in this
paper. The diagram shows a PGLEcmcf program consisting of two program components. The
program is projected onto PGLEcmn using two different projection trajectories: via PGLEcmcfn
and via PGLEcm.
Note that the label and method numbers in the PGLEcmn version reflect the output of

the successive projection of pglecmcf2pglecmcfn(c, F) and pglecmcfn2pglecmn(c, F). The
numbering would have been slightly different if the projections pglecmcf2pglecm(c, F) and
pglecm2pglecmn would have been used.

PGLEcmcf

main:

0 Linit;

1 open file;

2 stdio|read();

3 test();

4 stdio|write(txt);

5 close file;

6 test(){;

7 instr;

8 };

stdio:

0 ##Lfoo;

1 read(){;
2 read;

3 info;

4 here;

5 };
6 Lfoo;

7 write(str){;
8 write;

9 str;

10 here;

11 }

PGLEcm

0 L0;

1 open file;

2 stdio-read();

3 test();

4 stdio-write(txt);

5 close file;

6 test(){;

7 instr;

8 };

9 ##L1;

10 stdio-read(){;

11 read;

12 info;

13 here;

14 };

15 L1;

16 stdio-write(str){;

17 write;

18 str;

19 here;

20 }

PGLEcmcfn

0:

0 L0;

1 open file;

2 c1|m0();

3 m1();

4 c1|m1(txt);

5 close file;

6 m1(){;

7 instr;

8 };

1:

0 ##L2;

1 m0(){;
2 read;

3 info;

4 here;

5 };
6 L2;

7 m1(str){;
8 write;

9 str;

10 here;

11 }

PGLEcmn

0 L0;

1 open file;

2 m3();

3 m1();

4 m4(txt);

5 close file;

6 m1(){;

7 instr;

8 };

9 ##L5;

10 m3(){;

11 read;

12 info;

13 here;

14 };

15 L5;

16 m4(str){;

17 write;

18 str;

19 here;

20 }

Figure D.1: Example projection of PGLEcmcf onto PGLEcm.
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APPENDIX E

Longer projection example

Th following sections provide four versions of a longer and more realistic program than the one
shown in Appendix D. The PGLEcmcf version of the program consist of two files. The used
basic instruction set is MSP, a language that is introduced in [Die04] and shortly addressed in
Section 1.2.1.
The first file, named geom, is the main program component. It provides two operations

on a geometrical object, namely a cuboid c. The second file, math, provides the three basic
mathematical operations of addition, subtraction and multiplication. This file can be regarded
as a very small library. One of the methods the math library provides is called by geom.
Note that the program uses labels to handle exceptions. The return values of the methods

are assigned the focus that. The focus result points to a boolean literal that contains the value
true if a method returned normally and false if an exception occurred.
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E.1 PGLEcmcf.msp

geom math
cuboid−volume ( c ){ ;

r e s u l t = i s−cuboid ( c ) ;
+ r e s u l t == f a l s e { ;

##Lcuboid−volume−end ;
} ;
that = math |mul ( c .w, c . h ) ;
that = math |mul ( that , c . d ) ;

Lcuboid−volume−end ;
} ;
cuboid−s u r f a c e ( c ){ ;

r e s u l t = i s−cuboid ( c ) ;
+ r e s u l t == f a l s e { ;

##Lcuboid−sur face−end ;
} ;
tmp1 = math |mul ( c .w, c . h ) ;
tmp2 = math |mul ( c .w, c . d ) ;
that = math |mul ( c . h , c . d ) ;
i n c r that tmp1 ;
i n c r that tmp2 ;
that = math |mul ( that , 2 ) ;

Lcuboid−sur face−end ;
} ;
i s−cuboid ( c ){ ;

that = f a l s e ;
− c ? { ;

##Lis−cuboid−end ;
} ;
− c/w { ;

##Lis−cuboid−end ;
} ;
− c/w? in t { ;

##Lis−cuboid−end ;
} ;
− c/h { ;

##Lis−cuboid−end ;
} ;
− c/h? i n t { ;

##Lis−cuboid−end ;
} ;
− c/d { ;

##Lis−cuboid−end ;
} ;
− c/d? i n t { ;

##Lis−cuboid−end ;
} ;
that = true ;

Lis−cuboid−end ;
}

add (n1 , n2 ){ ;
r e s u l t = f a l s e ;
that = n1 ;
+ in c r that n2 { ;

r e s u l t = true ;
} ;

} ;
sub (n1 , n2 ){ ;

r e s u l t = f a l s e ;
that = n1 ;
+ decr that n2 { ;

r e s u l t = true ;
} ;

} ;
mul (n1 , n2 ){ ;

r e s u l t = f a l s e ;
that = 0 ;
− n1 == 0 { ;

− decr n1 { ;
##Lmul−end ;

} ;
that = mul (n1 , n2 ) ;
− i n c r that n2 { ;

##Lmul−end ;
} ;

} ;
r e s u l t = true ;

Lmul−end ;
}
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E.2 PGLEcmcfn.msp

One may notice that the labels and method numbers in math are not in the order of their first
occurrence. This is because the file geom is parsed first by the Toolset. Thus the method mul,
which is referenced in geom, is assigned a number before the remaining methods in math will be
parsed.

0 1
m0( c ){ ;

r e s u l t = m1( c ) ;
+ r e s u l t == f a l s e { ;

##L2 ;
} ;
that = c1 |m0( c .w, c . h ) ;
that = c1 |m0( that , c . d ) ;

L2 ;
} ;
m3( c ){ ;

r e s u l t = m1( c ) ;
+ r e s u l t == f a l s e { ;

##L4 ;
} ;
tmp1 = c1 |m0( c .w, c . h ) ;
tmp2 = c1 |m0( c .w, c . d ) ;
that = c1 |m0( c . h , c . d ) ;
i n c r that tmp1 ;
i n c r that tmp2 ;
that = c1 |m0( that , 2 ) ;

L4 ;
} ;
m1( c ){ ;

that = f a l s e ;
− c ? { ;

##L5 ;
} ;
− c/w { ;

##L5 ;
} ;
− c/w? in t { ;

##L5 ;
} ;
− c/h { ;

##L5 ;
} ;
− c/h? i n t { ;

##L5 ;
} ;
− c/d { ;

##L5 ;
} ;
− c/d? i n t { ;

##L5 ;
} ;
that = true ;

L5 ;
} ;

c1 |m1(n1 , n2 ){ ;
r e s u l t = f a l s e ;
that = n1 ;
+ in c r that n2 { ;

r e s u l t = true ;
} ;

} ;
c1 |m2(n1 , n2 ){ ;

r e s u l t = f a l s e ;
that = n1 ;
+ decr that n2 { ;

r e s u l t = true ;
} ;

} ;
c1 |m0(n1 , n2 ){ ;

r e s u l t = f a l s e ;
that = 0 ;
− n1 == 0 { ;

− decr n1 { ;
##L1 | 3 ;

} ;
that = c1 |m0(n1 , n2 ) ;
− i n c r that n2 { ;

##L1 | 3 ;
} ;

} ;
r e s u l t = true ;

c1 |L3 ;
} ;
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E.3 PGLEcm.msp

In PGLEcm the file geom and math are aggregated into a single program component.

geom geom (cont’d)
cuboid−−volume ( c ){ ;

r e s u l t = i s−−cuboid ( c ) ;
+ r e s u l t == f a l s e { ;

##L0 ;
} ;
that = math−mul ( c .w, c . h ) ;
that = math−mul ( that , c . d ) ;

L0 ;
} ;
cuboid−−s u r f a c e ( c ){ ;

r e s u l t = i s−−cuboid ( c ) ;
+ r e s u l t == f a l s e { ;

##L1 ;
} ;
tmp1 = math−mul ( c .w, c . h ) ;
tmp2 = math−mul ( c .w, c . d ) ;
that = math−mul ( c . h , c . d ) ;
i n c r that tmp1 ;
i n c r that tmp2 ;
that = math−mul ( that , 2 ) ;

L1 ;
} ;
i s−−cuboid ( c ){ ;

that = f a l s e ;
− c ? { ;

##L2 ;
} ;
− c/w { ;

##L2 ;
} ;
− c/w? in t { ;

##L2 ;
} ;
− c/h { ;

##L2 ;
} ;
− c/h? i n t { ;

##L2 ;
} ;
− c/d { ;

##L2 ;
} ;
− c/d? i n t { ;

##L2 ;
} ;
that = true ;

L2 ;
} ;

math−add (n1 , n2 ){ ;
r e s u l t = f a l s e ;
that = n1 ;
+ in c r that n2 { ;

r e s u l t = true ;
} ;

} ;
math−sub (n1 , n2 ){ ;

r e s u l t = f a l s e ;
that = n1 ;
+ decr that n2 { ;

r e s u l t = true ;
} ;

} ;
math−mul (n1 , n2 ){ ;

r e s u l t = f a l s e ;
that = 0 ;
− n1 == 0 { ;

− decr n1 { ;
##L3 ;

} ;
that = math−mul (n1 , n2 ) ;
− i n c r that n2 { ;

##L3 ;
} ;

} ;
r e s u l t = true ;

L3 ;
}
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E.4 PGLEcmn.msp

Note that this version of the program was created through the projection of the PGLEcm onto
PGLEcmn. If the PGLEcmcfn version were to be projected onto PGLEcmn, the label and
method numbers would have been slightly different.

geom geom (cont’d)
m0( c ){ ;

r e s u l t = m1( c ) ;
+ r e s u l t == f a l s e { ;

##L0 ;
} ;
that = m2( c .w, c . h ) ;
that = m2( that , c . d ) ;

L0 ;
} ;
m3( c ){ ;

r e s u l t = m1( c ) ;
+ r e s u l t == f a l s e { ;

##L1 ;
} ;
tmp1 = m2( c .w, c . h ) ;
tmp2 = m2( c .w, c . d ) ;
that = m2( c . h , c . d ) ;
i n c r that tmp1 ;
i n c r that tmp2 ;
that = m2( that , 2 ) ;

L1 ;
} ;
m1( c ){ ;

that = f a l s e ;
− c ? { ;

##L2 ;
} ;
− c/w { ;

##L2 ;
} ;
− c/w? in t { ;

##L2 ;
} ;
− c/h { ;

##L2 ;
} ;
− c/h? i n t { ;

##L2 ;
} ;
− c/d { ;

##L2 ;
} ;
− c/d? i n t { ;

##L2 ;
} ;
that = true ;

L2 ;
} ;

m4(n1 , n2 ){ ;
r e s u l t = f a l s e ;
that = n1 ;
+ in c r that n2 { ;

r e s u l t = true ;
} ;

} ;
m5(n1 , n2 ){ ;

r e s u l t = f a l s e ;
that = n1 ;
+ decr that n2 { ;

r e s u l t = true ;
} ;

} ;
m2(n1 , n2 ){ ;

r e s u l t = f a l s e ;
that = 0 ;
− n1 == 0 { ;

− decr n1 { ;
##L3 ;

} ;
that = m2(n1 , n2 ) ;
− i n c r that n2 { ;

##L3 ;
} ;

} ;
r e s u l t = true ;

L3 ;
}
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