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Abstract

The program algebra toolset contains several projections and embeddings between instruction
sets. A thesis by Ruben Geerlings[1] introduces a new projection from a subset of Ruby. A
projection from a more complex high-level language like Ruby requires a complex parser. This
paper introduces an alternative method for the creation of projections using traditional compiler
construction techniques. Additionaly, the projections from the Ruby subsets are implemented
using these techniques.
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CHAPTER 1

Introduction

The purpose of this paper is twofold. It adds support for a new projection to the PGA Toolset1

and discusses an alternate technique for implementing these projections. The projection is based
on the work done by Ruben Geerlings[1] whose thesis describes a projection of a subset of Ruby[6]
to program algebra. This paper will show that for high-level languages the techniques I use here
are better suited than the ones used for the relatively easy to parse languages used in the toolset
so far.

1.1 Program algebra and Ruby

In the PGA hierarchy of primitive instruction sets build on one another, any valid program in one
of the instruction sets can be projected down the hierarchy to the least complex instruction set
PGLA[2]. Aside from primitive instruction sets which represent the logic and flow of a program,
PGA also has basic instruction sets. Basic instruction sets represent operations on resources
within a computer.

The basic instruction set MPP2 and its family allow an abstracted and object-based view of
system memory. This is exceedingly well suited for the projection of object oriented concepts.

Ruben Geerlings’ thesis added five new languages (or instruction sets) to the hierarchy, an
intermediate language between the Ruby subset and existing instruction sets and four subsets of
Ruby, where each subset of Ruby improves the previous one with new features:

IPL The Intermediate Projection Language (a basic instruction set) was created to provide
the features missing from the PGA toolset at the time. It provided features such as the
returning goto and variable goto. IPL was built to project to PGLEcw3 (see figure 1.1).
IPL, and its replacement PGLEcrv will be discussed in section 2.1.1.

RC1 Ruby Core One is the first subset of Ruby. It is the most basic in that it supports only
the basic features of object-oriented programming. Section 2.4 discusses the projection for
RC1.

RC2 Ruby Core Two builds on RC1 by adding support for different kinds of methods. See
section 2.5 for more details.

RC3 Ruby Core Three adds class variables, a feature similar to static properties in languages
like Java and C++. Section 2.6 goes into more detail.

RC4 Ruby Core Four improves the projection by adding support for integers. This is elaborated
on in section 2.7.

1 Program Algebra[2] Toolset[5], see: http://www.science.uva.nl/research/prog/projects/pga/toolset
2Molecular Programming Primitives[3]
3A program algebra instruction set supporting, amongst other things if-then-else and while blocks
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RC1 - RC4

IPL

PGLEcw

PGLEcm

PGLEcr

PGLEc

PGLE

PGLDg

PGLD

Figure 1.1: Partial PGA hierarchy with Ruby support, old situation

1.2 Projecting

Ruby is a high-level scripting language. These languages are known for the ease at which humans
can work with them. This ease of use often comes at a price: easier programming languages are
generally harder to parse for a computer. The projections currently in the PGA toolset are all
using simple instructions easily parsable using regular expressions. The Ruby subsets used in
this thesis are not as easily parsed. Several language constructs such as nested if-then-else blocks
make Ruby a more complex language than regular expressions are capable of parsing.

Parsing computer languages, a task compilers are built for is one of the oldest and most
mature subjects in computer science[7]. And since projecting a language such as Ruby Core One
to program algebra is compiling, using compiler techniques to do this seems appropriate.

Many tools exist to help create compilers. These so-called ‘compiler-compilers’ assist in the
creation of various parts of a compiler. Most tools focus on the front-end tasks of the compiler:
lexical analysis, syntactic analysis and semantic analysis. Some tools perform only one task,
for example the well-known lex only performs lexical analysis while its partner program yacc
performs syntactic analysis. The tool I decided to use, Antlr4, performs all three of the tasks.

Most ‘compiler compilers’ take input from a file describing the grammar of the language and
turn it into code in a specific language which when run will parse the described language. Antlr

allows the user to select a variety of languages for output. Unfortunately, a version capable of
emitting Ruby parser code is not yet available. Therefore the implementation of the projection
will be done in the only scripting language supported5: Python6.

A feature which makes Antlr eminently suitable for the projection of Ruby Core One
through Four is that it supports grammar inheritance. Grammar inheritance allows us to easily
add new features to an existing grammar. This is exactly what the Ruby Cores do to their
preceding versions.

4http://antlr.org and see [8]
5The current stable version 2.7.x supports Java, C++ C# and Python
6http://www.python.org
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CHAPTER 2

Improving the projection

The details of the projection of Ruby to PGA are explained in [1] but as it is essential to this
program, and several changes have been made, I will list it here in its entirety. Because the
original projection was made in 2003 and several new instruction sets have been developed since
that time, I have updated the projection to make use of the more useful features of the new
instruction sets.

2.1 The projection language

The Ruby subsets need a projection language to project to, this section discusses the old projec-
tion language IPL and its replacement PGLEcrv.

2.1.1 IPL

The IPL was made by Ruben Geerlings to serve as glue between the projections of Ruby and
PGLEcw. The following instructions were provided by the IPL:

Variable Goto A jump instruction where the destination label is contained within a variable.

Returning Goto Similar to the gosub instruction in Basic, the returning goto jumps to a
certain label and after it encounters a return instruction the program will jump back to
the instruction following the original jump instruction.

Return A simple statement that jumps to the instruction following the last executed returning

goto instruction.

Variable Returning Goto A combination of the variable goto and the returning goto, this
allows one to jump to a variable label and return once it has been completed.

In addition to the instructions described here, IPL also added support for string labels as opposed
to the conventional integer labels used in mode instruction sets. I have removed this support for
string labels in the new projection as it was used inconsistently in the old one.

2.1.2 PGLEcrv

Since the publication of [1] PGLEcr has been introduced. PGLEcr already added support for
the returning goto and return instructions. PGLEcr is not built upon PGLEcw which contains
the while instruction needed in a few places in the old projection, but since a while loop is easily
recreated using a jump instruction combined with an if-then-else block PGLEcr seems a better
destination for our projection.

This still leaves out the variable goto and variable returning goto instructions. Since these
are not available in the toolkit, I made a new instruction set PGLEcrv built upon PGLEcr
introducing these two instructions. The details of the projection to PGLEcr are in Appendix A.
Figure 2.1 shows the new situation.
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PGLEcrv

PGLEcr

RC1 - RC4

PGLEcm

PGLEc

PGLE

PGLEcw

PGLDg

PGLD

Figure 2.1: Partial PGA hierarchy with Ruby support

2.2 MPP and MSP

MPP1 gives us the ability to create complex data structures. These data structures are usually
represented as molecules floating in a liquid. In this section I will give a succinct introduction to
the terminology of MPP and I will introduce several new basic instruction sets building upon it.

2.2.1 Terminology

MPP, the first of the molecules-in-fluid instruction sets introduces several terms used thoughout
this chapter.

fluid The fluid contains all molecules created. This could be seen as the entire memory of a
system.

atom A single object, it can contain any number of fields. In graphs atoms are represented by
black dots.

field A named ‘property’ of an atom, which can point to any atom. In graphs fields are repre-
sented by named arrows.

molecule A group of atoms and their connections (through fields).

focus Foci are pointers to atoms. In other words, foci are the ‘global’ variables. A focus in
graphs is represented by a named curly arrow.

Figure 2.2 is an example fluid with a single molecule, one focus x and two atoms with various
fields.

2.2.2 MPPV

MPP with values adds support for booleans and integers to MPP, a field can now no longer just
point to atoms but also to typed values. The original projection used an extension to MPPV
called MPPVs which added a third type: strings. However MPPVs has never been implemented
and we now have access to even better alternatives.

1Molecular Programming Primitives
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x

•
b

a

•

b

Figure 2.2: A simple fluid

2.2.3 HMPPV

High-level MPPV[4] is a major addition to the MPP family. First of all it adds the string
type, and more importantly it adds – as its name suggests – higher level instructions for the
manipulation of the fluid. This can shorten the projection somewhat as programming with MPP
occasionally requires several instructions to do a simple task. Besides these additions HMPPV
adds support for garbage collection2.

2.2.4 MSP

Molecular Scripting Primitives[4] adds support for the manipulation of strings and integers in-
troduced in HMPPV and MPPV such as addition and subtraction for integers, concatenation for
strings and conversions between the two. Since Ruby Core Four introduces integers, the integer
operations are quite useful. Therefore the new projection uses MSP as the destination basic
instruction set.

2.3 Large changes

Since some changes have had an effect on a large part of the original projection. This section
contains several of the drastic changes that have been made to the projection.

2.3.1 PGLEcr and the stackframe

PGLEcr introduces the returning goto. This instruction is used extensively in the projection.
The projection of PGLEcr to PGLEc is implemented using a stack with MPP, specifically the
molecule pointed to by focus stackframe. This implementation is exactly the same as the one
described for IPL. Unfortunately in the original projection the focus stackframe is used for
other purposes as well. It contains a field pointing to the current object (self ) and the variables
in the current scope. The problem this introduces is that because of PGLEcr the stackframe

focus is reserved and cannot be used in languages built on top of PGLEcr. A stackframe focus
used in PGLEcrv would behave completely different once it had been projected to a language
above PGLEcr (like PGLEc) since the projection makes use of the focus.

A solution to the problem is to create an alternative focus to a stack-like molecule behaving
similarly to the focus stackframe. I have named this focus locals. The end result is that the
lv3 and self fields both moved to the locals stack and that the stack must be manipulated
manually when scope changes.

2.3.2 Movement of several foci to fields

MPPV defines the boolean foci true and false. The original projections uses these foci as well
which creates a conflict. To solve this conflict I have moved all constants as fields to the focus
constants. Similarly I moved all classes out of the local ‘scope’ to the focus classes.

2The removal of atoms no longer referenced.
3local variables
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2.3.3 Methods as arguments

In the original projection a method call used the foci x and arg1...argN to specify its object
and arguments respectively. This made it impossible for method calls to appear as arguments in
another method call as the first would overwrite the arguments and x of the other before it could
be called. I solved this by using a similar stack as the newly introduced locals stack(Section
2.3.1) called callstack. This stack contains the fields x and arg1...argN. The small but signifi-
cant difference between locals and stackframe is the moment during the method call at which
the stack is altered, this makes it possible for arguments to a method to still access variables
local to the current method.

2.4 Ruby Core One

This section describes the updated version of the projection of Ruby Core One to PGLEcrv.
This projection is the biggest of the fours since it introduces all of the object oriented concepts
in Ruby and the Ruby syntax itself.

2.4.1 Notation

The notation for this projection and the others is the same as it is in [1]. Here is a short list of
the projection functions:

ψ(X) Projects the Ruby instructions X to PGLEcrv.

ψx1,...,xn
(X) Projects the Ruby instructions X to PGLEcrv, with the instructions restricted to

a certain context.

ϕx(a1, ..., an) A PGLEcrv macro named x. This is only used for clarity, whenever a macro is
encountered in the projection, the contents of the macro can be substituted in place with
the arguments of the macro substituted as well.

A context restricts the allowed instructions in the program. This is used to ensure that
language constructs like return statements are only placed within methods.

2.4.2 Programs

We start with the complete projection function rc2pglecrv projecting a Ruby program to a
PGLEcrv program. There are no big changes to this function. It has been renamed (the original
name was rc2ipl) and the ϕinit−stackframe macro is replaced by ϕinit−stacks.

rc2pglecrv(u1; ...;uk) =
ϕinit−classes;
ϕinit−methods;
ϕinit−stacks;
ψmain(u1); ...;ψmain(uk)

Macros

The ϕinit−classes macro initializes the basic class structure. It also initializes the constants
main, true, false and nil. Figure 2.3 shows a part4 of the fluid after the macro has run. There
are no real changes to the projection except for the movement of the molecules to fields under a
new focus (as per section 2.3.2).

ϕinit−classes =
classes = new;

4Several atoms were removed for clarity
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classes constants

•

Class

TrueClass

Object

•

class

•
class

•
main

true

•

super

•
class

class

•
class

Figure 2.3: Part of the fluid after the ϕinit−classes macro has run.

classes.+Object = new;

classes.+Class = new;

classes.Class.+super = classes.Object;

classes.Class.+class = classes.Class;

classes.Object.+class = classes.Class;

classes.+TrueClass = new;

classes.TrueClass.+super = classes.Object;

classes.TrueClass.+class = classes.Class;

classes.+FalseClass = new;

classes.FalseClass.+super = classes.Object;

classes.FalseClass.+class = classes.Class;

classes.+NilClass = new;

classes.NilClass.+super = classes.Object;

classes.NilClass.+class = classes.Class;

constants = new;

constants.+true = new;

constants.true.+class = classes.TrueClass;

constants.+false = new;

constants.false.+class = classes.FalseClass;

constants.+nil = new;

constants.nil.+class = classes.NilClass;

constants.+main = new;

constants.main.+class = classes.Object

The ϕinit−begin and ϕinit−end macros are used for the methods of the classes initialized in the
ϕinit−classes macro. They are placed around the body of the method, as you will see on page 12.

This was the only place in which string labels were used in the original projection, and since
the ϕim−begin macro is only used for a few methods (only those in the ϕinit−methods macro) they
were discarded in favor of numerical labels. Here i and j are two unused labels, different for
every macro invocation.

ϕim−begin(C,m) =
-classes.C /im {; classes.C.+im = new; };
classes.C.im.+m = new;

classes.C.im.m.+label:int = i ;

11



##Lj ; Li

ϕim−end =
R; Lj

Since two new stacks have been added to the projection, we need a way to manipulate them,
these four macros do just that.

ϕlocals−up =
locals.+next = new; locals.next.+prev = locals; locals = locals.next

ϕlocals−down =
locals = locals.prev; locals.-next

ϕcallstack−up =
callstack.+next = new; callstack.next.+prev = callstack

callstack = callstack.next;

ϕcallstack−down =
callstack = callstack.prev; callstack.-next

The ϕinit−methods macro initializes several methods for the base classes of the system. The
Class.new method is interesting in that it reuses the existing callstack instead of adding a
new one to the stack. This allows the method to call the initialize method on the instantiated
object with the same arguments it was called with. The biggest change over the old projection
is probably the addition of the != method. The != method calls the == method on the object
and inverses the result, this causes != to automatically work correctly when the == method is
overridden.

ϕinit−methods =
ϕim−begin(Object, initialize);

ϕim−end;

ϕim−begin(Object, class);

result = self.class;

ϕim−end;

ϕim−begin(Object, ==);

+self == callstack.arg1{; result = constants.true; }{;
result = constants.false; };

ϕim−end;

ϕim−begin(Object, !=);

ϕlocals−up; locals.lv.+arg1 = callstack.arg1;

ψ(self == arg1);
+result == constants.true {; result = constants.false; }{;
result = constants.true; };
ϕlocals−down;

ϕim−end;

ϕim−begin(Class, initialize);

self.+super = callstack.arg1;

ϕim−end;

ϕim−begin(Class, superclass);

+self/super{; result = self.super; }{; result = constants.nil; };
ϕim−end;

ϕim−begin(Class, new);

callstack.x = new; callstack.x.+class = self;

12



ϕsearch−instance−method(initialize);

self = callstack.x; label = method.label; R##L[label];

result = callstack.x;

ϕim−end

The ϕinit−stacks macro replaces the ϕinit−stackframe macro of the old projection since the
stackframe is now used implicitly5, while there are two new stacks which need initializing.
ϕinit−stacks =

locals = new; callstack = new;

locals.+self = constants.main; locals.+lv = new

2.4.3 Classes

The projection for a class definition is quite simple. First it checks if the class we are trying to
declare already exists6. If the class does not exist, we create a new Class object (classes in Ruby
are instances of the Class class) and assign it to the appropriate field. When that is complete,
open a new scope and execute the statements inside the class declaration. In this projection C

is the classname, P is the name of the parent-class and u1 through uk are the Ruby instructions
inside the class definition.

The projection for a class definition has not changed much compared to the original projec-
tion. The only real change is the check whether a parent class exists. This check is not necessary
for the execution of well-written code, but should one try to inherit from a non-existant class
it could be possible the code would attempt to inherit from a local variable. The compiler (see
chapter 3) will automatically set the parent to Object if no parent is explicitly defined, therefore
in the new projection P is no longer optional.

ψmain(classC < P ;u1; ...uk; end) =
-classes/C {; -classes/P {; !; }; ψ(Class.new(P )); };
ϕlocals−up;

locals.+self = classes.C ; locals.+lv = new;

ψclass(u1);...;ψclass(uk);
ϕlocals−down

2.4.4 Methods

Method Definitions

Method definitions can occur inside the global scope and in class definitions. The first part checks
which of the two cases is true at the moment. The method declaration then goes on to add a new
method entry to the respective object with an integer value to the label the method body starts
at. This is followed by a jump past the method body (a declaration obviously shouldn’t execute
the method body). The method body itself increases the scope and assigns all the arguments to
the associated local variables. Before the method returns back to the caller the scope is lowered
again. In this projection i and j are two unused labels.

ψclass,main (def m(p1, ..., pn);u1; ...;uk; end) =
+locals.self == constants.main {; cl = classes.Object; }{;
cl = locals.self; };
-cl/im {; cl.+im = new; };
cl.im.+m = new;

cl.im.m.+label:int = i ;

5The stackframe focus is introduced in the projection from PGLEcr to PGLEc
6Ruby allows one to reopen a class definition to add additional functionality.
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##Lj ; Li ;

ϕlocals−up;

locals.+lv = new; locals.+self = self;

locals.lv.p1 = callstack.arg1;...;locals.lv.pn = callstack.argn;

ψmethod(u1);...;ψmethod(uk);
ϕlocals−down;

R; Lj

Return Statement

The return statement, which makes the current method return the value in expr can also be
invoked without an expression in which case the function should return the value nil. Similarly
to the parent-class in the class declaration, the semantic analysis phase will automatically insert
the implicit nil value.

ψmethod(return expr) =
ψ(expr);
ϕlocals−down;

R

Method Call Macros

The method call projection makes use of a pair of macros to find the correct method to call. The
ϕsearch−instance−method(m) macro searches the class of the current object and its ancestors for
method m. To do that, it invokes the ϕsearch−supers macro, which will be explained next.

ϕsearch−instance−method(m) =
ϕsearch−supers(callstack.x.class, im,m);
+found == false {; !; }{; method = res; }

The ϕsearch−supers macro searches an atom x and all its ancestors7 for an atom with a field
s which points to an atom with a field i. This is a general method for finding things in the
class tree. The method call projection uses it to search the class tree for the first ancestor which
supports the method it wants to call. Since we can no longer use the while-loop construction of
PGLEcw, there was a need to use an if-then-else statement in combination with a jump. In the
projection a is an unused label, different for every macro invocation.

ϕsearch−supers(x, s, i) =
loop = constants.true; found = constants.false;

sp = x ; La ;

+loop == constants.true {;
+sp/s {;

br = sp.s ;

+br/i {;
loop = constants.false; found = constants.true; res = br.i ;

};
};
+sp/super{;

sp = sp.super;

}{;
loop = constants.false;

};
##La ;

}

7atoms pointed to by the super field
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Method Calls

When a method call is encountered, first the object on which it is executed is evaluated. Again,
the compiler implicitly adds self as the object if none is given. As stated in section 2.3.3, the
callstack focus is now used to store the resulting object as well as the evaluated arguments.
One should also note that since the callstack stack has to be increased to store this data at
the beginning of the method call it is not possible to increase the locals stack as the evaluation
of the arguments quite possibly need to use local variables which would otherwise no longer be
available. Once the callstack structure has been filled, the projection searches for the correct
mathod to call using the ϕsearch−instance−method(m) macro. All that is left is to actually jump
to the found label using the returning goto instruction.

ψ(exp0.m(exp1, ..., expn)) =
ψ(exp0);
ϕcallstack−up;

callstack.+x = result;

ψ(exp1); callstack.+arg1 = result;...;ψ(expn); callstack.+argn = result;

ϕsearch−instance−method(m);
self = callstack.x; result = constants.nil; label = method.label;

R##L[label];

ϕcallstack−down

2.4.5 Expressions

Most of the projections in this section are relatively simple and should speak for themselves.

Local Variables

The Ruby interpreter uses heuristics to determine whether an identifier is a class identifier or a
variable identifier depending on capitalization and the current scope. I have simplified this in
the new projection: if an identifier is encountered, and if there is a class with the same name, it
is used otherwise the local scope is searched for a variable.

ψ(x) =
+classes/x {;

result = classes.x ;

}{;
-locals.lv/x {;

!;

}{;
result = locals.lv.x ;

};
}

Instance Variables

Instance variables are even simpler than local variables. Since classes can’t be prefixed by an @
character there is no need to search for possible matching classes. A small change in behaviour
between local and instance variables is how non-existant identifiers are handled. Undefined in-
stance variables have the value nil while undefines local variables cause an error.

ψ(@x) =
-locals.self/iv {; result = constants.nil; }{;

-locals.self.iv/x {; result = constants.nil; }{;
result = locals.self.iv.x ;
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};
}

Constants

The Ruby subsets have three real constants, true, false and nil. Because self changes de-
pending on where it is evaluated, it technically isn’t a constant. However since the programmer
can not change self it does have similar properties. In the original projection, declared classes
were also constants, in essence every class had its own focus in the fluid. This could lead to
dangerous situations: a class called result could destroy the validity of an entire program.

ψ(self) =result = locals.self

ψ(true) =result = constants.true

ψ(false) =result = constants.false

ψ(nil) =result = constants.nil

Assignments

In expressions, assignments are treated differently than other expressions since assigning to a
variable can create a new identifier, while using a previously undefined identifier in any other
situation (besides the defined? test discussed next) causes an error.

ψ(x = expr) =
ψ(expr);
locals.lv.+x ;

locals.lv.x = result

The assignment to an instance variable is not really any different than the assignment to nor-
mal variable, except for the place the variable is added to of course.

ψ(@x = expr) =
ψ(expr);
-locals.self/iv {; locals.self.+iv = new; };
locals.self.iv.+x ;

locals.self.iv.x = result

Tests

The defined? tests have changed somewhat: the original projection returned boolean values
depending on the existence of the variable. However, in Ruby defined? returns nil when the
variable doesn’t exist and a string containing its description if it does exist. Unfortunately, our
Ruby subset doesn’t support strings. To maintain closer compatibility, the new projection re-
turns true and nil for existance and non-existance respectively.

ψ(defined? x) =
-locals.lv/x {; result = constants.nil; }{; result = constants.true };

ψ(defined? @x) =
-locals.self/iv {; result = constants.nil; }{;

-locals.self.iv/x {; result = constants.nil; }{; result = constants.true };
}
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2.4.6 Conditional Statements

Macro

The simple ϕnil→false macro changes the latest result to false if it is nil otherwise it does
nothing. Since false and nil are the only values which should evaluate to false, this macro
makes it easy to test for falseness in the conditional statements.

ϕnil→false =
+result == constants.nil{ result = constants.false; }

If-Then-Else Statement

The if-then-else is a well known construct available in practically every imperative language.
The compiler adds an implicit else block for any if-then statement it encounters. Therefore a
second projection is necessary no longer.

ψX(if expr;u1; ...;uk; else;uk+1; ...;ul; end; ) =
ψ(expr);ϕnil→false;

-result == constants.false {;
ψX(u1); ...;ψX(uk);

}{;
ψX(uk+1); ...;ψX(ul);

}

While Statement

In the original projection, the while loop utilized the while instruction of PGLEcw which is no
longer available to us. Fortunately it turned out the projection is actually smaller when it uses
an if instruction combined with a jump as it requires only a single place in which to evaluate
expr. In this projection j is an unused label.

ψX(while expr;u1; ...;uk; end; ) =
Lj ;

ψ(expr);ϕnil→false;

-result == constants.false {;
ψX(u1); ...;ψX(uk);
##Lj ;

}

2.5 Ruby Core Two

Ruby Core Two extends the projection with support for singleton methods and class methods.

Singleton Methods A method which exist on one object, it is not associated with a class like
normal methods.

Class method Is a method defined on a class itself. It can be compared to the static methods
in Java and C++.

Basically the two new method types are one and the same. Both are a method on an object
which results from an expression. In the case of class methods that object is the instance of the
Class instance for class the method is defined on. In the case of singleton methods, the object is
any other sort of object.
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2.5.1 Methods

Singleton/Class Method Definitions

The declaration of a class or singleton method is done quite similarly to ordinary (instance)
method declarations, except the expr is evaluated first and the method is declared on that ob-
ject instead of self or main. In this projection i and j are unused labels.

ψclass,main(def expr.m(p1, ..., pn);u1; ...;uk; end) =
ψ(expr);
-result/sm { result.+sm = new; };
result.sm.+m = new;

result.sm.m.+label:int = j;

##Li; Lj;

ϕlocals−up;

locals.+lv = new; locals.+self = self;

locals.lv.p1 = callstack.arg1;...;locals.lv.pn = callstack.argn;

ψmethod(u1);...;ψmethod(uk);
ϕlocals−down;

R; Li

Method Call Macros

When a method call is made in RC2, we now have to search for all three types of methods.
The ϕsearch−method(m) macro searches for the new method types using the ϕsearch−supers macro
defined in section 2.4.4. If no method is found, it searches for ordinary instance method using
the ϕsearch−instance−method(m) macro.

ϕsearch−method(m) =
ϕsearch−supers(callstack.x, sm,m);
+found == constants.false {;

ϕsearch−instance−method(m);
}{;

method = res;

}

Method Calls

Since the method for a method call is found using a single macro, the only thing that has to
change in the new method call projection for RC2 is the name of the macro:

ψ(exp0.m(exp1, ..., expn)) =
ψ(exp0);
ϕcallstack−up;

callstack.+x = result;

ψ(exp1); callstack.+arg1 = result;...;ψ(expn); callstack.+argn = result;

ϕsearch−method(m);
self = callstack.x; result = constants.nil; label = method.label;

R##L[label];

ϕcallstack−down
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2.6 Ruby Core Three

Ruby Core Three has a single additional feature over Ruby Core Two, namely class variables.
Class variables can be compared to static variables in classes from languages such as C++ and
Java. Since classes themselves are instances too, using instance variables8 in class methods gives
us functionality close to static variable. However these ‘fake’ class variables are only available in
class methods. Class variables are accessible in any method of the class in question.

2.6.1 Expressions

Macro

The ϕfind−class macro gives us the class object for the current self. Should the current object
already be an instance of the Class class (we’re in a class declaration or class method) the macro
just gives self. This way, no matter the location in the code, we always get the current object
class variables should exist on.

ϕfind−class =
cl = locals.self.class;

+cl == classes.Class {; cl = locals.self; }

Variables

When a class variable identifier is encountered, the ϕsearch−supers macro is utilized to find the
class variable in any of the ancestor of the current class. Should the variable not be found, an
error occurs, otherwise the first variable that is found is returned.

ψ(@@x) =
ϕfind−class;

ϕsearch−supers(cl, cv, x);
+found == constants.false {; !; }{; result = res; }

Assignments

The assignment to class variables is an interesting case: as with ordinary class variables (not
assignments) the ancestors are searched for the class variable, if it is not found, it is added to the
current class. However if the class variable is found, the class variable is updated on the class it

was found on.

ψ(@@x = expr) =
ψ(expr);
ϕfind−class;

ϕsearch−supers(cl, cv, x);
+found == constants.false {;

cl.+cv = new; cl.cv.+x = result;

}{;
br.+x ; br.x = result;

}

Tests

The defined? instruction for class variables, behaves similarly to the tests in section 2.4.5. The
only difference is that several classes are searched, and only one of the ancestors needs to have

8A single @ character, as opposed to two for class variables
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it defined.

ψ(defined? x) =
ϕfind−class;

ϕsearch−supers(cl, cv, x);
+found == constants.false {;
result = constants.nil;

}{;
result = constants.true;

}

2.7 Ruby Core Four

Ruby Core Four adds support for integers. While integers could be represented using only classes,
it would be inefficient and very usable. Support for integer literals and operations upon them.
The only supported operations are addition and the equality test9.

2.7.1 Programs

An RC4 program requires additional initialization of the classes and methods which represent
integers.

rc2pglecrv(u1; ...;uk) =
ϕinit−classes;
ϕinit−methods;
ϕinit−stacks;
ϕinit−integer;
ψmain(u1); ...;ψmain(uk)

Macros

The ϕinit−integer macro initializes the Integer and Fixnum classes. The Integer class is the
parent class for all integer types. One of these we (partially10) implement, namely the Fixnum

integer type. This type supports fixed size integers (no arbitrarily large integers). Figure 2.4
shows what an integer value looks like.

ϕinit−integer =
classes.+Integer = new;

classes.Integer.+class = classes.Class;

classes.Integer.+super = classes.Object;

classes.+Fixnum = new;

classes.Fixnum.+class = classes.Class;

classes.Fixnum.+super = classes.Integer;

ϕim−begin(Fixnum,==);
+self.value == callstack.arg1.value {;

result = constants.true;

}{;
result = constants.false;

};
ϕim−end;

ϕim−begin(Fixnum,+);

9Support for the equality test implies support for the inequality test as well
10Many operations are absent as well as negative number support
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Figure 2.4: Fluid containing an integer object Foo

result = new; result.+class = classes.Fixnum; result.+value:int = 0;

incr result.value self.value;

incr result.value callstack.arg1.value;

ϕim−end

2.7.2 Expressions

Literals

Integers are immutable11, therefore when an integer literal int is encountered, a new Fixnum

instance is created.

ψ(int) =
result = new; result.+class = classes.Fixnum; result.+value:int = int

11Every operation generates a new object, values can not be changed.
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CHAPTER 3

Compiling Ruby

As stated in the introduction, I use Antlr for the creation of the Ruby parser. Antlr is a tool
written in Java which generates LL(k)1 parsers. As opposed to other well known tools such as
Yacc which generates LALR2 parsers, the code generated by Antlr is easily readable as it looks
similar to a recursive descent parser written by hand.

Antlr is a full featured tool providing lexical, syntactic and semantic analysis of code. Since
this is all done in a single package, the different parts interact with each other seamlessly. The tool
uses Extended Backus-Naur Form (ENBF) for all three of the tasks. This leads to exceedingly
powerful and readable parsers. As stated in the introduction, Antlr allows grammar inheritance
which enables us to inherit from an existing grammar and extend it in some way which is
exactly what we need for the four subsets. This system of inheritance also greatly increases the
extendability of what I have made. It is quite easy to make a Ruby Core Five with support for
some new language feature by simpy inheriting from the RC4 grammar.

This project was my first experience with Antlr, and as such during the creation of the
parser I made some mistakes. Due to the power Antlr gives the developer and the fact that it
allows one to approach a task from many directions, this was to be expected.

3.1 Lexical analysis

Lexical analysis or lexing is the process of transforming a series of characters into a series of
tokens. Most tools for creating a lexical analyser or lexer allows one to match the input using
a series of regular expressions. Antlr allows the user to use the power of not only regular
expressions but also EBNF, syntactic predicates3 and semantic predicates4. The end result of
this is that an Antlr-built lexer is powerful enough to parse context-sensitive languages, albeit
sometimes with a little difficulty.

To illustrate the workings of the lexer, I will walk through a part of the lexing code for the
Ruby subset lexer. Specifically the part shown in figure 3.1.

Line 1 declares a token rule, in this case IDENTIFER, which matches identifiers such as
variables, class names, method names and literals5.

Line 2-4 specify an option specific to this token-rule, ‘testLiterals’. This options enables the
checking for literals. In the parser (see section 3.2) literals are defined simply by using them as
a string. The lexer checks the associated text to this token, and if it matches one of the literals,
it will automatically change the token type to the literal’s token type.

On line 5 the rule starts (denoted by the colon) and says the first part of the match for this
token must either match an underscore (‘ ’), or the LETTER token (or rule). This shows the

1Left-to-right Leftmost derivation with k tokens lookahead.
2Look Ahead Left-to-right Rightmost derivation
3A method which allows temporary infinite lookahead using backtracking
4Arbitrary piece of code which determines is a path may be chosen
5Literals in this case are words used by the language such as if and true
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01: IDENTIFIER

02: options {

03: testLiterals = true;

04: }

05: : (LETTER|’_’) (LETTER|DIGIT|’_’)*

06: (

07: | ("?"|"!") { $setType(METHOD_IDENTIFIER); }

08: )

09: ;

10:

11: protected

12: LETTER : (’a’..’z’|’A’..’Z’);

13:

14: protected

15: DIGIT : (’0’..’9’);

Figure 3.1: Part of the Ruby Subset Lexer

power of EBNF in the lexer, as rules can also reference to themselves making recursive rules. The
LETTER token is defined later, but suffice to say it matches a single letter of the alphabet. The
last part of line defines a closure of a LETTER, a DIGIT or an underscore. This is a definition
for an identifier as seen in many languages, an underscore or letter followed by zero or more
letters, digits and underscores. But the definition does not stop here...

The parenthesis on line 6 start a subrule, and the first option is empty. Basically this means
that unless the second option (on line 7) is matched6 this subrule can match nothing.

The pipe on line 7 starts the second alternative for the subrule. In our subset (and in Ruby
itself as well) method identifiers may end in either an exclamation point or a question mark.
Therefore on this line it tries to match either character. Following the match is a so-called
semantic action. If either character is matched the code between the curly braces is executed.
Since Antlr can output multiple languages, several macros have been added for common tasks
which are automatically translated to the chosen output language. This particular macro changes
the token type to METHOD IDENTIFIER instead of IDENTIFIER (the name of this rule) since
when an identifier ends in either character it can not be used for anything other than methods.

Line 9 ends the current rule (IDENTIFIER).
Line 11 tells us the following rule is a helper rule, it can be called from other rules but it will

not generate tokens by itself.
Line 12 defines the LETTER helper rule. It matches a single alphabetic character. The ‘..’

operator is used for ranges. Therefore a LETTER is between ‘a’ through ‘z’ inclusive or between
‘A’ through ‘Z’ inclusive.

Line 14-15 contains another helper rule DIGIT which matches a single numerical character.

All in all, the lexical analysis of the Ruby subset was quite easy to implement. The complete
lexer definition which matches all the tokens needed for the four Ruby subsets is around 50 lines.
In the end I decided to use the same lexer for all four of the parsers since while the syntax
changes between every Ruby Core, the lexicon hardly changes.

3.2 Syntactic analysis

Syntactic analysis is often referred to as parsing even though the lexer and the semantic analysis
also do their part in parsing code. The syntactic analyser or parser finds a hierarchical structure
in the token stream provided by the lexer. The parser turns this hierarchical structure into an
abstract syntax tree. The details of the creation of this tree are discussed in section 3.2.3. Like

6By default lexing is greedy
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the lexer, the parser consists of a set of rules. A parser also has a starting rule7 which is obviously
where parsing begins.

An Antlr parser supports the same features as it did in the lexer (EBNF, syntactic and
semantic predicates). To illustrate the workings of parsing in Antlr I will walk through a small
example shown in figure 3.2.

01: program

02: : (statement)* EOF

03: ;

04:

05: statement

06: : ("if" expression "then" (statement)* "else")=> ifthenelse

07: | ifthen

08: | expression

09: ;

10:

11: expression

12: : NUMBER

13: | {foo == True}? methodcall

14: ;

15:

16: ifthen

17: : "if" expression "then"

18: { foo = True } (statement)*

19: { foo = False } "end"

20: ;

21:

22: ifthenelse

23: : "if" expression "then"

24: (statement)* "else" (statement)*

25: "end"

26: ;

27:

28: methodcall

29: : IDENTIFIER LPAREN RPAREN

30: ;

Figure 3.2: Simple parser example

Line 1-3 defines our starting rule. A starting rule is not determined in the grammar, but by
the the way you invoke the parser8. A program consists of zero or more statements followed by
an EOF. EOF is a predefined token found at the end of a token stream.

Line 5 starts the definition of a new rule statement.
Line 6 begins with the first alternative for a statement, a ()=> construct. This is a syntactic

predicate. The parser will try to match what is between the parentheses and should it match, the
ifthenelse rule is tried, otherwise it is skipped. The code between the parantheses tries to match
an if-then-else-end statement up to the else literal to determine what kind of if statement this
is. Since Antlr has finite lookahead (usually no more than 4 tokens) and there are a potentially
unlimited tokens between the if and the else literals, a syntactic predicate is needed.

The second alternative for a statement on line 7 attempts to match the ifthen rule. While
the third alternative rule on line 8 attempts to match an expression.

Line 12 tells us the expression rule can match a NUMBER. Presumably a NUMBER is a
token containing digits. This NUMBER should correspond to a NUMBER rule in the lexer.

7Usually just one, unless you are parsing different things with the same parser.
8every rule becomes a method on your parser object, and you call the starting rule
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Statement Allowed when?

class definition Main context
method definition Main and Class context
return Method context anywhere in stack
if Anywhere
while Anywhere
expression Anywhere
empty statement Anywhere

Table 3.1: Statements and when they are allowed

Line 13 contains a semantic perdicate. The code foo == True9 is executed, and should it
yield True the methodcall rule is tried, otherwise it is not.

On line 17 (excluding the syntactic predicate on line 6) we encounter our first literal. Literals
are automatically added to the list of token types. This allows lexer rules with the ‘testLiterals’
option set to true to look for these literals.

On line 18 and 19 the statement closure is surrounded by two semantic actions setting the
variable foo to True and False respectively. This means that for any statement matched inside
an if-then-end block the foo variable is set to True (unless something else changes it). Thus
when inside an if-then-end block, we are allowed to perform methodcalls.

Lines 22-26 define the if-then-else-end statement. It is essentially the same as the if-then-end
statement with the addition of an else-block and without the semantic actions setting the foo

variable.
Lastly lines 28-30 contain the methodcall rule. We assume IDENTIFIER is a lexer rule

representing a series of alphanumeric characters while LPAREN and RPAREN stand for ‘(’ and
‘)’ respectively.

3.2.1 The Ruby parser

During the creation of the parser for Ruby Core One specifically in the rule matching state-
ments10, I used semantic predicates the check whether a statement was allowed in the current
context. While this seemed to be a neat solution, I did have to maintain a stack maintaining the
current context. This required quite a few semantic actions, making the parser somewhat less
readable. The stack starts with a single value ‘MAIN’ representing the main context, and for
any statement which can contain other statements the context is pushed onto the stack. Even
though it is not technically necessary for while and if statements at this time it can be should a
statement like break11 be implemented. Table 3.1 shows when a statement is allowed.

Probably the hardest part of making a well working parser is the parsing of expressions.
Expressions have many different aspects: the precedence of operators, associativity of operators,
postfix operators like method calls and the various constants. Parsing expressions with LALR
parser tools like yacc or bison is quite easy, Antlr does not have this ease of use in this case.
Without any doubt the expression rules were the most complex to setup correctly even though
since the number of operators in the four Ruby subsets is rather small relatively few rules were
needed. Table 3.2 shows all expressions and their precedence.

To actually implement a parser for expressions using Antlr a parser rule is required for
every group of operators with the same precedence. The expression rule starts with the rule
corresponding to the lowest precedence, in this case the assignment operator. The format for
binary operators12 usually takes one of two forms as displayed in figure 3.3. These rules create
very different trees (Section 3.2.3).

9In Python True and False start with an uppercase letter
10There are 7 different statements: class definition, method definition, return, if, while, expression and the

empty statement.
11terminates execution of the current loop and continues at the first statement following it.
12operators with two operands like +, × and ==
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Type Examples

defined test defined? @foo

constants true self

parenthesized expressions (mymethod() == true)

variables myvar

dot operator foo.bar

method calls foo() foo.bar(baz, ban)

addition (RC4 only) foo + 42

tests foo == bar foo != false

assignment @bar = foo baz = nil

Table 3.2: Operator precedence, from high to low

operator rule: next operator rule (OPERATOR next operator rule)*

(a) Left associativity

operator rule: next operator rule (OPERATOR operator rule)?

(b) Right associativity

Figure 3.3: Syntax for operator associativity

3.2.2 Grammar inheritance

For the Ruby Core parsers I used grammar inheritance to implement the four languages. The RC1
grammar is the largest grammar defining all the rules for the program. Because the subsequent
subsets only introduce a couple of new language features, through grammar inheritance the
grammars for RC2 through RC4 contain only the altered and new rules. In the end this had the
effect that those grammars contained only a few rules.

3.2.3 Creating an AST

An abstract syntax tree (AST) contains structured information about the source program and
it is the data structure used for semantic analysis. Antlr provides the user with a simple but
powerful syntax for the creation of an abstract syntax tree. Figure 3.4 shows an example AST
for a simple expression.

By default Antlr creates a tree where the first item in a rule becomes the parent node of
all the following items. Special syntax is required for each rule to add meaningful structure.

=

foo +

24 call

bar args

5 +

8 9

Figure 3.4: AST for foo = 24 + bar(5, 8 + 9)
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==

== c

a b

(a) Left associativity a == b == c

=

a =

b c

(b) Right associativity a = b = c

Figure 3.5: Associativity in AST

If an item13 in a parser rule is given a caret (^) suffix, that item will become the root of the
current rule’s subtree. If for example, the ‘OPERATOR’ token in figure 3.3 is replaced by
‘OPERATOR^’, the rules will create trees as shown in figure 3.5.

Similarly to the caret suffix, an item suffixed by an exclamation point also alters tree con-
struction. Any item suffixed like this will be removed from the resulting tree. This is useful for
tokens no longer necessary in the syntax as the structure is already explicitly defined by the tree.
For example, since statements are now nodes in the tree the semicolon seperator is no longer
needed. Similarly the end statement is no longer required as the statements within a compound
statement are child nodes of the compound instruction.

These two suffixes allow us to transform most of the rules correctly to trees. Sometimes more
power is needed to create the exact tree required and Antlr provides is with a multitude of
macros we can use in semantic actions to manually control tree creation. The exact syntax for
the creation of these trees is described in the Antlr-manual[9].

The creation of the AST for the Ruby subset parsers was quite easy. Due to my inexperience
with Antlr I used manual tree creation when the simpler method of tree construction would
have sufficed. This gave me greater insight into the workings of tree construction. Additionally
an article on the Antlr-website[10] helped greatly in this understanding.

While I did make some mistakes14, most rules did turn out well. During development I
transformed the tree to a graphic using the Graphviz toolset. The way I implemented this
transformation is described in section 3.3.2.

3.3 Walking the tree

Most ‘compiler compiler’ tools assist you up until the syntactic analysis phase has been completed.
Antlr goes beyond that and besides helping you in creating an AST also helps you to do
something with it. Most people15, when first encountering an AST want to write a method that
walks the tree and extracts the necessary information. Another article on the Antlr-website[11]
describes three different methods. The first is the tree walker mentioned above, the second uses
a heterogeneous AST16 where each node knows how to handle itself and is responsible for its
child nodes.

The third method, the one Terence Parr17 advocates is a so-called tree parser. Tree parsers use
techniques similar to the ones used in lexers and parsers to walk a 2-dimensional tree structure.
You can do two things with tree parsers, you can transform a tree (AST-to-AST) and you
can give no explicit output. The first is often used for optimization and unification of similar
structures. For example in expressions one could collapse arithmetic nodes when all operands
are constants as seen in figure 3.6a and 3.6b. Another example, from the alterations done in this
project is shown in figure 3.6c and 3.6d. This adds the explicit nil to the return statement. In

13A literal, parser rule or token
14Such as adding a superfluous EXPRESSION node as the parent of all types of expressions
15myself included
16Antlr supports the creation of heterogeneous trees
17Professor of CS at the university of San Francisco, the author of Antlr
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Figure 3.7: Tree representation in Antlr

this project I used a single AST-to-AST tree parser to perform some semantic analysis and add
implicit values where applicable.

Parsers which do not transform a tree, usually perform output via semantic actions. An
expression evaluator may for example calculate the value of every node until it reaches the root
node and print the results. In this project I used two of these kinds of parsers, one for the
visualization of the AST and another for the output of program algebra.

Matching rules for trees are somewhat more complex than those for character streams (lexers)
or token streams (parsers) since we are now matching two-dimensional data. While the basic
syntax is still EBNF, a lisp-like syntax is added to match tree structures. Antlr represents tree
structures as shown in figure 3.7.

Matching a tree structure in Antlr is similar to its string representation, for example to
match a STATEMENTS node with zero or more statements as children would be matched by
#(STATEMENTS (statement)*) or a Ruby class statement is matched as follows:

#(CLASS IDENTIFIER statements)

where CLASS is a token containing the class name, IDENTIFIER a token containing the parent
class’ name and the multiple statements are the class body (the statements rule works like the
matching of a STATEMENTS node as in the first example).

3.3.1 Cleaning the tree

The tree parser which modifies the tree obtained from the syntactic analysis stage was named
the cleaner, a misnomer but due to lacking inspiration I kept the name. In the end the tasks
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Figure 3.8: Example AST

this parser performs are few:

1. Several more stringent checks on the source language trying to capture semantic and syn-
tactical errors.

2. Adds Object parent to a parentless class definition.

3. Adds nil to a return statement without explicit return value.

4. Removes the superfluous EXPRESSION node from the tree (See section 3.2.3).

5. Adds self to method calls without explicit destination object. (foo(12) becomes self.foo(12)).

3.3.2 Visualizing the AST

The second tree parser generates dot-files18 via semantic actions. Several nodes in the AST
generate different patterns in the output. Figure 3.8 shows the graphs generated from two
simple programs.

The manner in which the graph visualizer emits the dot file source can be seen as a first trial
for the emitting of program algebra. The code which emits the algebra is entirely embedded in
the grammar file. This turned out to be a less than ideal choice since this made it impossible to
use the same grammar for another purpose (such as emitting program algebra).

3.4 Emitting algebra

For the emitting of program algebra I decoupled the grammar from the methods generating
the code. This way I was able to use a single grammar for all four of the subsets. A seperate
Python module provides four classes: one for each of the Ruby subsets. Each class exposes
methods corresponding to the different macros and projection functions described in chapter 2.
The grammar calls the methods on an instance of one of these classes. Depending on the used
class one of the four subsets is emitted. These classes inherit from one another only adding
or redeclaring the methods which need to yield a different projection. The way the classes
work is simple, every method corresponding to a macro or projection function returns a string
constructed with the values given by the grammar containing the arguments needed.

Since each grammar rule in Antlr corresponds to a method on the (tree)parser class Antlr

allows the grammar author to give rules both arguments and return values. The arguments can

18dot which is a part of the Graphviz toolset is a tool for the visualization of directed and undirected graphs.
http://www.graphviz.org
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be provided when a rule is invoked by another rule or when the parser is invoked by another
program. Similarly the return values of rules can be used in semantic actions of the calling rule.
The program algebra emitting tree parser uses return values to return a string containing the
segment of program algebra the rule represents.

As an example, a while node contains two children: an expression node which is evaluated
every iteration to determine whether the loop should continue and a statements node which
contains the body of the loop. The rule for the while node invokes the rules for these two
children to get their respective program algebra fragments. Afterwards a semantic action calls
the stmt while method on the instantiated class with the two fragments as arguments. The
method inserts these fragments into the appropriate place of the while projection. When this is
completed, the return value of the method is set as the return value of the while node and it is
used as a fragment in whatever parent the node has.

3.4.1 A better way

Antlr 3.0, a new version which provides several new features also includes an extra module
which was previously not part of the Antlr toolset. This module – called StringTemplate –
allows us to generate formatted text-based output easily. This is exactly what the code emitter
needs to do. StringTemplate is available in the Antlr version I have used as a seperate library
and usable via semantic actions. Unfortunately I did not discover the existence of this library
until after the current implementation was practically complete, therefore I have not used it.

3.5 Testing the projection

While the development of most of the program went without any major problems, the resulting
projection had to be tested. To easily test the translation I wrote several Ruby scripts with
increasing complexity using every feature available in the four subsets. All these scripts had the
same behaviour: if they ran correctly the last evaluation in the program yields true. Figure 3.9
shows an example test file. To test these scripts they had to be run through both Ruby and the
PGA Toolset. To run them through the PGA toolset they first had to be projected to PGLEcr
via PGLEcrv. I wrote a script which ran both the Ruby parser and the PGA simulator on all
test files and checked the output. This allowed me to make changes to the projection and quickly
test the effectiveness of them.

Debugging the projection was a rather difficult job as even relative simple programs can
generate quite a bit of PGLEcr code. Many of the scripts resulted in over one thousand PGLEcr
instructions, a single script even went far beyond that with 13394 PGLEcr instructions. Luckily
fixing bugs in simple scripts often caused more complex scripts to also start working correctly.
Debugging the entire projection took quite a bit of time. Had I not done so and just left the
code as is, the development time would have been cut in half.
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01: class Pair;

02: def initialize(a,b);

03: @e0 = a;

04: @e1 = b;

05: end;

06:

07: def first();

08: return @e0;

09: end;

10:

11: def second();

12: return @e1;

13: end;

14:

15: def ==(p);

16: if first() == p.first();

17: if second() == p.second();

18: return true;

19: end;

20: end;

21: return false;

22: end;

23:

24: end;

25:

26: a = true;

27: b = false;

28: foo = Pair.new(a,b);

29: bar = Pair.new(b,a);

30:

31: res = false;

32:

33: if foo != bar;

34: if foo.first() == bar.second();

35: if foo.second() == bar.first();

36: res = true;

37: end;

38: end;

39: end;

40:

41: res;

Figure 3.9: A Ruby test file
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CHAPTER 4

Conclusion

In the end I am most satisfied with the results: the projection passes all tests and modifications
to many aspects of the programs are easy. The Antlr grammar files are easily readable and so
far modifications have not required significant change elsewhere. Antlr is a well designed tool
and fun to use, I have already been looking for excuses to use it elsewhere.

4.1 Program algebra

The Ruby subsets are an interesting addition to program algebra. They have removed the dis-
tinction between primitive instruction sets and basic instruction sets. This is similar to one of the
aspects of the object oriented paradigm,: the combination of behaviour (primitive instructions)
and data (basic instructions) into a single entity (objects).

The projection proves program algebra is powerful enough to allow object oriented program-
ming. But it can be argued that the Ruby subsets do not belong in the program algebra hierarchy:
the step from Ruby to PGLEcr is large and somewhat complex. While most instruction sets in
the PGA toolset introduce a single new concept, the projection from the Ruby Cores intro-
duces an enormous amount of related concepts which could have been seperated into several new
instruction sets.

4.2 Extensibility

The compiler is most extensible, Ruby Cores two through four prove this: minimal work was
required to implement these once Ruby Core One was implemented. All parts of the of the
compiler related to the different subsets inherit from a previous version one way or another.
Implementing a Ruby Core Five – whatever it may do – should therefore not take too much
effort.

4.3 Further improvements

Both the projection and the compiler implementing the projection are easily altered or extended.
Here I mention a few interesting possibilities.

4.3.1 More language features

A lot of the language features of Ruby have been left out of the four subsets. One could add
new Ruby Cores implementing more functionality of the Ruby language, for example:

Integers negative integers, more arithmetic operations, support for Bignum as well as Fixnum.

Other types strings, floating point numbers.
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Mixins mixins are a language construct in Ruby providing a form of multiple-inheritance.

Modules support for multiple source files.

4.3.2 Improved compiler

Antlr 3.0 uses a new algorithm for matching rules1. This makes several syntactic predicates in
the current grammar redundant making the grammar files even more readable. Furthermore the
StringTemplate functionality can be used for the generation of PGLEcrv instead of the current
method.

4.3.3 Alternate Projection

The current projection maintains the complete object oriented structure. This is what dynamic
languages like Ruby do. Static object oriented languages like C++ discard much of the objects
meta data at compile time2. Creating a projection with similar behaviour could be interesting.

4.4 Acknowledgements

I would like to thank my supervisors Bob Diertens and Inge Bethke for their help during the
weekly meetings and for the proofreading of my thesis. Further thanks go to Stephan Schroevers,
who worked on a related thesis3 and helped by proofreading and discussing program algebra.
Sybren Stüvel found some typos in my thesis as well and I would like to thank him for taking
the time to read it.

1Instead of finite lookahead parsing (LL(k)) Antlr 3.0 supports infinite lookahead (LL(∗))
2Less so if Runtime Type Identification (RTTI) is enabled.
3Coincidentally, his thesis has the same page count as mine.

33



APPENDIX A

PGLEcrv

PGLEcrv adds two instructions to PGLEcr, the variable goto instruction and the variable re-

turning goto. PGLEcrv enables us to have jumps in a program where the destination label is
not known in advance. In [1] these two instructions are introduced as part of the intermediate
projection language. In the original projection, the variable returning goto is projected using the
stackframe focus. Since this focus is not introduced until PGLEcr is projected to PGLEc, it
was needed to alter the projection somewhat.

A.1 Variable Goto

The variable goto instruction ##F[f] did require a single modification. The projection is as
follows:

ψ(##L[f]) =
+f == 1; ##L1; ... ; +f == n; ##Ln; !; !

where n is the highest label in the program. The projection simply walks through all possi-
ble destinations and checks the given focus against each, when it is found the jump is made.
The single modification I made was the addition of two termination instructions to the end of
the projection. This way, should the given focus have taken a value not part of the set of label
values, the program terminates instead of exhibiting unexpected behaviour.

A.2 Variable Returning Goto

The variable returning goto instruction needed to have a major overhaul, due to the fact that
the stackframe focus is not available. The projection is as follows:

ψ(R##L[f]) =
+f == 1 {; R##L1; ##Li; }; ... ; +f == n {; R##Ln; ##Li; }; Li

where n is the highest label in the program, and i is a new label every time this projection
is invoked. The jump to label i is needed because otherwise after a jump returns, the following
+f == x {; instructions are executed which could yield true as the focus may have changed
during the execution following the returning jump.
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A.3 Projecting PGLEcrv

I used Antlr for the projection of PGLEcrv to PGLEcr. There are only three instructions
the lexical analyzer is interested in: the two new ones obviously and the label instruction1.
During syntactic analysis, every instruction is parsed and turned into a string containing the
new program. The projection does not use the highest used label plus one when a new label
is needed, instead it maintains a set of the used labels and uses the first unused label as it is
encountered.

1To determine the maximum label, n in the projections.
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APPENDIX B

Formal grammar

The grammar of the four subsets of Ruby used in this thesis needed to be completely specified
so parsing could be done. This appendix contains the specification of the grammars in EBNF.
Since RC2-RC4 only add some new language features, only the altered/added rules will be listed.

B.1 Ruby Core One

program :== (statement)*

statement :== class_definition

| method_definition

| return_statement

| if_statement

| while_statement

| expression ’;’

| ’;’

class_definition :== ’class’ IDENTIFIER (’<’ IDENTIFIER)? ’;’

(statement)*

’end’ ’;’

method_definition :== ’def’ method_identifier ’(’ parameter_list ’)’ ’;’

(statement)*

’end’ ’;’

method_identifier :== ’==’

| ’!=’

| IDENTIFIER

| METHOD_IDENTIFIER

parameter_list :== (IDENTIFIER (’,’ IDENTIFIER)*)?

return_statement :== ’return’ (expression)? ’;’

if_statement :== ’if’ expression ’;’

(statement)*

( ’else’ ’;’

(statement)*

)?

’end’ ’;’
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while_statement :== ’while’ expression ’;’

(statement)*

’end’ ’;’

expression :== expression ’=’ expression

| expression ’==’ expression

| expression ’!=’ expression

| expression ’(’ (expression (’,’ expression)*)? ’)’

| expression ’.’ expression

| IDENTIFIER

| INSTANCEVAR

| ’(’ expression ’)’

| ’defined?’ IDENTIFIER

| ’defined?’ INSTANCEVAR

| ’true’

| ’false’

| ’self’

| ’nil’

IDENTIFIER :== ALPHA (ALPHANUM)*

METHOD_IDENTIFIER :== IDENTIFIER (’?’|’!’)

INSTANCEVAR :== ’@’ IDENTIFIER

ALPHANUM :== ALPHA | DIGIT

ALPHA :== ’a’...’z’ | ’A’...’Z’ | ’_’

DIGIT :== ’0’...’9’

B.2 Ruby Core Two

method_identifier :== ’==’

| ’!=’

| IDENTIFIER

| METHOD_IDENTIFIER

| IDENTIFIER ’.’ method_identifier_simple

| ’(’ expression ’)’ ’.’ method_identifier_simple

method_identifier_simple :== ’==’

| ’!=’

| IDENTIFIER

| METHOD_IDENTIFIER

B.3 Ruby Core Three

expression :== expression ’=’ expression

| expression ’==’ expression

| expression ’!=’ expression
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| expression ’(’ (expression (’,’ expression)*)? ’)’

| expression ’.’ expression

| IDENTIFIER

| INSTANCEVAR

| CLASSVAR

| ’(’ expression ’)’

| ’defined?’ IDENTIFIER

| ’defined?’ INSTANCEVAR

| ’defined?’ CLASSVAR

| ’true’

| ’false’

| ’self’

| ’nil’

CLASSVAR :== ’@’ ’@’ IDENTIFIER

B.4 Ruby Core Four

expression :== expression ’=’ expression

| expression ’==’ expression

| expression ’!=’ expression

| expression ’+’ expression

| expression ’(’ (expression (’,’ expression)*)? ’)’

| expression ’.’ expression

| IDENTIFIER

| INSTANCEVAR

| INTEGER

| ’(’ expression ’)’

| ’defined?’ IDENTIFIER

| ’defined?’ INSTANCEVAR

| ’true’

| ’false’

| ’self’

| ’nil’

INTEGER :== (DIGIT)+
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